首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nine new nitrogen mustard compounds derived from 2,6-difluoro-4-hydroxy- (3a-e) and 2,6-difluoro-4-amino- (4a-d) aniline were synthesized as potential prodrugs. They were designed to be activated to their corresponding 3,5-difluorophenol and -aniline (4)-nitrogen mustards by the enzyme carboxypeptidase G2 (CPG2) in gene-directed enzyme prodrug therapy (GDEPT) models. The compounds were tested for cytotoxicity in the MDA MB-361 breast adenocarcinoma. The cell line was engineered to express stably either CPG2 tethered to the cell surface stCPG2-(Q)3 or beta-galactosidase (beta-Gal) as control. The cytotoxicity differentials were calculated between CPG 2-expressing and -nonexpressing cells and yielded different results for the two series of prodrugs despite their structural similarities. While the phenol compounds are ineffective as prodrugs, their aniline counterparts exhibit outstanding activity in the tumor cell lines expressing CPG2. [3,5-Difluoro-4-[bis(2-chloroethyl)amino]phenyl]carbamoyl-l-glutamic acid gave a differential of >227 in MDA MB361 cells as compared with 19 exhibited by 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-l-glutamic acid, 1a, which has been in clinical trials.  相似文献   

2.
Nineteen novel potential self-immolative prodrugs and their corresponding drugs have been synthesized for gene-directed enzyme prodrug therapy (GDEPT) with carboxypeptidase G2 (CPG2) as the activating enzyme. The compounds are derived from o- and p-amino and p-methylamino aniline nitrogen mustards. Their aqueous stability, kinetics of drug release by CPG2, and cytotoxicity in the colon carcinoma cell line WiDr, expressing either surface-tethered CPG2 (stCPG2(Q)3) or control beta-galactosidase, are assessed. The effect of various structural features on stability, kinetics of activation, and biological activity is discussed. The p-methylamino prodrugs are the most stable compounds from this series, with the largest cytotoxicity differentials between CPG2-expressing and nonexpressing cells. The most potent compounds in all series are prodrugs of bis-iodo nitrogen mustards. 4-[N-[4'-Bis(2' '-iodoethyl)aminophenyl]-N'-methylcarbamoyloxymethyl]phenylcarbamoyl-l-glutamic acid, compound 39b, is 124-fold more cytotoxic to WiDr cells expressing CPG2 than to cells expressing beta-galactosidase. An additional six compounds show better cytotoxicity differential than the published N-[4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl]-l-glutamic acid (CMDA) prodrug.  相似文献   

3.
Four novel potential prodrugs derived from daunorubicin (8, 10) and doxorubicin (12, 14) were designed and synthesized. They are self-immolative prodrugs for suicide gene therapy activation by the enzyme carboxypeptidase G2 (CPG2) subsequently releasing the corresponding anthracyclines, by a 1,6-elimination mechanism. A mammary carcinoma cell line (MDA MB 361) was engineered to express CPG2 intracellularly (CPG2) or extracellularly, tethered to the outer cell membrane (stCPG2(Q)3). The prodrugs derived from doxorubicin showed prodrug/drug cytotoxicity differentials of 21-fold (compound 12) and 23-fold (compound 14). Prodrug 12 underwent an 11-fold activation when assayed in the cell line expressing externally surface-tethered CPG2.  相似文献   

4.
The synthesis of two novel drugs, 4-[bis[2-(mesyloxy)ethyl]amino]benzoic acid (7) and 4-[(2-chloroethyl)[2-(mesyloxy)ethyl]amino]benzoic acid (8) is described here. They are the active drugs of two prodrugs (9 and 10) designed for use as anti-cancer agents. The prodrugs (9, 10 and 11) were made as a series of compounds which are bifunctional alkylating agents in which the activating effect of the ionized carboxyl function is masked through an amide bond to a glutamic acid residue. These relatively inactive prodrugs were designed to be activated to their corresponding alkylating agent active drugs (7, 8 and 12 respectively) at a tumour site by prior administration of a monoclonal antibody conjugated to a bacterial enzyme. This system is called antibody-directed enzyme prodrug therapy (ADEPT). The chemical half-lives of the prodrugs and their active drugs were measured in order to determine their relative reactivities. The half-lives ranged from 21 to 324 min for the active drugs and from 42 to 1158 min for the prodrugs. The viability of two different tumour cell lines was monitored with each active drug and prodrug. The IC50 values varied from 65 to 625 microM for the active drugs: no IC50 values could be obtained for the prodrugs, using a rapid incubation procedure. Each in vitro technique demonstrated the ability of the glutamic acid moiety to deactivate the drugs, forming effective prodrugs.  相似文献   

5.
The synthesis of three novel prodrugs, 4-[bis[2-(mesyloxy)ethyl]amino]benzoyl-L-glutamic acid (7), 4-[(2-chloroethyl)[2-(mesyloxy)ethyl]amino]benzoyl-L-glutamic acid (8), and 4-[bis(2-chloroethyl)amino]benzoyl-L-glutamic acid (9), for use as anticancer agents, is described here. Each is a bifunctional alkylating agent in which the activating effect of the ionized carboxyl function is masked through an amide bond to the glutamic acid residue. These relatively inactive prodrugs are designed to be activated to their corresponding nitrogen alkylating agents (10, 11, and 12, respectively) at a tumor site by prior administration of a monoclonal antibody conjugated to the bacterial enzyme carboxypeptidase G2 (CPG2). The viability of two different tumor cell lines was monitored with each prodrug in the presence of CPG2. All three compounds showed substantial prodrug activity--with conversion to the corresponding active drug leading to greatly increased cytotoxicity.  相似文献   

6.
Like most phosphonic acids, the recently discovered potent and selective thiazole phosphonic acid inhibitors of fructose 1,6-bisphosphatase (FBPase) exhibited low oral bioavailability (OBAV) and therefore required a prodrug to achieve oral efficacy. Syntheses of known phosphonate prodrugs did not afford the desired OBAV; hence, a new class of prodrugs was sought. Phosphonic diamides derived from amino acid esters were discovered as viable prodrugs, which met our preset goals: excellent aqueous stability over a wide pH range, benign byproducts (amino acids and low molecular weight alcohols), and most importantly good OBAV leading to robust oral glucose lowering effects. These desirable properties of phosphonic diamides represent significant improvements over existing prodrug classes. Optimization of the diamide prodrugs of phosphonic acid 2a (MB05032) led to the identification of diamide 8 (MB06322), the first reported orally efficacious FBPase inhibitor.  相似文献   

7.
In efforts to obtain anticancer prodrugs for antibody-directed or gene-directed enzyme prodrug therapy using E. coli nitroreductase, a series of nitrobenzylphosphoramide mustards were designed and synthesized incorporating a strategically placed nitro group in a position para to the benzylic carbon for reductive activation. All analogues were good substrates of E. coli nitroreductase with half-lives between 2.9 and 11.9 min at pH 7.0 and 37 degrees C. Isomers of the 4-nitrophenylcyclophosphamide analogues 3 and 5 with a benzylic oxygen para to the nitro group showed potent selective cytotoxicity in nitroreductase (NTR) expressing cells, while analogues 4 and 6 with a benzylic nitrogen para to the nitro group showed little selective cytotoxicity despite their good substrate activity. These results suggest that good substrate activity and the benzylic oxygen are both required for reductive activation of 4-nitrophenylcyclophosphamide analogues by E. coli nitroreductase. Isomers of analogue 3 showed 23,000-29,000x selective cytotoxicity toward NTR-expressing V79 cells with an IC(50) as low as 27 nM. They are about as active as and 3-4x more selective than 5-aziridinyl-2,4-dinitrobenzamide (CB1954). The acyclic 4-nitrobenzylphosphoramide mustard ((+/-)-7) was found to be the most active and most selective compound for activation by NTR with 170,000x selective cytotoxicity toward NTR-expressing V79 cells and an IC(50) of 0.4 nM. Compound (+/-)-7also exhibited good bystander effect compared to 5-aziridinyl-2,4-dinitrobenzamide. The low IC(50), high selectivity, and good bystander effects of nitrobenzylphosphoramide mustards in NTR-expressing cells suggest that they could be used in combination with E. coli nitroreductase in enzyme prodrug therapy.  相似文献   

8.
A variety of nitroheterocyclic carbamate prodrugs of phenylenediamine mustard and 5-amino-1-(chloromethyl)-3-[(5,6,7-trimethoxyindol-2-yl)carbonyl]-1,2-dihydro-3H-benz[e]indoline (amino-seco-CBI-TMI), covering a wide range of reduction potential, were prepared and evaluated for use in gene-directed enzyme prodrug therapy (GDEPT) using a two-electron nitroreductase (NTR) from Escherichia coli B. The carbamate prodrugs and corresponding amine effectors were tested in a cell line panel comprising parental and NTR-transfected human (SKOV3/SKOV3-NTR(neo), WiDr/WiDr-NTR(neo)), Chinese hamster (V79(puro)/V79-NTR(puro)), and murine (EMT6/EMT6-NTR(puro)) cell line pairs and were compared with the established NTR substrates CB1954 (an aziridinyl dinitrobenzamide) and the analogous dibromomustard. The 1-methyl-2-nitroimidazol-5-ylmethyl carbamate of phenylenediamine mustard was metabolized rapidly by EMT6-NTR(neo) but not EMT6 cells, demonstrating that it is an efficient substrates for NTR. Despite this, the carbamates of phenylenediamine mustards show relatively low differential cytotoxicity for NTR+ve cells in IC(50) assays, apparently because they retain sufficient alkylating reactivity that most of the prodrug reacts with nucleophiles during the drug exposure period. In contrast, the corresponding amino-seco-CBI-TMI prodrugs were less efficient NTR substrates but had greater chemical stability, were more potent, and showed substantial NTR-ve/NTR+ve ratios in the cell line panel, with ratios of 15-100-fold for the 1-methyl-2-nitro-1H-imidazol-5-ylmethyl and 1-methyl-5-nitro-1H-imidazol-2-ylmethyl carbamates of amino-seco-CBI-TMI. The activity of these two prodrugs was evaluated against NTR-expressing EMT6 tumors comprising ca. 10% NTR+ve cells. Small but not statistically significant killing of NTR+ve cells was observed, with no effect against NTR-ve target cells. The lack of activity against NTR+ve cells in tumors, despite potent and selective activity in culture, indicates that pharmacokinetic optimization will be required if in vivo efficacy against solid tumors is to be achieved with this new class of NTR prodrugs.  相似文献   

9.
The analysis of corticosteroid prodrugs in pharmacokinetic (PK) studies poses the risk of overestimation of corticosteroid concentrations due to in vitro hydrolysis of prodrugs after sample collection. This study tests the effectiveness of enzyme inhibitors as stabilizers for betamethasone sodium phosphate (BSP) in pregnant sheep plasma samples collected during PK studies with betamethasone (BET) and provides simultaneous high-performance liquid chromatography analysis of BSP and BET. A rapid, sensitive, and specific ion-paired reversed-phase high-performance liquid chromatography assay for simultaneous measurement of BET and BSP in plasma was developed. This assay was used for analyzing samples from an in vitro prodrug hydrolysis study. Enzyme inhibitors tested were sodium arsenate (Na(2)HAsO(4)) and ethylenediaminetetraacetic acid. The BSP was administered intramuscularly to three pregnant sheep to assess in vivo PK. Samples were split with part treated with Na(2)HAsO(4) and part left natural. In vitro hydrolysis of BSP in plasma to BET could be completely inhibited by Na(2)HAsO(4), but not by ethylenediaminetetraacetic acid. The PK study showed lower concentrations of BET in samples with Na(2)HAsO(4) compared with natural samples. This study demonstrates that artifacts in PK profiles of corticosteroids due to in vitro prodrug hydrolysis can be prevented by sample treatment with enzyme inhibitors.  相似文献   

10.
Glucuronic acid linked prodrugs of O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine were synthesized. The prodrugs were found to be quite stable at physiological pH and were more than 200-fold less active as inactivators of O(6)-alkylguanine-DNA alkyltransferase (alkyltransferase) than either O(6)-benzylguanine or O(6)-benzyl-2'-deoxyguanosine. Beta-glucuronidase from both Escherichia coli and bovine liver cleaved the prodrugs efficiently to release O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine, respectively. In combination with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), the prodrugs were not effective adjuvants for HT29 cell killing. However, as expected, incubation of these prodrugs with beta-glucuronidase in the culture medium led to much more efficient cell killing by BCNU as a result of the liberation of the more potent inactivators, O(6)-benzylguanine and O(6)-benzyl-2'-deoxyguanosine. These prodrugs may be useful for prodrug monotherapy of necrotic tumors that liberate beta-glucuronidase or for antibody-directed enzyme prodrug therapy with antibodies that can deliver beta-glucuronidase to target tumor cells.  相似文献   

11.
Oral delivery of previously disclosed purine and benzimidazole fructose-1,6-bisphosphatase (FBPase) inhibitors via prodrugs failed, which was likely due to their high molecular weight (>600). Therefore, a smaller scaffold was desired, and a series of phosphonic acid-containing thiazoles, which exhibited high potency against human liver FBPase (IC(50) of 10-30 nM) and high selectivity relative to other 5'-adenosinemonophosphate (AMP)-binding enzymes, were discovered using a structure-guided drug design approach. The initial lead compound (30j) produced profound glucose lowering in rodent models of type 2 diabetes mellitus (T2DM) after parenteral administration. Various phosphonate prodrugs were explored without success, until a novel phosphonic diamide prodrug approach was implemented, which delivered compound 30j with good oral bioavailability (OBAV) (22-47%). Extensive lead optimization of both the thiazole FBPase inhibitors and their prodrugs culminated in the discovery of compound 35n (MB06322) as the first oral FBPase inhibitor advancing to human clinical trials as a potential treatment for T2DM.  相似文献   

12.
Purpose To evaluate a novel targeted anticancer prodrug consisting of several copies of sialic acid (SA, targeting moiety), doxorubicin (DOX), citric acid (multifunctional spacer) and poly(ethylene glycol) (PEG, carrier). Methods α, ω bis carboxyl PEG was covalently conjugated with multiple copies of SA and DOX through a citric acid spacer and characterized by proton nuclear magnetic resonance (1HNMR), matrix-assisted laser desorption/ionization-time of flight (MALDI/TOF), and high-performance liquid chromatography (HPLC). The molecular models of conjugates were established using ChemDraw software. Stability, spontaneous and esterase-stimulated drug release was analyzed by HPLC. Cellular internalization (fluorescence microscopy) and cytotoxicity [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay] of free DOX and prodrugs were evaluated. Results 1HNMR, MALDI/TOF, and HPLC showed the formation of the PEG prodrug conjugates. More than 40% of the drug was released from its conjugate in the presence of esterase enzyme, whereas the conjugate was stable at pH 7.4 in the absence of enzyme. Molecular modeling studies showed stable conformations of conjugates. The targeted prodrug conjugates with two copies of SA and DOX showed enhanced cytotoxicity when compared with non-targeted prodrugs and free DOX. Conclusions Targeting of the conjugate to cancer cells by SA with increased copies of targeting moiety and anticancer drug enhanced prodrug uptake by cancer cells and cytotoxicity of the prodrug.  相似文献   

13.
The nontoxic paclitaxel-2'-carbamate prodrugs 2-5 and paclitaxel-2'-carbonate prodrug 6 were synthesized and tested for activation by the tumor-associated enzyme plasmin. A generally applicable method for the synthesis of paclitaxel-2'-carbamates was developed. In buffer solution, prodrug 2, which contained an unsubstituted ethylenediamine spacer, was not stable, whereas prodrugs 3-6 were highly stable. Prodrugs 3-6 showed on average a decrease in cytotoxicity of more than 8000-fold in comparison with the parent drug in seven human tumor cell lines. Prodrugs 5 and 6 are the most nontoxic prodrugs of paclitaxel that yield the free parent drug upon selective activation currently reported. Enzyme hydrolysis and spacer elimination rates were determined by incubation of prodrugs 5 and 6 in the presence of human plasmin. From these results, prodrug 6 was selected as the promising prodrug for further in vivo studies.  相似文献   

14.
The rationale fo the development of prodrugs relies upon delivery of higher concentrations of a drug to target cells compared to administration of the drug itself. In the last decades, numerous prodrugs that are enzymatically activated into anti-cancer agents have been developed. This review describes the most important enzymes involved in prodrug activation notably with respect to tissue distribution, up-regulation in tumor cells and turnover rates. The following endogenous enzymes are discussed: aldehyde oxidase, amino acid oxidase, cytochrome P450 reductase, DT-diaphorase, cytochrome P450, tyrosinase, thymidylate synthase, thymidine phosphorylase, glutathione S-transferase, deoxycytidine kinase, carboxylesterase, alkaline phosphatase, beta-glucuronidase and cysteine conjugate beta-lyase. In relation to each of these enzymes, several prodrugs are discussed regarding organ- or tumor-selective activation of clinically relevant prodrugs of 5-fluorouracil, axazaphosphorines (cyclophosphamide, ifosfamide, and trofosfamide), paclitaxel, etoposide, anthracyclines (doxorubicin, daunorubicin, epirubicin), mercaptopurine, thioguanine, cisplatin, melphalan, and other important prodrugs such as menadione, mitomycin C, tirapazamine, 5-(aziridin-1-yl)-2,4-dinitrobenzamide, ganciclovir, irinotecan, dacarbazine, and amifostine. In addition to endogenous enzymes, a number of nonendogenous enzymes, used in antibody-, gene-, and virus-directed enzyme prodrug therapies, are described. It is concluded that the development of prodrugs has been relatively successful; however, all prodrugs lack a complete selectivity. Therefore, more work is needed to explore the differences between tumor and nontumor cells and to develop optimal substrates in terms of substrate affinity and enzyme turnover rates fo prodrug-activating enzymes resulting in more rapid and selective cleavage of the prodrug inside the tumor cells.  相似文献   

15.
A series of 2,4-dinitrobenzamide mustards were prepared from 5-chloro-2,4-dinitrobenzoic acid or the corresponding 5-dimesylate mustard as potential prodrugs for gene-directed enzyme prodrug therapy (GDEPT) with the E. coli nfsB nitroreductase (NTR). The compounds, including 32 new examples, were evaluated in four pairs of NTR+ve/-ve cell lines for selective cytotoxicity (IC50 and IC50 ratios), in multicellular layer (MCL) cultures for bystander effects, and for in vivo activity against tumors grown from stably NTR transfected EMT6 and WiDr cells in nude mice. Multivariate regression analysis of the IC50 results was undertaken using a partial least-squares projection to latent structures model. In NTR-ve lines, cytotoxicity correlated positively with logP, negatively with hydrogen bond acceptors (HA) and donors (HD) in the amide side chain, and positively with the reactivity of the less-reactive leaving group of the mustard function, likely reflecting toxicity due to DNA monoadducts. Potency and selectivity for NTR+ve lines was increased by logP and HD, decreased by HA, and was positively correlated with the leaving group efficiency of the more-reactive group, likely reflecting DNA crosslinking. NTR selectivity was greatest for asymmetric chloro/mesylate and bromo/mesylate mustards. Bystander effects in the MCL assay also correlated positively with logP and negatively with leaving group reactivity, presumably reflecting the transcellular diffusion/reaction properties of the activated metabolites. A total of 18 of 22 mustards showed equal or greater bystander efficiencies in MCLs than the aziridinylbenzamide CB 1954, which is currently in clinical trial for NTR-GDEPT. The dibromo and bromomesylate mustards were surprisingly well tolerated in mice. High MTD/IC50 (NTR+ve) ratios translated into curative activity of several compounds against NTR+ve tumors. A bromomesylate mustard showed superior activity against WiDr tumors grown from 1:9 mixtures of NTR+ve and NTR-ve cells, indicating a strong bystander effect in vivo.  相似文献   

16.
Human cytosolic beta-glycosidase is a small monomeric enzyme that is active under physiological conditions, which might be ideal for enzyme-prodrug therapy. We have previously reported the synthesis of a galactoside (DNR-GlA3) and a glucoside (DNR-GsA3) prodrug of daunorubicin. In the present study, we established that cellular uptake of DNR-GlA3 and DNR-GsA3 was low in contrast to that of daunorubicin. Recombinant human beta-glycosidase converted both prodrugs to daunorubicin as shown by liquid chromatography. The kinetics of the conversion of DNR-GlA3 and DNR-GsA3 by human beta-glycosidase, however, was unfavorable as the K(m) values were, respectively, 3- and 6-fold higher than those of another mammalian beta-glycosidase of bovine origin. The V(max) values were, respectively, 3.3 and 8.5nmol/hr/mg as compared to 158.3 and 147.8nmol/hr/mg of the bovine enzyme. Treatment of OVCAR-3 cells with human beta-glycosidase (0.5U/mL) and 0.5 microM DNR-GlA3 or DNR-GsA3 resulted in, respectively, 86 and 81% cell growth inhibition, while the prodrugs alone inhibited growth to only 19 and 1%. Treatment of cells with the bovine enzyme and the prodrugs inhibited cell growth more efficiently. We conclude that the endogenous intracellular beta-glycosidase is not available for extracellular prodrug activation. Thus, the incorporation of the enzyme in enzyme-prodrug therapy might be an elegant approach to achieve tumor-specific prodrug conversion. The efficiency of glycoside prodrug conversion might be improved by design of a prodrug that is more readily activated by human beta-glycosidase or by evolution of the enzyme into a mutant form that displays high activity towards these prodrugs.  相似文献   

17.
18.
19.
Dipeptide monoester prodrugs of floxuridine were synthesized, and their chemical stability in buffers, resistance to glycosidic bond metabolism, affinity for PEPT1, enzymatic activation and permeability in cancer cells were determined and compared to those of mono amino acid monoester floxuridine prodrugs. Prodrugs containing glycyl moieties were the least stable in pH 7.4 buffer ( t 1/2 < 100 min). The activation of all floxuridine prodrugs was 2- to 30-fold faster in cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of dipeptide monoester prodrugs containing aromatic promoieties in cell homogenates was 5- to 20-fold slower than that of other dipeptide and most mono amino acid monoester prodrugs ( t 1/2 approximately 40 to 100 min). All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent floxuridine. In general, the 5'-O-dipeptide monoester floxuridine prodrugs exhibited higher affinity for PEPT1 than the corresponding 5'-O-mono amino acid ester prodrugs. The permeability of dipeptide monoester prodrugs across Caco-2 and Capan-2 monolayers was 2- to 4-fold higher than the corresponding mono amino acid ester prodrug. Cell proliferation assays in AsPC-1 and Capan-2 pancreatic ductal cell lines indicated that the dipeptide monoester prodrugs were equally as potent as mono amino acid prodrugs. The transport and enzymatic profiles of 5'- l-phenylalanyl- l-tyrosyl-floxuridine, 5'- l-phenylalanyl- l-glycyl-floxuridine, and 5'- l-isoleucyl- l-glycyl-floxuridine suggest their potential for increased oral uptake, delayed enzymatic bioconversion and enhanced resistance to metabolism to 5-fluorouracil, as well as enhanced uptake and cytotoxic activity in cancer cells, attributes that would facilitate prolonged systemic circulation for enhanced therapeutic action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号