首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The pathogenic form of the cyclooxygenase (COX) enzyme, COX-2, is also constitutively present in the spinal cord and has been implicated in chronic pain states in rat and man. A number of COX-2 inhibitors, including celecoxib and rofecoxib, are already used in man for the treatment of inflammatory pain. Preclinically, the dual-acting COX-2 inhibitor, GW406381X [2-(4-ethoxyphenyl)-3-[4-(methylsulfonyl)phenyl]-pyrazolo[1,5-b]pyridazine, where X denotes the free base], is as effective as rofecoxib and celecoxib in the rat established Freund's Complete Adjuvant model with an ED(50) of 1.5 mg/kg p.o. compared with 1.0 mg/kg p.o. for rofecoxib and 6.6 mg/kg p.o. for celecoxib. However, in contrast to celecoxib (5 mg/kg p.o. b.i.d.) and rofecoxib (5 mg/kg p.o. b.i.d.), which were without significant effect, GW406381X (5 mg/kg p.o. b.i.d.) fully reversed mechanical allodynia in the chronic constriction injury model and reversed thermal hyperalgesia in the mouse partial ligation model, both models of neuropathic pain. GW406381X, was also effective in a rat model of capsaicin-induced central sensitization, when given intrathecally (ED(50) = 0.07 mug) and after chronic but not acute oral dosing. Celecoxib and rofecoxib had no effect in this model. Several hypotheses have been proposed to try to explain these differences in efficacy, including central nervous system penetration, enzyme kinetics, and potency. The novel finding of effectiveness of GW406381X in these models of neuropathic pain/central sensitization, in addition to activity in inflammatory pain models and together with its central efficacy, suggests dual activity of GW406381X compared with celecoxib and rofecoxib, which may translate into greater efficacy in a broader spectrum of pain states in the clinic.  相似文献   

2.
Orofacial pain disorders are frequent in the general population and their pharmacological treatment is not always adequately resolved. Cannabinoids have demonstrated their analgesic effect in several pain conditions, both in animal models and in clinical situations. The aim of the present study was to evaluate the cannabinoid‐mediated antinociception in two inflammatory models of orofacial pain (orofacial and temporomandibular joint (TMJ) formalin test) and to compare it with a spinal inflammatory model (paw formalin test). WIN 55,212‐2 (0.5, 1 mg/kg), a synthetic cannabinoid agonist, was intraperitoneally (i.p.) administered prior to formalin and significantly reduced the nociceptive behavioural responses in these inflammatory tests. To elucidate which subtype of receptor could be involved in such effect, two selective cannabinoid antagonists were administered prior to WIN. SR141716A (1 mg/kg i.p.), the CB1 receptor‐selective antagonist, was able to prevent the cannabinoid‐induced analgesia in all three models, whereas SR144528 (1 mg/kg i.p.), the CB2 receptor‐selective antagonist, only prevented it in the paw formalin test. A comparison with the antinociceptive effects of morphine (2.5, 5, 10 mg/kg, i.p.), indomethacin (2.5, 5 mg/kg, i.p.) and ketamine (25, 50 mg/kg, i.p.) was also performed. Morphine displayed a dose‐dependent reduction of acute and inflammatory pain in all three models, whereas indomethacin and ketamine only attenuated inflammatory pain at the highest tested doses. These results indicate that the cannabinoid‐induced antinociception in the orofacial region is mediated by activation of CB1 cannabinoid receptor. Moreover WIN was as effective as morphine and more effective than indomethacin and ketamine, in oral inflammatory pain.  相似文献   

3.
Obara I  Tochiki KK  Géranton SM  Carr FB  Lumb BM  Liu Q  Hunt SP 《Pain》2011,152(11):2582-2595
The management of neuropathic pain is unsatisfactory, and new treatments are required. Because the sensitivity of a subset of fast-conducting primary afferent nociceptors is thought to be regulated by the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, selectively targeting mTORC1 represents a new strategy for the control of chronic pain. Here we show that activated mTOR was expressed largely in myelinated sensory fibers in mouse and that inhibiting the mTORC1 pathway systemically alleviated mechanical hypersensitivity in mouse models of inflammatory and neuropathic pain. Specifically, systemic administration of mTORC1 inhibitor temsirolimus (CCI-779), both acutely (25 mg/kg i.p.) and chronically (4 daily 25 mg/kg i.p.), inhibited the mTORC1 pathway in sensory axons and the spinal dorsal horn and reduced mechanical and cold hypersensitivity induced by nerve injury. Moreover, systemic treatment with CCI-779 also reduced mechanical but not heat hypersensitivity in an inflammatory pain state. This treatment did not influence nociceptive thresholds in naive or sham-treated control animals. Also, there was no evidence for neuronal toxicity after repeated systemic treatment with CCI-779. Additionally, we show that acute and chronic i.p. administration of Torin1 (20 mg/kg), a novel ATP-competitive inhibitor targeting both mTORC1 and mTORC2 pathways, reduced the response to mechanical and cold stimuli in neuropathic mice. Our findings emphasize the importance of the mTORC1 pathway as a regulator of nociceptor sensitivity and therefore as a potential target for therapeutic intervention, particularly in chronic pain.  相似文献   

4.
The novel analgesic tapentadol HCl [(-)-(1R,2R)-3-(3-dimethylamino)-1-ethyl-2-methyl-propyl)-phenol hydrochloride] combines μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI) in a single molecule and shows a broad efficacy profile in various preclinical pain models. This study analyzed the analgesic activity of tapentadol in experimental inflammatory pain. Analgesia was evaluated in the formalin test (pain behavior, rat and mouse), carrageenan-induced mechanical hyperalgesia (paw-pressure test, rat), complete Freund's adjuvant (CFA)-induced paw inflammation (tactile hyperalgesia, rat), and CFA knee-joint arthritis (weight bearing, rat). Tapentadol showed antinociceptive activity in the rat and mouse formalin test with an efficacy of 88 and 86% and ED(50) values of 9.7 and 11.3 mg/kg i.p., respectively. Tapentadol reduced mechanical hyperalgesia in carrageenan-induced acute inflammatory pain by 84% with an ED(50) of 1.9 mg/kg i.v. In CFA-induced tactile hyperalgesia, tapentadol showed 71% efficacy with an ED(50) of 9.8 mg/kg i.p. The decrease in weight bearing after CFA injection in one knee joint was reversed by tapentadol by 51% with an ED(25) of 0.9 mg/kg i.v. Antagonism studies were performed with the MOR antagonist naloxone and the α(2)-noradrenergic receptor antagonist yohimbine in the carrageenan- and CFA-induced hyperalgesia model. In the CFA model, the serotonergic receptor antagonist ritanserin was also tested. The effect of tapentadol was partially blocked by naloxone and yohimbine and completely blocked by the combination of both, but it was not affected by ritanserin. In summary, tapentadol showed antinococeptive/antihyperalgesic analgesic activity in each model of acute and chronic inflammatory pain, and the antagonism experiments suggest that both MOR activation and NRI contribute to its analgesic effects.  相似文献   

5.
The endocannabinoid system may serve important functions in the central and peripheral regulation of pain. In the present study, we investigated the effects of the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] on rodent models of acute and persistent nociception (intraplantar formalin injection in the mouse), neuropathic pain (sciatic nerve ligation in the rat), and inflammatory pain (complete Freund's adjuvant injection in the rat). In the formalin model, administration of AM404 (1-10 mg/kg i.p.) elicited dose-dependent antinociceptive effects, which were prevented by the CB(1) cannabinoid receptor antagonist rimonabant (SR141716A; 1 mg/kg i.p.) but not by the CB2 antagonist SR144528 (1 mg/kg i.p.) or the vanilloid antagonist capsazepine (30 mg/kg i.p.). Comparable effects were observed with UCM707 [N-(3-furylmethyl)-eicosa-5,8,11,14-tetraenamide], another anandamide transport inhibitor. In both the chronic constriction injury and complete Freund's adjuvant model, daily treatment with AM404 (1-10 mg/kg s.c.) for 14 days produced a dose-dependent reduction in nocifensive responses to thermal and mechanical stimuli, which was prevented by a single administration of rimonabant (1 mg/kg i.p.) and was accompanied by decreased expression of cyclooxygenase-2 and inducible nitric-oxide synthase in the sciatic nerve. The results provide new evidence for a role of the endocannabinoid system in pain modulation and point to anandamide transport as a potential target for analgesic drug development.  相似文献   

6.
Recent studies have shown that topiramate, a structurally novel anticonvulsant, exerts antinociceptive activity in animal models of neuropathic, acute somatic, and visceral pain. This study was aimed to examine: (i) the effects of systemically and locally peripherally administered topiramate in the rat inflammatory pain model and (ii) the potential role and site(s) of gamma‐aminobutyric acid (GABA), opioid, and adrenergic receptors in topiramate’s antihyperalgesia. Rats received intraplantar (i.pl.) injections of the pro‐inflammatory compound carrageenan. A paw pressure test was used to determine: (i) the effect of systemic and local peripheral topiramate on carrageenan‐induced hyperalgesia and (ii) the effects of systemic and local peripheral bicuculline (selective GABAA receptor antagonist), naloxone (nonselective opioid receptor antagonist), and yohimbine (selective α2‐adrenergic receptor antagonist) on topiramate‐induced antihyperalgesia. Systemic topiramate (40–160 mg/kg; p.o.) produced a significant dose‐dependent reduction in the paw inflammatory hyperalgesia induced by carrageenan. The antihyperalgesic effect of systemic topiramate was significantly decreased by systemic bicuculline (0.5–1 mg/kg; i.p.), naloxone (2–5 mg/kg; i.p.), and yohimbine (1–3 mg/kg; i.p.). Local peripheral topiramate (0.03–0.34 mg/paw; i.pl.) also produced significant dose‐dependent antihyperalgesia, which was significantly depressed by local peripheral yohimbine (0.05–0.2 mg/paw; i.pl.) but not by local peripheral bicuculline (0.15 mg/paw; i.pl.) or naloxone (0.1 mg/paw; i.pl.). The results suggest that topiramate produces systemic and local peripheral antihyperalgesia in an inflammatory pain model, which is, at least partially, mediated by central GABAA and opioid receptors and by peripheral and most probably central α2‐adrenergic receptors. These findings contribute to better understanding of topiramate’s action in pain states involving inflammation.  相似文献   

7.
Lysophosphatidic acid (LPA), an initiator of neuropathic pain, causes allodynia. However, few studies have evaluated the pharmacological profile of LPA‐induced pain. In this study, a LPA‐induced pain model was developed and pharmacologically characterized with clinically relevant drugs used for neuropathic pain, including antiepileptics, non‐steroidal anti‐inflammatory agents, analgesics, local anaesthetics/antiarrhythmics and antidepressants. Gabapentin (1–30 mg/kg, p.o.) significantly reversed LPA‐induced allodynia, but neither indomethacin (30 mg/kg, p.o.) nor morphine (0.3–3 mg/kg, s.c.) did, which indicates that LPA‐induced pain consists mostly of neuropathic rather than inflammatory pain. Both pregabalin (0.3–10 mg/kg, p.o.) and ω‐CgTX MVIIA (0.01–0.03 μg/mouse, i.t.) completely reversed LPA‐induced allodynia in a dose‐dependent manner. Lidocaine (1–30 mg/kg, s.c.), mexiletine (1–30 mg/kg, p.o.) and carbamazepine (10–100 mg/kg, p.o.) significantly ameliorated LPA‐induced allodynia dose dependently. Milnacipran (30 mg/kg, i.p.) produced no significant analgesic effect in LPA‐induced allodynia. In LPA‐injected mice, expression of the α2δ1 subunit of the voltage‐gated calcium channel (VGCC) was increased in the dorsal root ganglion (DRG) and spinal dorsal horn. Furthermore, the VGCC current was potentiated in both the DRG from LPA‐injected mice and LPA (1 μM)‐treated DRG from saline‐injected mice, and the potentiated VGCC current was amended by treatment with gabapentin (100 μM). The LPA‐induced pain model described here mimics aspects of the neuropathic pain state, including the sensitization of VGCC, and may be useful for the early assessment of drug candidates to treat neuropathic pain.  相似文献   

8.
Mu opioid receptors are expressed throughout the central and peripheral nervous systems. Peripheral inflammation leads to an increase in mu receptor present on the peripheral terminals of primary sensory neurons. Activation of peripheral mu receptors produces potent antihyperalgesic effects in both humans and animals. Here, we describe the in vivo pharmacological properties of the structurally novel, highly potent, systemically available yet peripherally restricted mu opioid agonist, [8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triaza-spiro[4.5]dec-3-yl]-acetic acid (DiPOA). DiPOA administered i.p. produced naltrexone-sensitive, dose-dependent reversal of Freund's complete adjuvant-induced inflammatory mechanical hyperalgesia (1-10 mg/kg). Maximum percent reversal (67%) was seen 1 h postadministration at 10 mg/kg (the highest dose studied). DiPOA also proved antihyperalgesic in a model of postsurgical pain with a maximum percent reversal of 85% 1 h postadministration at 30 mg/kg i.p. (the highest dose studied). DiPOA administered i.p. had no effect in the tail flick assay of acute pain (0.1-10 mg/kg), produced no ataxia as measured by latency to fall from an accelerating rotarod (3-30 mg/kg), and was not antihyperalgesic in the Seltzer model of neuropathic pain (1-10 mg/kg). This is the first report of a peripherally restricted, small-molecule mu opioid agonist that is nonsedating, antihyperalgesic, and effective against inflammatory and postsurgical pain when administered systemically.  相似文献   

9.
Midazolam is a new ultra short-acting benzodiazepine whose physical dependence properties have not been well characterized. Our laboratory has demonstrated previously that physical dependence to the long-acting chlordiazepoxide in the rat is inducible by a single intoxicating dose, whereas maximal dependence required chronically equivalent maximally tolerable dosing b.i.d. for 5 weeks. Based on the methods developed in our laboratory to quantify benzodiazepine intoxication and withdrawal, Trs were designed to evaluate midazolam's capacity to induce dependence in the rat after definable acute (120 mg/kg p.o.), sub-acute (120 mg/kg q.i.d. x 3 days) and chronic (120-180 mg/kg bid. x 5 weeks) dosing that was near maximally tolerable. A single dose of midazolam failed to produce withdrawal signs. Tolerance and dependence increased as a function of midazolam dose and duration of Tr.  相似文献   

10.
Bicifadine (1-p-tolyl-3-azabicyclo[3.1.0]hexane) inhibits monoamine neurotransmitter uptake by recombinant human transporters in vitro with a relative potency of norepinephrine > serotonin > dopamine (approximately 1:2:17). This in vitro profile is supported by microdialysis studies in freely moving rats, where bicifadine (20 mg/kg i.p.) increased extrasynaptic norepinephrine and serotonin levels in the prefrontal cortex, norepinephrine levels in the locus coeruleus, and dopamine levels in the striatum. Orally administered bicifadine is an effective antinociceptive in several models of acute, persistent, and chronic pain. Bicifadine potently suppressed pain responses in both the Randall-Selitto and kaolin models of acute inflammatory pain and in the phenyl-p-quinone-induced and colonic distension models of persistent visceral pain. Unlike many transport inhibitors, bicifadine was potent and completely efficacious in both phases of the formalin test in both rats and mice. Bicifadine also normalized the nociceptive threshold in the complete Freund's adjuvant model of persistent inflammatory pain and suppressed mechanical and thermal hyperalgesia and mechanical allodynia in the spinal nerve ligation model of chronic neuropathic pain. Mechanical hyperalgesia was also reduced by bicifadine in the streptozotocin model of neuropathic pain. Administration of the D(2) receptor antagonist (-)-sulpiride reduced the effects of bicifadine in the mechanical hyperalgesia assessment in rats with spinal nerve ligations. These results indicate that bicifadine is a functional triple reuptake inhibitor with antinociceptive and antiallodynic activity in acute, persistent, and chronic pain models, with activation of dopaminergic pathways contributing to its antihyperalgesic actions.  相似文献   

11.
Eravacycline is a novel broad-spectrum fluorocycline antibiotic being developed for a wide range of serious infections. Eravacycline was efficacious in mouse septicemia models, demonstrating 50% protective dose (PD50) values of ≤1 mg/kg of body weight once a day (q.d.) against Staphylococcus aureus, including tetracycline-resistant isolates of methicillin-resistant S. aureus (MRSA), and Streptococcus pyogenes. The PD50 values against Escherichia coli isolates were 1.2 to 4.4 mg/kg q.d. In neutropenic mouse thigh infection models with methicillin-sensitive S. aureus (MSSA) and S. pyogenes, eravacycline produced 2 log10 reductions in CFU at single intravenous (i.v.) doses ranging from 0.2 to 9.5 mg/kg. In a neutropenic mouse lung infection model, eravacycline administered i.v. at 10 mg/kg twice a day (b.i.d.) reduced the level of tetracycline-resistant MRSA in the lung equivalent to that of linezolid given orally (p.o.) at 30 mg/kg b.i.d. At i.v. doses of 3 to 12 mg/kg b.i.d., eravacycline was more efficacious against tetracycline-resistant Streptococcus pneumoniae in a neutropenic lung infection model than linezolid p.o. at 30 mg/kg b.i.d. Eravacycline showed good efficacy at 2 to 10 mg/kg i.v. b.i.d., producing up to a 4.6 log10 CFU reduction in kidney bacterial burden in a model challenged with a uropathogenic E. coli isolate. Eravacycline was active in multiple murine models of infection against clinically important Gram-positive and Gram-negative pathogens.  相似文献   

12.
The efficacies of liposomal amphotericin B (LAmB) and amphotericin B deoxycholate (AmB) were compared in a diabetic murine model of hematogenously disseminated Rhizopus oryzae infection. At 7.5 mg/kg of body weight twice a day (b.i.d.), LAmB significantly improved overall survival compared to the rates of survival in both untreated control mice (P = 0.001) and mice treated with 0.5 mg of AmB per kg b.i.d. (P = 0.047). These data indicate that high-dose LAmB is more effective than AmB in treating murine disseminated zygomycosis.  相似文献   

13.
Tedizolid, the active component of the prodrug tedizolid phosphate, is a novel oxazolidinone that is approximately 4 times more active by weight than linezolid against Staphylococcus aureus in vitro. The in vivo efficacy of tedizolid phosphate (15 mg/kg body weight intravenous [i.v.] twice a day [b.i.d.]) was compared to those of vancomycin (30 mg/kg i.v. b.i.d.) and daptomycin (18 mg/kg i.v. once a day [q.d.]) in a rabbit model of aortic valve endocarditis (AVE) caused by methicillin-resistant S. aureus strain COL (infection inoculum of 107 CFU). Median vegetation titers of daptomycin-treated rabbits were significantly lower than those of rabbits treated with tedizolid phosphate (15 mg/kg b.i.d.) (P = 0.016), whereas titers for vancomycin-treated compared to tedizolid-treated rabbits were not different (P = 0.984). The numbers of organisms in spleen and kidney tissues were similar for all treatment groups. A dose-ranging experiment was performed with tedizolid phosphate (2, 4, and 8 mg/kg b.i.d.) compared to vancomycin (30 mg/kg b.i.d.), using a higher infecting inoculum (108 CFU) to determine the lowest efficacious dose of tedizolid phosphate. Tedizolid phosphate (2 mg/kg) (equivalent to 60% of the area under the concentration-time curve from 0 to 24 h (AUC0–24) for the human 200-mg dose approved by the U.S. Food and Drug Administration) was not efficacious. Tedizolid phosphate at 4 mg/kg (equivalent to 75% of the AUC0–24 for the human 400-mg dose) and 8 mg/kg produced lower vegetation titers than the control, but neither was as efficacious as vancomycin.  相似文献   

14.
15.
The effects of fengabine (a novel benzylidene derivative possessing clinically demonstrated antidepressant action) on neurochemical parameters related to norepinephrine, serotonin and gamma-aminobutyric acid (GABA) neurons have been investigated in the rat and mouse brain. When given acutely, fengabine (50-1000 mg/kg i.p.) does not alter norepinephrine uptake but accelerates the turnover rate of norepinephrine in the rat brain as demonstrated by the enhancement of: the alpha-methyl-p-tyrosine-induced disappearance of norepinephrine in the hypothalamus; 3,4-dihydroxyphenylacetic acid levels in noradrenergic cell body areas; the pargyline-induced accumulation of normetanephrine in the hypothalamus; and 3,4-dihydroxyphenylethyleneglycol levels in the hypothalamus, septum and spinal cord. No tolerance to the effect of fengabine on the latter biochemical parameter was observed after repeated treatment for 2 weeks at doses of 100 or 200 mg/kg i.p., b.i.d. Fengabine (100 or 200 mg/kg i.p., b.i.d.), given for 14 days, causes a desensitization of isoprenaline-stimulated adenylate cyclase in septal and cortical slices of the rat but fails to modify cortical beta, alpha-1 or alpha-2 adrenoceptor binding sites. Fengabine (up to 400 mg/kg i.p.) has no effect on rat cerebral serotonin uptake, synthesis or metabolism. Moreover, when given subacutely (100 or 200 mg/kg i.p., b.i.d. for 2 weeks), it fails to alter rat cortical serotonine receptors or [3H]imipramine binding sites. Fengabine (up to 50-100 microM) is also inactive in vitro on [3H] GABA binding to GABAA or GABAB receptors in the rat brain or on GABA transaminase activity in the mouse brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Nitric oxide (NO) derived from neuronal nitric-oxide synthase (nNOS) and inducible nitric-oxide synthase (iNOS) plays a key role in various pain and inflammatory states. KLYP961 (4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one) inhibits the dimerization, and hence the enzymatic activity of human, primate, and murine iNOS and nNOS (IC(50) values 50-400 nM), with marked selectivity against endothelial nitric-oxide synthase (IC(50) >15,000 nM). It has ideal drug like-properties, including excellent rodent and primate pharmacokinetics coupled with a minimal off-target activity profile. In mice, KLYP961 attenuated endotoxin-evoked increases in plasma nitrates, a surrogate marker of iNOS activity in vivo, in a sustained manner (ED(50) 1 mg/kg p.o.). KLYP961 attenuated pain behaviors in a mouse formalin model (ED(50) 13 mg/kg p.o.), cold allodynia in the chronic constriction injury model (ED(50) 25 mg/kg p.o.), or tactile allodynia in the spinal nerve ligation model (ED(50) 30 mg/kg p.o.) with similar efficacy, but superior potency relative to gabapentin, pregabalin, or duloxetine. Unlike morphine, the antiallodynic activity of KLYP961 did not diminish upon repeated dosing. KLYP961 also attenuated carrageenin-induced edema and inflammatory hyperalgesia and writhing response elicited by phenylbenzoquinone with efficacy and potency similar to those of celecoxib. In contrast to gabapentin, KLYP961 did not impair motor coordination at doses as high as 1000 mg/kg p.o. KLYP961 also attenuated capsaicin-induced thermal allodynia in rhesus primates in a dose-related manner with a minimal effective dose (≤ 10 mg/kg p.o.) and a greater potency than gabapentin. In summary, KLYP961 represents an ideal tool with which to probe the physiological role of NO derived from iNOS and nNOS in human pain and inflammatory states.  相似文献   

17.
Many trypsin-like serine proteases such as β-tryptase are involved in the pathogenesis of colitis and inflammatory bowel diseases. Inhibitors of individual proteases show limited efficacy in treating such conditions, but also probably disrupt digestive and defensive functions of proteases. Here, we investigate whether masking their common target, protease-activated receptor 2 (PAR2), is an effective therapeutic strategy for treating acute and chronic experimental colitis in rats. A novel PAR2 antagonist (5-isoxazoyl-Cha-Ile-spiro[indene-1,4'-piperidine]; GB88) was evaluated for the blockade of intracellular calcium release in colonocytes and anti-inflammatory activity in acute (PAR2 agonist-induced) versus chronic [2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced] models of colitis in Wistar rats. Disease progression (disease activity index, weight loss, and mortality) and postmortem colonic histopathology (inflammation, bowel wall thickness, and myeloperoxidase) were measured. PAR2 and tryptase colocalization were investigated by using immunohistochemistry. GB88 was a more potent antagonist of PAR2 activation in colonocytes than another reported compound, N1-3-methylbutyryl-N?-6-aminohexanoyl-piperazine (ENMD-1068) (IC?? 8 μM versus 5 mM). Acute colonic inflammation induced in rats by the PAR2 agonist SLIGRL-NH? was inhibited by oral administration of GB88 (10 mg/kg) with markedly reduced edema, mucin depletion, PAR2 receptor internalization, and mastocytosis. Chronic TNBS-induced colitis in rats was ameliorated by GB88 (10 mg/kg/day p.o.), which reduced mortality and pathology (including colon obstruction, ulceration, wall thickness, and myeloperoxidase release) more effectively than the clinically used drug sulfasalazine (100 mg/kg/day p.o.). These disease-modifying properties for the PAR2 antagonist in both acute and chronic experimental colitis strongly support a pathogenic role for PAR2 and PAR2-activating proteases and therapeutic potential for PAR2 antagonism in inflammatory diseases of the colon.  相似文献   

18.
Cocaine stimulates significant increases in luteinizing hormone (LH) and decreases prolactin levels in gonadally intact rhesus monkeys, but cocaine did not alter plasma levels of these anterior pituitary hormones in ovariectomized females. These findings suggested that ovarian steroid hormones may contribute to the endocrine effects of acute cocaine administration. To test this hypothesis, the acute effects of cocaine and placebo-cocaine on plasma LH and prolactin levels were examined in five ovariectomized rhesus females during three chronic hormone replacement conditions: 1) estradiol (E2beta) treatment (0.0015-0.006 mg/kg/day i.m.), 2) progesterone treatment (0.32 mg/kg/day i.m.), and 3) combinations of progesterone (0.32 mg/kg/day i.m.) and E2beta (0.002 and 0.004 mg/kg/day i.m.). Cocaine (0.8 mg/kg i.v.) did not alter prolactin or LH in ovariectomized monkeys without ovarian steroid replacement. During chronic estradiol treatment, cocaine produced an estradiol dose-dependent decrease in prolactin. Cocaine also decreased prolactin during treatment with progesterone alone and progesterone + E2beta (0.004 mg/kg/day i.m.). Cocaine stimulated a significant increase in LH during treatment with progesterone alone, but not during treatment with progesterone + E2beta, or three of four estradiol treatment doses. Cocaine pharmacokinetics did not differ as a function of hormone replacement conditions. Together, these data suggest that both E2beta and progesterone modulate cocaine's effects on prolactin, whereas E2beta alone and in combination with progesterone, do not facilitate LH release in response to cocaine in ovariectomized rhesus females.  相似文献   

19.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are frequently used as analgesics. Despite the fact that clinical experience indicates a considerable disparity in the analgesic efficacy of NSAIDs, the animal models of nociception do not allow a clear distinction to be made between the analgesic properties of these agents. In contrast to nociceptive pain, clinical pain is characterised by hyperalgesia. Therefore, we evaluated the anti-hyperalgesic effects of the four NSAIDs nimesulide, diclofenac, celecoxib and rofecoxib which are widely used to treat inflammatory pain. We performed two animal studies in which each drug was administered intraperitoneally (i.p.) at its previously defined ED50 for the anti-inflammatory effect in the rat (i.e. the inhibition of carrageenan-induced hindpaw oedema measured by plethysmometry). In the first study, nimesulide (2.9 mg/kg) completely inhibited the development of thermal hindpaw hyperalgesia induced by the injection of formalin in the tail, whereas diclofenac (3.0 mg/kg) or celecoxib (12.7 mg/kg) partly reduced the hyperalgesia, and rofecoxib (3.0 mg/kg) was ineffective. In the second study, nimesulide and diclofenac were significantly more effective than celecoxib and rofecoxib in reducing the mechanical hindpaw hyperalgesia induced by the intraplantar injection of Freund's complete adjuvant (FCA). The anti-hyperalgesic activity of the drugs was also investigated in patients with rheumatoid arthritis. After a single oral dose, all drugs reduced the inflammatory hyperalgesia. However, only nimesulide was effective 15 minutes after treatment. Moreover, nimesulide (100 mg) was significantly more effective than rofecoxib (25 mg). Overall, our data demonstrate that NSAIDs may show different anti-hyperalgesic properties. Nimesulide seems to be particularly effective and fast-acting against inflammatory pain.  相似文献   

20.
Activation of Rho kinase (ROCK) has been shown to play a role in neuronal regeneration and development of posttraumatic neuropathic pain. The ROCK inhibitor Fasudil, used clinically for the treatment of vasospasm, was used to investigate the analgesic profile of a ROCK inhibitor. Fasudil was evaluated in different preclinical models of neuropathic, osteoarthritic (OA), and inflammatory pain as well as capsaicin-induced acute pain and secondary mechanical hypersensitivity. In addition, Fasudil was tested in in vivo electrophysiology to determine the mechanism by which Fasudil produces analgesia. Fasudil at the highest dose tested (30 mg/kg) significantly attenuated mechanical allodynia in spinal-nerve ligation (SNL; 77%), chronic constriction injury (CCI; 53%), capsaicin-induced secondary mechanical hypersensitivity (63%), sodium iodoacetate-induced OA pain (88%), and capsaicin-induced acute flinching behaviors (56%). However, Fasudil (at 30 mg/kg) failed to attenuate or had only modest effects on inflammatory thermal hyperalgesia following carrageenan injection and mechanical allodynia following Complete Freund's Adjuvant (CFA) injection. Fasudil produced ED50 of 10.8 mg/kg in the SNL, and 5.7 mg/kg in the OA pain models. The ED50 and 95% CI could not be obtained in the other models. Furthermore, administration of Fasudil (10 mg/kg, iv) significantly reduced both spontaneous and evoked firing of wide dynamic range (WDR) neurons in SNL, but not sham rats. Finally, Fasudil significantly decreased exploratory behaviors at 30 mg/kg. These results suggest that the acute administration of a ROCK inhibitor produces efficacy in both neuropathic and nociceptive pain states at doses devoid of locomotor side effects, with specific effects on WDR neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号