首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult hypopituitary patients with growth hormone deficiency (GHD) show a significant decrease in bone mass and an increased fracture rate. Replacement therapy with GH increases bone turnover. Most of the long-term data on bone mineral content (BMC) and bone mineral density (BMD) have been acquired in open, noncontrolled trials involving limited numbers of patients. To determine whether long-term GH therapy is beneficial for bone despite the increased bone turnover, 100 patients (59 men and 41 women), aged 25-65 years (mean, 49.7 years) with adult-onset GHD were randomized to treatment with GH (40 men and 28 women; mean dose, 0.18 IU/kg per week) or to a nontreated control group (19 men and 13 women) for 24 months. Despite a similar increase in parameters of bone turnover (osteocalcin [OC], procollagen type I carboxy-terminal propeptide [PICP], and pyridinolines ([PYD]) in male and female GH-treated patients compared with controls, the effects on BMC and BMD as evaluated by dual-energy X-ray absorptiometry were gender specific. A significant increase in spine BMC and BMD and total hip BMD and a decrease in BMD at the ultradistal radius over time was observed in male GH-treated patients compared with the evolution in controls (mean +/- SEM change at 24 months: +6.8 +/- 1.1% and p = 0.009, +5.1 +/- 0.8% and p = 0.005, +3.5 +/- 0.7% and p = 0.02, and -2.6 +/- 0.8% and p = 0.008, respectively). No significant treatment effects were observed in female patients. Despite the increase in the total remodeling space induced by GH treatment, prolonged GH therapy in adult-onset GHD has a positive effect on bone balance, maintaining bone mass in women, and even increasing it in men over a 2 year-period.  相似文献   

2.
Introduction: Body weight is positively correlated with bone mass and density, and both muscle mass and body fat are thought to play a role in regulating bone metabolism. We examined bone metabolism in calorically restricted mice to determine how alterations in soft tissue mass affect bone mass, density, and strength. Materials and Methods: Caloric restriction (CR) was initiated in male mice at 14 wk of age at 10% restriction, increased to 25% restriction at 15 wk, and then increased to 40% restriction at 16 wk, where it was maintained until 24 wk of age when the study was terminated. Control mice were fed ad libitum (AL). Body composition, BMD, and BMC were measured by DXA, BMD and BMC in the femoral metaphysis were measured by pQCT, femora were tested in three‐point bending, serum leptin and IGF‐1 were measured using immunoassay, and osteoblast and osteoclast numbers were determined using histomorphometry. Results: Body weight, lean mass, fat mass, percent body fat, serum leptin, and serum IGF‐1 were all significantly lower in CR mice than AL mice. Whole body BMC and BMD did not differ significantly between the two groups. Femur BMC, BMD, cortical thickness, and fracture strength decreased significantly in CR mice, but trabecular bone volume fraction in the femur did not change with food restriction. Vertebral cortical thickness also decreased with caloric restriction, whereas spine BMC, BMD, and trabecular bone volume fraction were significantly increased with caloric restriction. Conclusions: Caloric restriction and its related weight reduction are associated with marked decreases in lean mass, fat mass, serum leptin and IGF‐1, and cortical bone mass. Consistent with the opposite effects of leptin on cortical and cancellous bone, trabecular bone mass is spared during food restriction.  相似文献   

3.
Hypophosphatemic transgenic (tg) mice overexpressing FGF23 in osteoblasts display disorganized growth plates and reduced bone mineral density characteristic of rickets/osteomalacia. These FGF23 tg mice were used as an in vivo model to examine the relation between osteoclast polarization, secretion of proteolytic enzymes and resorptive activity. Tg mice had increased mRNA expression levels of the osteoblast differentiation marker Runx2 and mineralization-promoting proteins alkaline phosphatase and bone sialoprotein in the long bones compared to wild type (wt) mice. In contrast, expression of alpha1(I) collagen, osteocalcin, dentin matrix protein 1 and osteopontin was unchanged, indicating selective activation of osteoblasts promoting mineralization. The number of osteoclasts was unchanged in tg compared to wt mice, as determined by histomorphometry, serum levels of TRAP 5b activity as well as mRNA expression levels of TRAP and cathepsin K. However, tg mice displayed elevated serum concentrations of C-terminal telopeptide of collagen I (CTX) indicative of increased bone matrix degradation. The majority of osteoclasts in FGF23 tg mice lacked ultrastructural morphological signs of proper polarization. However, they secreted both cathepsin K and MMP-9 at levels comparable to osteoclasts with ruffled borders. Mineralization of bone matrix thus appears essential for inducing osteoclast polarization but not for secretion of osteoclast proteases. Finally, release of CTX by freshly isolated osteoclasts was increased on demineralized compared to mineralized bovine bone slices, indicating that the mineral component limits collagen degradation. We conclude that ruffled borders are implicated in acidification and subsequent demineralization of the bone matrix, however not required for matrix degradation. The data collectively provide evidence that osteoclasts, despite absence of ruffled borders, effectively participate in the degradation of hypomineralized bone matrix in rachitic FGF23 tg mice.  相似文献   

4.
Signaling through the epidermal growth factor receptor (EGFR) by ligands such as epidermal growth factor (EGF), transforming growth factor α (TGFA), and amphiregulin (AREG) has been reported to have effects on skeletal growth. The role of betacellulin (BTC), another EGFR ligand, in skeletal development and bone metabolism is unknown. In previous experiments, transgenic mice overexpressing BTC ubiquitously under the control of the chicken β‐actin promoter (BTC‐tg) exhibited stunted growth and disproportionately sized long bones. In this study, we performed a detailed phenotypic analysis of BTC‐tg mice at 3, 6, and 9 wk of age. Osteoblastic cells from transgenic mice showed strong expression of BTC as determined by Western blots and by immunohistochemistry on bone sections. In femurs of male and female BTC‐tg mice, we found reduced longitudinal bone growth and a pronounced increase in total volumetric BMD. The increased femoral BMD was mainly caused by augmented endocortical bone apposition and subsequent cortical bone thickening. In contrast, vertebral BMD was reduced in BTC‐tg mice of both sexes. An overall similar phenotype was found in 6‐mo‐old BTC‐tg mice. The increase in cortical bone mass in the appendicular skeleton of BTC‐tg mice was largely blocked when they were crossed into the EgfrWa5 background characterized by a dominant negative EGFR. Our study showed that overexpression of BTC results in an EGFR‐dependent upregulation of cortical bone mass in the appendicular skeleton of mice, uncovering a potential novel anabolic pathway for cortical bone.  相似文献   

5.
We examined the effect of intermittent administration of bovine parathyroid hormone (1-34) (bPTH) on spinal bone mineral content (BMC) and bone mineral density (BMD), serum 1,25-dihydroxyvitamin D concentrations, and serum markers of osteoblast function in senile male and female rats (23 and 24 months of age, respectively). Sexually mature young (3 month) male rats were similarly treated for comparison. bPTH administration increased serum osteocalcin concentrations without changing serum inorganic phosphate or calcium concentrations in either group of old animals. In young animals, PTH administration increased the serum calcium and inorganic phosphate concentrations significantly (p less than 0.05), although values remained within the normal range. In the vehicle-treated male rats, serum 1,25-dihydroxyvitamin D concentrations were lower in the senile than in the young animals (18 +/- 5 versus 47 +/- 6 pg/ml, p less than 0.05). PTH administration resulted in significantly increased serum 1,25-dihydroxyvitamin D concentrations in the senile and young male animals (both, p less than 0.05) and the final mean serum 1,25-dihydroxyvitamin D concentrations were not statistically different (68 +/- 9 versus 85 +/- 6 pg/ml respectively; p = NS). Serum 1,25-dihydroxyvitamin D concentrations were significantly (p less than 0.05) higher in the PTH-treated senile female rats than the sex-matched, vehicle-treated controls. The pretreatment spinal BMC and BMD as assessed by dual-energy x-ray absorptiometry (DEXA) were significantly higher in the senile male animals than in the young animals. Spinal BMC and BMD decreased in the vehicle-treated senile male rats (p less than 0.05) over the 3 weeks of the study despite a gain in weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.

Background

The pathogenesis of glucocorticoid-induced osteoporosis remains ill defined. In this study, we examined the role of the osteoblast in mediating the effects of exogenous glucocorticoids on cortical and trabecular bone, employing the Col2.3-11βHSD2 transgenic mouse model of osteoblast-targeted disruption of glucocorticoid signalling.

Methods

Eight week-old male transgenic (tg) and wild-type (WT) mice (n = 20–23/group) were treated with either 1.5 mg corticosterone (CS) or placebo for 4 weeks. Serum tartrate-resistant acid phosphatase 5b (TRAP5b) and osteocalcin (OCN) were measured throughout the study. Tibiae and lumbar vertebrae were analysed by micro-CT and histomorphometry at endpoint.

Results

CS suppressed serum OCN levels in WT and tg mice, although they remained higher in tg animals at all time points (p < 0.05). Serum TRAP5b levels increased in WT mice only. The effect of CS on cortical bone differed by site: At the endosteal surface, exposure to CS significantly increased bone resorption and reduced bone formation, resulting in a larger bone marrow cavity cross-sectional area (p < 0.01). In contrast, at the pericortical surface bone resorption was significantly decreased accompanied with a significant increase in pericortical cross-sectional area (p < 0.05) while bone formation remained unaffected. Vertebral cortical thickness and area were reduced in CS treatment mice. Tg mice were partially protected from the effects of exogenous CS, both on a cellular and structural level. At the CS doses used in this study, trabecular bone remained largely unaffected.

Conclusion

Endocortical osteoblasts appear to be particularly sensitive to the detrimental actions of exogenous glucocorticoids. The increase in tibial pericortical cross-sectional area and the according changes in pericortical circumference suggest an anabolic bone response to GC treatment at this site. The protection of tg mice from these effects indicates that both catabolic and anabolic action of glucocorticoids are, at least in part, mediated by osteoblasts.  相似文献   

7.
ADAMTS1, a secreted multifunctional metalloproteinase with disintegrin and thrombospondin motifs, is an early response gene of parathyroid hormone (PTH) in osteoblasts. Mice engineered to lack Adamts1 are smaller compared to wild-type (WT) mice and ADAMTS1 metalloproteinase activity has been shown to increase osteoblastic growth in collagen gels. However, there are no reports investigating the consequence of Adamts1 over-expression on bone tissue in vivo. Here, we analyze bones of female and male transgenic (TG) mice over-expressing mouse Adamts1 using peripheral quantitative computed tomography to evaluate its effect on bone shape and mineral density. Western blotting of protein extracts and immunohistochemistry of bone sections reveal increased presence of Adamts1 protein in TG bones compared to WT bones. Phenotypic analyses of femur show that female TG mice have reduced metaphyseal total density, trabecular bone mineral density and trabecular mineral content. In contrast, male TG mice which were without changes in the metaphysis showed increased total density and cortical density at the mid-diaphysis cortical site. Female TG mice showed no significant changes at the cortical site compared to WT mice. Furthermore, diaphyseal endosteal compartment was only affected in male TG mice. Along these lines, Adamts1 increased blood levels of PTH only in females whereas it reduced osteocalcin levels only in males. These results reveal that Adamts1 has an impact on bone mineral density and thus further confirm Adamts1 as a potent regulator of bone remodeling.  相似文献   

8.
Wang L  Orhii PB  Banu J  Kalu DN 《BONE》2001,28(2):202-207
Previous studies have demonstrated that growth hormone (GH) has a marked anabolic effect on cortical bone, and parathyroid hormone (PTH) has been shown to increase cancellous bone markedly and cortical bone to some extent in ovariectomized (ovx) rats. Combined therapies mostly focused on combining a bone anabolic agent with an antiresorptive agent. The following study was carried out to examine the efficacy of combined therapy with GH and PTH, two bone anabolic agents in rebuilding bone after loss due to ovariectomy in lumbar vertebrae, which contain both cortical and cancellous bones. Twelve-month-old female F344 rats were divided into five groups: sham + solvent vehicle, ovx + solvent vehicle, ovx + GH (2.5 mg/kg/day), ovx + PTH (80 microg/kg/day), and ovx + GH (2.5 mg/kg/day) + PTH (80 microg/kg/day). After surgery, animals were left for 4 months to become osteopenic before the beginning of therapy. Hormone administrations were given 5 days per week for 2 months and the animals were killed. The L3 vertebra was removed and examined by pQCT densitometry and by histomorphometry. Compared with age-matched, sham-operated controls, there was a 21% decrease in total bone mineral content (BMC) (p < 0.0001), 17.0% decrease in total bone mineral density (BMD) (p < 0.0001), 25.4% decrease in cortical BMC (p < 0.001), 3.1% decrease in cortical BMD (p < 0.05), 50.5% decrease in cancellous BMC (p < 0.01), 47.3% decrease in cancellous BMD (p < 0.01), and 14.5% decrease in cancellous bone volume (BV/TV) (p < 0.05) in the vehicle-treated ovx rats. Compared with age-matched, vehicle-treated ovx controls, GH, PTH, and GH + PTH increased total BMC by 22.8% (p < 0.001), 32.4% (p < 0.0001), and 72.7% (p < 0.0001), respectively; total BMD by 9.7% (p > 0.05), 22.6% (p < 0.001), and 38.8% (p < 0.0001), respectively; cortical BMC by 28.8% (p < 0.01), 50.8% (p < 0.0001), and 98.4% (p < 0.0001), respectively; and cortical BMD by 4.5% (p < 0.01), 2.9% (p < 0.05), and 6.3% (p < 0.0001), respectively. PTH and GH + PTH significantly increased cancellous BMC by 95.3% (p < 0.01) and 255.8% (p < 0.0001), respectively; cancellous BMD by 77.6% (p < 0.05) and 181% (p < 0.0001), respectively; cancellous BV/TV by 38.6% (p < 0.0001) and 55.9% (p < 0.0001), respectively; and trabecular thickness by 48% (p < 0.0001) and 68.3% (p < 0.0001), respectively. Note that GH by itself had no significant effect on vertebral cancellous BMC, cancellous BMD, and cancellous BV/TV. In conclusion, the effect of PTH was mostly more marked than that of GH. GH acted mainly by increasing cortical bone with less effect on cancellous bone, while PTH acted by increasing both cortical and cancellous bones. Combined therapy with GH and PTH was more effective in rebuilding bone after ovariectomy than either therapy alone. The effects of combined therapy with GH and PTH were additive in vertebral bone in the aged osteopenic rats.  相似文献   

9.
10.
Peak volumetric bone mineral density (BMD) is determined by the growth in bone size relative to the mineral accrued within its periosteal envelope. Thus, reduced peak volumetric BMD may be the result of reduced mineral accrual relative to growth in bone size. Because sex steroids and growth hormone (GH) influence bone size and mass we asked: What are the effects of gonadectomy (Gx) on bone size, bone mineral content (BMC), areal and volumetric BMD in growing male and female rats? Does GH deficiency (GH-) reduce the amount of bone in the (smaller) bone, i.e., reduce volumetric BMD? Does GH- alter the effect of Gx on bone size and mineral accrual? Gx or sham surgery was performed at 6 weeks in GH- and GH replete (GH+) Fisher 344 male and female rats. Changes in bone size, volume, BMC, areal and volumetric BMD, measured using dual X-ray absorptiometry (DPX-L), were expressed as percentage of controls at 8 months (mean +/- SEM). All results shown were significant (p < 0.05 level) unless otherwise stated. In GH+ and GH- males, respectively, Gx was associated with: lower femur volume (24%, 25%), BMC (43%, 45%), areal BMD (21%, 14%), and volumetric BMD (30%, 28%); lower spine (L1-L3) volume (26%, 28%), BMC (26%, 30%), and areal BMD (28%, 12%), but not volumetric BMD. Following Gx, GH+ females had increased femur volume (11%), no effect on BMC, decreased areal BMD (6%) and decreased volumetric BMD (17%); GH- females had no change in femur volume, but decreased femur BMC (24%), areal BMD (10%), and volumetric BMD (25%). In GH+ and GH- females, respectively, Gx was associated with a decrease in spine (L1-L3) BMC (12%, 15%), areal BMD (16%, 15%), and volumetric BMD (10%, 16%) with no change in volume. Deficits in non-Gx GH- relative to non-Gx GH+ (males, females, respectively) were: femur BMC (49%, 37%), areal BMD (23%, 8%), volume (19%, 19%) and volumetric BMD (37%, 22%); spine (L1-L3) BMC (46%, 42%), areal BMD (37%, 43%), volume (10%, 15%), and volumetric BMD (40%, 33%). Testosterone and GH are growth promoting in growing male rats, producing independent effects on bone size and mass; deficiency produced smaller appendicular bones with reduced volumetric BMD because deficits in mass were greater than deficits in size. At the spine, the reduction in size and accrual were proportional, resulting in a smaller bone with normal volumetric BMD. In growing female rats, estrogen was growth limiting at appendicular sites; deficiency resulted in a GH-dependent increase in appendicular size, relatively reduced accrual, and so, reduced volumetric BMD in a bigger bone. At the spine, accrual was reduced while growth in size was normal, thus volumetric BMD was reduced in the normal sized bone. Understanding the pathogenesis of low volumetric BMD requires the study of the differing relative growth in size and mass of the axial and appendicular skeleton in the male and female and the regulators of the growth of these traits.  相似文献   

11.
The aim of the present study was to study the in vivo role of IL-4 and IL-13 on bone metabolism. The skeletal phenotypes of male and female IL-13(-/-) (n = 7+7), IL-4(-/-)IL-13(-/-) (n = 7+7), and WT (n = 7+7) mice were compared. Analysis was made at 6 weeks of age (juvenile) by pQCT, and at 20 weeks of age (adult) by pQCT, biomechanical testing, and by S-IGF-1 and S-Osteocalcin measurements. The skeletal phenotype was affected only in adult male IL-4(-/-)IL-13(-/-) mice. These animals displayed a reduction in cortical bone mineral content (BMC) of both the tibia and the femur, as measured by mid-diaphyseal pQCT scans, compared with WT mice (tibia -8.2%; femur -8.5%; p < 0.01). This reduction in cortical BMC was due to a decreased cross-sectional area as a result of a reduced cortical thickness. The mechanical strength of the cortical bone, tested by three-point-bending at the mid-diaphyseal region of the femurs, demonstrated a significant reduction of displacement at failure (-11.4%), maximal load at failure (-10.6%), and total energy until failure (-29.4%). S-IGF-1 and S-Osteocalcin levels as well as trabecular bone mineral density (tvBMD) were unaffected in adult male IL-4(-/-)IL-13(-/-) mice. IL-4(-/-)IL-13(-/-) male mice show adult onset reduction of cortical bone mass and strength, indicating that the two anti-inflammatory Th(2) cytokines IL-4 and IL-13 are involved in the regulation of bone remodeling.  相似文献   

12.
Myostatin (GDF-8), a member of the transforming growth factor-b superfamily of secreted growth and differentiation factors, is a negative regulator of skeletal muscle growth. We investigated the effects of increased muscle mass on bone morphology by examining bone mineral content and density in the humeri of myostatin-deficient mice. We compared the humeri of 11 mixed-gender, adult mice homozygous for the disrupted myostatin sequence with those from 11 mixed-gender, adult wild-type mice. Body mass, deltoid mass, and triceps mass were recorded from each animal and densitometric and geometric parameters were collected from the humerus using peripheral quantitative computed tomography (pQCT). Cross-sectional slices were scanned at four different positions along the humerus corresponding to 15%, 40%, 60%, and 85% of total humerus length. Results show that the myostatin- deficient mice weigh more than controls and have significantly larger triceps and deltoid muscles. The myostatin-deficient animals also have significantly (P < 0.05) higher trabecular area and trabecular bone mineral content (BMC) in the proximal humerus (15% length) and significantly (P < 0.01) higher cortical BMC, cortical area, and periosteal circumference in the region of the deltoid crest (40% length). The myostatin knockouts otherwise do not differ from controls in cortical BMC. Moreover, experimental and control mice do not differ significantly from one another in cortical bone mineral density (BMD) at any of the sites examined. These results suggest that the effects of increased muscle mass on the mouse humerus are localized to regions where muscles attach; furthermore, these effects include increased mineral content of both trabecular and cortical bone.  相似文献   

13.
A role of COX-2 in pathological bone destruction and fracture repair has been established; however, few studies have been conducted to examine the involvement of COX-2 in maintaining bone mineral density and bone micro-architecture. In this study, we examined bone morphology in multiple trabecular and cortical regions within the distal and diaphyseal femur of 4-month-old wild-type and COX-2-/- mice using micro-computed tomography. Our results demonstrated that while COX-2-/- female mice had normal bone geometry and trabecular microarchitecture at 4 months of age, the male knockout mice displayed reduced bone volume fraction within the distal femoral metaphysis. Furthermore, male COX-2-/- mice had a significant reduction in cortical bone mineral density within the central cortical diaphysis and distal epiphysis and metaphysis. Consistent with the observed reduction in cortical mineral density, biomechanical testing via 4-point-bending showed that male COX-2-/- mice had a significant increase in postyield deformation, indicating a ductile bone phenotype in male COX-2-/- mice. In conclusion, our study suggests that genetic ablation of COX-2 may have a sex-related effect on cortical bone homeostasis and COX-2 plays a role in maintaining normal bone micro-architecture and density in mice.  相似文献   

14.
Background The parathyroid hormone-/parathyroid hormone-related protein (PTH/PTHrP) receptor plays a crucial role in endochondral bone formation and possibly also in fracture healing. Patients with Jansen's metaphysial chondrodysplasia (JMC) have a gain-of-function mutation in the PTH/PTHrP receptor. Transgenic mice expressing JMC PTH/PTHrP receptor mutants in osteoblasts are characterized by increased trabecular bone formation and reduced osteoblastic activity at periosteal sites. We have analyzed the bone phenotype and studied the fracture healing process in this model.

Methods We performed bone density analysis of tibiae from 17-week-old transgenic mice and controls. Also, tibial fractures were produced in 14-week-old mice. Fracture healing was examined by radiographic and histological analysis.

Results Transgenic mice had a lower total bone mineral content (BMC), by a factor of one-third. The changes were bone compartment-specific with an increase in trabecular bone volume and a decrease in cortical thickness. The calluses in the transgenic mice were smaller, with a reduction in BMC and mean crosssectional area by a factor of one-half. Despite the smaller size, however, the morphology and progression through the healing process were similar in both transgenic and wild-type littermates.

Interpretation We conclude that the constitutively active PTH/PTHrP receptor has compartment-specific effects on bone formation when expressed in osteoblasts. During fracture healing, however, both the periosteal and the endochondral processes are activated, leading to fracture healing that is temporally and morphologically normal, although the callus tissue is less prominent.  相似文献   

15.
Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n = 25, 11 male, 10 to 30 years) and local controls (n=34, 15 male, 7 to 30 years). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p < 0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (> 18 years, n = 11) had lower tibial trabecular vBMD (p = 0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p < 0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p = 0.02) were significantly lower in young Thal (≤ 18 years, n = 14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p < 0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of skeletal deficits that cannot be dismissed as an artifact of small bone size or delayed maturity alone. Given that reduced bone density and strength are associated with increased risk of fracture, therapies focused on increasing bone formation and bone size in younger patients are worthy of further evaluation.  相似文献   

16.
Patients with growth hormone deficiency (GHD) have an increased risk of bone fractures. In these patients, the well-described decrease in bone mineral density (BMD) and content (BMC) may, however, not alone explain the increase in fracture rate. Accordingly, the aim of this study was to evaluate collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10% and growth rate to approximately 40-50% when compared to normal control rats. Five male Dw-4 rats were examined at age 12 weeks and five healthy Lewis rats served as age-matched controls. The animals were examined for (1) bone mineral status by dual energy X-ray absorptometry (DXA) and ash weight/bone volume, (2) biomechanical properties, (3) serum insulin-like growth factor I (IGF-I) and IGF binding protein 3 (IGFBP-3), and (4) collagen morphology of cortical bone from the right femurs was examined by scanning and transmission electron microscopy. A significant decrease was found in serum IGF-I, IGFBP-3 and biomechanical properties in GHD rats compared to controls (P < 0.009). While DXA-derived BMD was decreased, no significant difference was found in ash weight/bone volume. Electron microscopy showed a significant decrease in the number and a significant increase in the diameter of collagen microfibrils in GHD rats as compared to their controls (P < 0.009). In conclusion, we report for the first time that collagen morphology in bone is markedly altered in rats with isolated GHD. Whether similar conditions are present in GHD patients need further investigations. The changes described, however, may provide a co-explanation for the increased fracture rate in GHD.  相似文献   

17.
Osteoporosis in men is a disease that is increasing in incidence, and with an increasing elderly population it poses a serious health problem. Since both testosterone (T) and growth hormone (GH) have an anabolic effect on bone and both decrease with aging, we were prompted to test whether the administration of these hormones in combination would increase bone mass in orchiectomized (orx) senile rats more than administration of either agent alone. Twenty-month-old male Wistar rats were divided into five groups with seven animals each: (a) age-matched intact control, (b) orx, (c) orx+GH (2.5 mg/kg/day), (d) orx+T [10 mg/kg, subcutaneous (s.c.), injection given twice a week], and (e) orx+GH+T. Testosterone and GH were given subcutaneously for 4 weeks. Bone histomorphometry of the tibial shaft showed that the orx group had lower cortical bone area than the intact control group. The decrease in cortical bone area was due to increased intracortical porosis as well as decreased periosteal bone formation rate (BFR). Administration of T to the orx animals prevented the development of the porosis and the decrease in periosteal BFR. The bone mineral content (BMC) and bone mineral density (BMD) of the femur as tested by dual-energy X-ray absorptiometry were significantly higher in the orx+T than in the orx group and were not significantly different from that of the intact control group. Administration of GH to the orx rats increased periosteal BFR significantly; however, the BMC and BMD measured were not increased significantly in comparison to the orx group. When GH and T were combined in treatment, the cortical bone area, periosteal BFR, and femoral BMD were all significantly higher than that of the orx and even higher than the intact control rats. Two-way analysis of variance shows that the individual effect of GH and T treatment on the periosteal BFR and cortical bone area was significant. The effect of T, but not GH, on femoral BMC and BMD was also significant; however, there is no synergistic interaction between the two treatments. Four weeks of orx with or without GH or T administration had no significant effect on tibial metaphyseal cancellous bone volume. In conclusion, this short-term study suggests that the combined intervention of GH and T in androgen-deficient aged male rats may have an independent effect in preventing osteopenia. The significant effect of GH+T may be attributed to the prevention of intracortical porosis, and an increase in periosteal bone formation and cortical bone mass.  相似文献   

18.
Cathepsin K (CatK) is a cysteine protease expressed predominantly in osteoclasts, that plays a prominent role in degrading Type I collagen. Growing CatK null mice have osteopetrosis associated with a reduced ability to degrade bone matrix. Bone strength and histomorphometric endpoints in young adult CatK null mice aged more than 10 weeks have not been studied. The purpose of this paper is to describe bone mass, strength, resorption, and formation in young adult CatK null mice. In male and female wild-type (WT), heterozygous, and homozygous CatK null mice (total N=50) aged 19 weeks, in-life double fluorochrome labeling was performed. Right femurs and lumbar vertebral bodies 1-3 (LV) were evaluated by dual-energy X-ray absorptiometry (DXA) for bone mineral content (BMC) and bone mineral density (BMD). The trabecular region of the femur and the cortical region of the tibia were evaluated by histomorphometry. The left femur and sixth lumbar vertebral body were tested biomechanically. CatK (-/-) mice show higher BMD at the central and distal femur. Central femur ultimate load was positively influenced by genotype, and was positively correlated with both cortical area and BMC. Lumbar vertebral body ultimate load was also positively correlated to BMC. Genotype did not influence the relationship of ultimate load to BMC in either the central femur or vertebral body. CatK (-/-) mice had less lamellar cortical bone than WT mice. Higher bone volume, trabecular thickness, and trabecular number were observed at the distal femur in CatK (-/-) mice. Smaller marrow cavities were also present at the central femur of CatK (-/-) mice. CatK (-/-) mice exhibited greater trabecular mineralizing surface, associated with normal volume-based formation of trabecular bone. Adult CatK (-/-) mice have higher bone mass in both cortical and cancellous regions than WT mice. Though no direct measures of bone resorption rate were made, the higher cortical bone quantity is associated with a smaller marrow cavity and increased retention of non-lamellar bone, signs of decreased endocortical resorption. The relationship of bone strength to BMC does not differ with genotype, indicating the presence of bone tissue of normal quality in the absence of CatK.  相似文献   

19.
The neuropeptide calcitonin gene-related peptide (CGRP) is concentrated in fine sensory nerve endings innervating all tissues, including bone. CGRP inhibits osteoclasts, stimulates insulin-like growth factor I and inhibits tumor necrosis factor alpha production by osteoblasts in vitro. To investigate the role of CGRP in bone in vivo, mice were engineered to express CGRP in osteoblasts by placing the human CGRP gene under the control of the rat osteocalcin promoter (Ost-CGRP tg+ mice). Calvaria cultures from transgene positive (tg+), but not tg- mice, produced bioactive CGRP. Trabecular bone density and bone volume, determined by peripheral quantitative computed tomography and bone histomorphometry, respectively, were higher in tg+ than tg- littermates. This increase in bone volume was associated with an increased bone formation rate. Trabecular bone density decreased in tg+ mice as a result of ovariectomy, but remained higher than in sham tg- mice. Targeting CGRP to osteoblasts appears to favor the establishment of a higher trabecular bone mass in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号