首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.

Aim:

To study the inducing effect of bicyclol on heat shock protein 27 (HSP27) and its role on anti-apoptosis in HepG2 cells intoxicated with D-galactosamine (D-GaIN).

Methods:

HepG2 cells were treated with various concentrations of bicyclol and then subjected to D-GaIN intoxication. Apoptosis was assayed by hoechst 33258 staining and flow cytometry analysis. HSP27, cytochrome c, apoptosis inducing factor (AIF) and c-Jun N-terminal kinase (JNK) were assayed by Western blot. Heat shock factor 1 (HSF1) was determined by electrophoretic mobility shift assay and the interactions of HSP27 with cytochrome c and AIF were detected by co-immunoprecipitation.

Results:

The results showed that bicyclol induced HSP27 protein and mRNA expression in HepG2 cells in both time- and dose-dependent manners (the maximal response: 1.23 fold increase at 100 μmol/L). Bicyclol treatment stimulated HSF1 activation and increased the HSF1-HSE binding activity (the maximal response: 2.1 fold increase at 100 μmol/L). This inducing effect of bicyclol on HSP27 and HSF1 was markedly blocked by quercetin. Pretreatment of the cells with bicyclol markedly attenuated D-GaIN-induced apoptosis and the release of cytochrome c and AIF from mitochondria. The induced HSP27 by bicyclol suppressed the activity of caspase-3 and the phosphorylation of JNK caused by D-GaIN in HepG2 cells. All the above effect of bicyclol against D-GaIN-induced hepatocytes apoptosis were significantly reversed by quercetin.

Conclusion:

HSP27 is involved in the anti-hepatocytes apoptosis of bicyclol, and this effect of bicyclol-induced HSP27 is mainly through inhibition of mitochondria and JNK apoptotic pathways.  相似文献   

2.
Aim: To investigate the effects of phorbol 12-myristate 13-acetate (PMA), a PKC activator, on P-glycoprotein-mediated efflux of digoxin in two cell transport models. Methods: Caco-2 cells, wild MDCKII cells (MDCKII-WT) and MDCKII cells transfected stably with human MDRl-gene encoding P-gp (MDCKII-MDR1) were examined. Cell viability was evaluated with MTI- assay. Bidirectional transport of digoxin was evaluated in these cells. Intracellular ATP level was measured using ATP assay. P-gp ATPase activity was analyzed using a Pgp-GIoTM assay. Results: PMA (10 pmol/L) did not reduce the viability of the 3 types of cells. In Caco-2 and MDCKII-MDR1 cell monolayers, PMA (1, 10 and 100 nmol/L) dose-dependently inhibited the basolateral to apical transport of digoxin, but did not change the apical to basolatera transport. In addition, PMA did not affect both the basolateral to apical and apical to basolateral transport of digoxin in MDCKII-WT ce monolayer. In agreement with the above results, PMA dose-dependently reduced intracellular ATP level and stimulated P-gp ATPase activity in both Caco-2 and MDCKII-MDR1 cells. Verapamil (a positive control, 100 pmol/L) caused similar inhibition on digoxin efflux as PMA did, whereas 4c(-PMA (a negative control, 100 nmol/L) had no effect. Conclusion: PMA significantly inhibited P-gp-mediated efflux of digoxin in both Caco-2 and MDCKII-MDR1 cell monolayers via PKC activation.  相似文献   

3.

Aim:

To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined.

Methods:

Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting.

Results:

The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone. The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70, GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression.

Conclusion:

These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.  相似文献   

4.

Aim:

To investigate the effect of epigallocatechin gallate (EGCG) on angiotensin II (Ang II)-induced stress fiber formation and hyperpermeability in endothelial cells.

Methods:

Human umbilical vein endothelial cells (HUVECs) were treated with Ang II in the absence or presence of EGCG or mitogen-activated protein kinases (MAPKs) inhibitors. The resulting stress fibers were stained with rhodamine-phalloidin and examined using confocal microscopy. The permeability of the endothelium was tested with fluorescein-isothiocyanate labeled bovine serum albumin (FITC-BSA), and the phosphorylation levels of several proteins were determined using Western blot analysis.

Results:

Ang II (1-100 nmol/L) treatment markedly provoked stress fiber formation and hyperpermeability in HUVECs in a time- and dose-dependent manner. These effects were abolished by pretreatment with the p38 MAPK inhibitor SB203580 10 μmol/L, indicating that the Ang II-induced endothelial barrier dysfunction was via activation of the p38 MAPK/HSP27 pathway. Furthermore, treatment with EGCG (5-25) μmol/L inhibited Ang II-induced activation of the p38 MAPK/HSP27 pathway, thereby reducing endothelial stress fiber formation and hyperpermeability.

Conclusion:

Our data demonstrate that EGCG inhibits Ang II-induced endothelial stress fiber formation and hyperpermeability via inactivation of p38 MAPK/HSP27 pathway, and suggest that EGCG may protect against endothelial barrier dysfunction and injury.  相似文献   

5.

Background and Purpose

Our previous study demonstrated that 6-(pyrrolidin-1-yl)-2-(3-methoxyphenyl)quinazolin-4-one (HMJ38) was a potent anti-tubulin agent. Here, HMJ38 was used as a lead compound to develop more potent anti-cancer agents and to examine the anti-cancer mechanisms.

Experimental Approach

Using computer-aided drug design, 2-aryl-6-substituted quinazolinones (MJ compounds) were designed and synthesized by introducing substituents at C-2 and C-6 positions of HMJ38. The cytotoxicity of MJ compounds towards human cancer cells was examined by Trypan blue exclusion assay. Microtubule distribution was visualized using TubulinTracker™ Green reagent. Protein expression of cell cycle regulators and JNK was assessed by Western blot analysis.

Key Results

Compounds MJ65–70 exhibited strong anti-proliferative effects towards melanoma M21, lung squamous carcinoma CH27, lung non-small carcinoma H460, hepatoma Hep3B and oral cancer HSC-3 cells, with one compund MJ66 (6-(pyrrolidin-1-yl)-2-(naphthalen-1-yl)quinazolin-4-one) highly active against M21 cells (IC50 about 0.033 μM). Treatment of CH27 or HSC-3 cells with MJ65–70 resulted in significant mitotic arrest accompanied by increasing multiple asters of microtubules. JNK protein expression was involved in the MJ65–70-induced CH27 and M21 cell death. Consistent with the cell cycle arrest at G2/M phase, marked increases in cyclin B1 and Bcl-2 phosphorylation were also observed, after treatment with MJ65–70.

Conclusions and Implication

MJ65–70 are dual-targeted, tubulin- and JNK-binding, anti-cancer agents and induce cancer cell death through up-regulation of JNK and interfering in the dynamics of tubulin. Our work provides a new strategy and mechanism for developing dual-targeted anti-cancer drugs, contributing to clinical anti-cancer drug discovery and application.  相似文献   

6.
7.

Background and purpose:

Fluoroquinolones are potent anti-microbial agents with multiple effects on host cells and tissues. Previous studies have highlighted their pro-apoptotic effect on human cancer cells and an immunoregulatory role in animal models of inflammatory bowel disease. We examined the effect of ciprofloxacin on proliferation, cell cycle and apoptosis of HT-29 cells, a human colonic epithelial cell line sensitive to transforming growth factor (TGF)-β1-mediated growth inhibition and its role in TGF-β1 production. We also examined the effect of ciprofloxacin on proliferation of HT-29 cells in combination with 5-fluorouracil (5-FU), a well-established pro-apoptotic agent.

Experimental approach:

Using subconfluent cultures of HT-29 and Caco-2 cells, we studied the effect of ciprofloxacin, TGF-β1 and 5-FU on proliferation, apoptosis, necrosis and cell cycle. The effect of ciprofloxacin on TGF-β1 mRNA expression and production was studied in RNA extracts and cell culture supernatants respectively, using confluent cultures.

Key results:

Ciprofloxacin decreased proliferation of HT-29 cells in a concentration- and time-dependent manner. This was mediated by accumulation of HT-29 cells into the S-phase but without any effect on apoptosis or necrosis. Additionally, ciprofloxacin enhanced the antiproliferative effect of 5-FU. Interestingly, ciprofloxacin was found to up-regulate TGF-β1 production by HT-29 cells and its anti-proliferative effect was abolished when TGF-β1 was blocked. Confirming this mechanism further, ciprofloxacin had no effect on Caco-2, a human colonic epithelial cell line that lacks functional TGF-β1 receptors.

Conclusions and implications:

We demonstrate a novel anti-proliferative and immunoregulatory effect of ciprofloxacin on human intestinal epithelial cells mediated via TGF-β1.  相似文献   

8.
Aim: Quercetin is an effective Hsp27 inhibitor and has been reported to facilitate tumor cell apoptosis. The aim of this study was to investigate whether quercetin could sensitize human glioblastoma cells to temozolomide (TMZ) in vitro.
Methods: Both U251 and U87 human glioblastoma cells were treated with quercetin and/or TMZ for 48 h. Cell viability was detected using the MTT assay. Cell apoptosis was analyzed with caspase-3 activity kits and flow cytometry. Hsp27 expression and phosphorylation were examined using Western blot analysis. RNA interference using Hsp27 siRNA oligos was performed to knock down the gene expression of Hsp27.
Results: TMZ (200 or 400 μmol/L) alone effectively inhibited the viability of U251 and U87 cells. When combined with quercetin (30 μmol/L), TMZ (100 μmol/L) significantly inhibited the cell viability, and the inhibition of TMZ (200 and 400 μmol/L) was enhanced. TMZ or quercetin anole did not affect caspase-3 activity and cell apoptosis, while TMZ combined with quercetin significantly increased caspase-3 activity and induced cell apoptosis. TMZ anole significantly increased Hsp27 phosphorylation in U251 and U87 cells, while quercetin or Hsp27 siRNA oligos combined with TMZ attenuated TMZ-induced Hsp27 phosphorylation and significantly inhibited Hsp27 expression.
Conclusion: Combined treatment with TMZ and quercetin efficiently suppressed human glioblastoma cell survival in vitro.  相似文献   

9.

BACKGROUND AND PURPOSE

Insulin resistance is often found to be associated with high blood pressure. We propose that in insulin-resistant hypertension, endothelial dysfunction is the consequence of increased activity of vascular MMP-2. As MMP-2 proteolytically cleaves a number of extracellular matrix proteins, we hypothesized that MMP-2 impairs endothelial function by proteolytic degradation of endothelial NOS (eNOS) or its cofactor, heat shock protein 90 (HSP90).

EXPERIMENTAL APPROACH

We tested our hypothesis in bovine coronary artery endothelial cells and fructose-fed hypertensive rats (FHR), a model of acquired systolic hypertension and insulin resistance.

KEY RESULTS

Treatment of FHRs with the MMP inhibitor doxycycline, preserved endothelial function as well as prevented the development of hypertension, suggesting that MMPs impair endothelial function. Furthermore, incubating endothelial cells in vitro with a recombinant MMP-2 decreased NO production in a dose-dependent manner. Using substrate cleavage assays and immunofluorescence microscopy studies, we found that MMP-2 not only cleaves and degrades HSP90, an eNOS cofactor but also co-localizes with both eNOS and HSP90 in endothelial cells, suggesting that MMPs functionally interact with the eNOS system. Treatment of FHRs with doxycycline attenuated the decrease in eNOS and HSP90 expression but did not improve insulin sensitivity.

CONCLUSIONS AND IMPLICATIONS

Our data suggest that increased activity of MMP-2 in FHRs impairs endothelial function and promotes hypertension. Inhibition of MMP-2 could be a potential therapeutic strategy for the management of hypertension.  相似文献   

10.
Aim: Energy-restriction mimetic agents (ERMAs) are small-molecule agents that target various aspects of energy metabolism, which has emerged as a promising approach in cancer therapy. In the current study, we tested the ability of OSU-CGS, a novel ERMA, to tar- get human colorectal cancer (CRC) in vitro. Methods: Two human CRC cell lines (HCT-116 and Caco-2) were tested. Cell viability was assessed using MTT assay. Caspase-3/7 activities were measured using Caspase-GIo 3/7 assay kit. Western blot analysis was used to measure the expression of relevant pro- teins in the cells. Glucose consumption of the cells was detected using glucose uptake cell-based assay kit. Results: OSU-CG5 dose-dependently inhibited HCT-116 and Caco-2 cell proliferation with the ICso values of 3.9 and 4.6 μmol/L, respec- tively, which were 20-25-fold lower than those of resveratrol, a reference ERMA. Both OSU-CG5 (5, 10, and 20 μmol/L) and resvera- trol (50, 100, and 200 μmol/L) dose-dependently increased caspase-3/7 activity and PARP level in the cells. Furthermore, both OSU- CG5 and resveratrol induced dose-dependent energy restriction in the cells: they suppressed glucose uptake and Akt phosphoryla- tion, decreased the levels of p-mTOR and p-pTOS6K, increased the levels of ER stress response proteins GRP78 and GADD153, and increased the level of β-TrCP, which led to the downregulation of cyclin D1 and Spl. Conclusion: OSU-CG5 exhibits promising anti-cancer activity against human CRC cells in vitro, which was, at least in part, due to energy restriction and the consequent induction of ER stress and apoptosis.  相似文献   

11.

Aim:

To investigate the effects of nitric oxide (NO) donors on the function and expression of P-glycoprotein (P-gp) in Caco-2 cells.

Methods:

Caco-2 cells were exposed to NO donors for designated times. P-gp function and expression were assessed using Rhodamine123 uptake assay and Western blotting, respectively. Intracellular reactive oxygen species (iROS) and intracellular reactive nitrogen species (iRNS) levels were measured using ROS and RNS assay kits, respectively.

Results:

Exposure of Caco-2 cells to 0.1 or 2 mmol/L of sodium nitroprusside (SNP) affected the function and expression of P-gp in concentration- and time-dependent manners. A short-term (4 h) exposure reduced P-gp function and expression accompanied with significantly increased levels of iROS and iRNS. In contrast, a long-term (24 h) exposure stimulated the P-gp function and expression. The stimulatory effects of 2 mmol/L SNP was less profound as compared to those caused by 0.1 mmol/L SNP. The other NO donors SIN-1 and SNAP showed similar effects. Neither the NO scavenger PTIO (2 mmol/L) nor soluble guanylate cyclase inhibitor ODQ (50 μmol/L) reversed the SNP-induced alteration of P-gp function. On the other hand, free radical scavengers ascorbate, glutathione and uric acid (2 mmol/L for each), PKC inhibitor chelerythrine (5 μmol/L), PI3K/Akt inhibitor wortmannin (1 μmol/L) and p38 MAPK inhibitor SB203580 (10 μmol/L) reversed the upregulation of P-gp function by the long-term exposure to SNP, but these agents had no effect on the impaired P-gp function following the short-term exposure to SNP.

Conclusion:

NO donors time-dependently regulate P-gp function and expression in Caco-2 cells: short-term exposure impairs P-gp function and expression, whereas long-term exposure stimulates P-gp function and expression. The regulation occurs via a NO-independent mechanism.  相似文献   

12.

Background and purpose:

Oxaliplatin is the first platinum-based compound effective in the treatment of colorectal cancer. Oxaliplatin combined with cetuximab for metastatic colorectal cancer is under evaluation. The preliminary results seem controversial, particularly for the use of cetuximab in K-Ras mutated patients. K-Ras mutation is known to affect redox homeostasis. Here we evaluated how the efficacy of oxaliplatin alone or combined with cetuximab varied according to the Ras mutation and redox status in a panel of colorectal tumour cell lines.

Experimental approach:

Viability was evaluated by methylthiazoletetrazolium assay, reactive oxygen species production by DCFDA and lucigenin on HT29-D4, Caco-2, SW480 and SW620 cell lines.

Key results:

Combination of oxaliplatin and cetuximab was less cytotoxic than oxaliplatin alone in colorectal cells harbouring wild-type Ras and membrane expression of receptors for epidermal growth factor receptor (EGFR), such as HT29-D4 and Caco-2 cells. In contrast, cetuximab did not affect oxaliplatin efficiency in cells harbouring K-RasV12 mutation, irrespective of membrane EGFR expression (SW620 and SW480 cells). Transfection of HT29-D4 with K-RasV12 decreased oxaliplatin IC50 and impaired cetuximab sensitivity, without affecting expression of membrane EGFR compared with HT29-D4 control. Oxaliplatin efficacy relies on endogenous production of H2O2. Cetuximab inhibits H2O2 production inhibiting the EGFR/Nox1 NADPH oxidase pathway. Oxaliplatin efficacy was impaired by short hairpin RNA for Nox1 and by catalase (H2O2 scavenger).

Conclusions and implications:

Cetuximab limited oxaliplatin efficiency by affecting the redox status of cancer cells through Nox1. Such combined therapy might be improved by controlling H2O2 elimination.  相似文献   

13.

Aim:

To examine the inhibitory actions of the immunoregulator platonin against proliferation of rat vascular smooth muscle cells (VSMCs).

Methods:

VSMCs were prepared from the thoracic aortas of male Wistar rats. Cell proliferation was examined using MTT assays. Cell cycles were analyzed using flow cytometry. c-Jun N-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, AKT, and c-Jun phosphorylation or p27 expression were detected using immunoblotting.

Results:

Pretreatment with platonin (1–5 μmol/L) significantly suppressed VSMC proliferation stimulated by PDGF-BB (10 ng/mL) or 10% fetal bovine serum (FBS), and arrested cell cycle progression in the S and G2/M phases. The same concentrations of platonin significantly inhibited the phosphorylation of JNK1/2 but not ERK1/2 or AKT in VSMCs stimulated by PDGF-BB. Furthermore, platonin also attenuated c-Jun phosphorylation and markedly reversed the down-regulation of p27 expression after PDGF-BB stimulation.

Conclusion:

Platonin inhibited VSMC proliferation, possibly via inhibiting phosphorylation of JNK1/2 and c-Jun, and reversal of p27 down-regulation, thereby leading to cell cycle arrest at the S and G2/M phases. Thus, platonin may represent a novel approach for lowering the risk of abnormal VSMC proliferation and related vascular diseases.  相似文献   

14.

BACKGROUND AND PURPOSE

Phospho-ibuprofen (P-I; MDC-917) inhibits the growth of colon cancer in mice. Here, we investigated the use of nanocarriers to improve its pharmacokinetics (PKs) and anti tumour efficacy.

EXPERIMENTAL APPROACH

The cellular uptake and cytotoxicity of P-I encapsulated into liposomes and micelles, and its in vitro metabolic stability, were determined in cultures of human colon adenocarcinoma cells. The performance of liposomal P-I was further evaluated in PK studies in mice, and in a model of colon cancer xenografts in nude mice.

KEY RESULTS

Liposomal P-I and micellar P-I showed significantly enhanced cellular uptake in the colon cancer cells. Liposomal P-I also demonstrated increased cytotoxicity in vitro. Free P-I was metabolized rapidly to ibuprofen in the presence of purified esterases. In contrast, liposomal P-I, and to a lesser extent micellar P-I, was resistant to esterase-mediated hydrolysis. In mice, liposomal P-I partially protected P-I from hydrolysis in the circulation, and improved the biodistribution of intact P-I and its metabolites compared to free P-I. Liposomal P-I was more effective at inhibiting the growth of human colon cancer xenografts in mice, which may be explained on the basis of its improved PK profile compared to free P-I.

CONCLUSIONS AND IMPLICATIONS

Liposome encapsulation of P-I partially protected P-I from esterase-mediated hydrolysis in mice, enhanced the cytotoxicity and bioavailability of P-I and increased its efficacy at inhibiting the growth of human colon cancer xenografts. These results indicate that liposomes are suitable nanocarriers for the delivery of P-I, and that the anti-tumour potential of liposomal P-I merits further evaluation.  相似文献   

15.

Aim:

Cancer stem cells have the capacity to initiate and sustain tumor growth. In this study, we established a CD44+ colorectal cancer stem cell line with particular emphasis on its self-renewal capacity, enhanced tumor initiation and drug resistance.

Methods:

Fresh colon cancer and paired normal colon tissues were collected from 13 patients who had not received chemotherapy or radiotherapy prior to surgery. Among the 6 single-cell derived clones, only the P6C cell line was cultured for more than 20 passages in serial culture and formed holoclones with high efficiency, and then the stemness gene expression, colony formation, tumorigenicity and drug sensitivities of the P6C cell line were examined.

Results:

Stemness proteins, including c-Myc, Oct3/4, Nanog, Lgr5, and SOX2, were highly expressed in the P6C cell line. Oct3/4-positive P6C cells mostly generated holoclones through symmetric division, while a small number of P6C cells generated meroclones through asymmetric division. P6C cells stably expressed CD44 and possessed a high capacity to form tumor spheres. A single cell-derived sphere was capable of generating xenograft tumors in nude mice. Compared to SW480 and HCT116 colorectal cancer cells, P6C cells were highly resistant to Camptothecin and 5-fluorouracil, the commonly used chemotherapeutic agents to treat colorectal cancers.

Conclusion:

We established a colorectal cancer stem cell line P6C with a high tumorigenic capacity and the characteristics of normal stem cells. It will benefit the mechanistic studies on cancer stem cells and the development of drugs that specifically target the cancer stem cells.  相似文献   

16.

Aim:

To investigate the mechanisms underlying anticancer action of the benzimidazole acridine derivative N-{(1H-benzo[d]imidazol-2-yl)methyl}-2-butylacridin-9-amine(8m) against human colon cancer cells in vitro.

Methods:

Human colon cancer cell lines SW480 and HCT116 were incubated in the presence of 8m, and then the cell proliferation and apoptosis were measured. The expression of apoptotic/signaling genes and proteins was detected using RT-PCR and Western blotting. ROS generation and mitochondrial membrane depolarization were visualized with fluorescence microscopy.

Results:

8m dose-dependently suppressed the proliferation of SW480 and HCT116 cells with IC50 values of 6.77 and 3.33 μmol/L, respectively. 8m induced apoptosis of HCT116 cells, accompanied by down-regulation of Bcl-2, up-regulation of death receptor-5 (DR5), truncation of Bid, cleavage of PARP, and activation of caspases (including caspase-8 and caspase-9 as well as the downstream caspases-3 and caspase-7). Moreover, 8m selectively activated JNK and p38 without affecting ERK in HCT116 cells. Knockout of JNK1, but not p38, attenuated 8m-induced apoptosis. In addition, 8m induced ROS production and mitochondrial membrane depolarization in HCT116 cells. Pretreatment with the antioxidants N-acetyl cysteine or glutathione attenuated 8m-induced apoptosis and JNK activation in HCT116 cells.

Conclusion:

The new benzimidazole acridine derivative, 8m exerts anticancer activity against human colon cancer cells in vitro by inducing both intrinsic and extrinsic apoptosis pathways via the ROS-JNK1 pathway.  相似文献   

17.

Aim:

To determine whether elongation factor-2 kinase (eEF-2 kinase) contributes to the malignant phenotype of glioblastoma multiforme by promoting the migration and invasion of glioma cells. The mechanism involved was also explored.

Methods:

Human glioma cell lines T98G and LN-229 were used. The expression of eEF-2 kinase was silenced using siRNA, and the invasive potential of tumor cells was assessed using a wound-healing assay and a Matrigel invasion assay. Apoptosis was determined using propidium iodide (PI) staining and Western blot analysis of cleaved caspase-3.

Results:

Silencing the expression of eEF-2 kinase by siRNA significantly suppressed both the migration and invasion of human glioma cells. Silencing eEF-2 kinase expression also sensitized glioma cells to anoikis, thereby decreasing tumor cell viability in the absence of attachment. Treatment of tumor cells with the caspase inhibitor z-VAD-fmk down-regulated Bim accumulation and abolished glioma cell sensitivity to anoikis.

Conclusion:

The results suggest that the expression of eEF-2 kinase contributes to migration and invasion of human glioma cells by protecting them from anoikis. eEF-2 kinase expression may serve as a prognostic marker and a novel target for cancer therapy.  相似文献   

18.

BACKGROUND AND PURPOSE

Cancer cells grow without the restraints of feedback control mechanisms, leading to increased cancer cell survival. The treatment of cancer is often complicated by the lack of response to chemotherapy leading to chemoresistance and persistent survival of tumour cells. In this work we studied the role of platelets in chemotherapy-induced cancer cell death and survival.

EXPERIMENTAL APPROACH

Human adenocarcinoma cells, colonic (Caco-2) and ovarian (59 M) cells, were incubated with 5-fluorouracil (1–300 µg·mL−1) or paclitaxel (1–200 µg·mL−1) in the presence or absence of platelets (1.5 × 108 mL−1) for 1, 24 or 72 h. Following incubation, cancer cells were harvested and cell survival/death was assayed using flow cytometry, Western blotting, real-time PCR, TaqMan® Gene Expression Assays and proteomics.

KEY RESULTS

Human platelets increased the survival of colonic and ovarian adenocarcinoma cells treated with two standard anticancer drugs, 5-fluorouracil and paclitaxel. In the presence of platelets, cancer cells up-regulated anti-apoptotic and down-regulated pro-apoptotic genes, increased the number of cells in the synthesis of DNA and decreased the number in the quiescent phase, increased expression of cyclins, DNA repair proteins and MAPKs. The analysis of platelet-Caco-2 secretome demonstrated the release of the chemokine RANTES, thrombospondin-1, TGF-β and clusterin. Finally, human recombinant RANTES and thrombospondin-1 improved survival of Caco-2 cells challenged with paclitaxel.

CONCLUSIONS AND IMPLICATIONS

These data demonstrate that platelets increase adenocarcinoma cells survival, proliferation and chemoresistance to standard anticancer drugs. Modulating cancer cell–platelet interactions may offer a new strategy to improve the efficacy of chemotherapy.  相似文献   

19.

Aim:

Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells.

Methods:

Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP, 100 μmol/L) or factor VIIa (10 nmol/L), and analyzed using MTT and Transwell assays, respectively. The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope. The expression of caspase-7, tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR, ELISA and Western blot assays. The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways was analyzed with Western blot.

Results:

Both PAR2-AP and factor VIIa promoted SW620 cell proliferation and migration, and caused cytoskeleton reorganization (increased filopodia and pseudopodia). Pretreatment with EGCG (25, 50, 75, and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor VIIa. Furthermore, it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor VIIa.

Conclusion:

EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor VIIa via inhibition of the ERK1/2 and NF-κB pathways. The compound may serve as a preventive and therapeutic agent for colon cancers.  相似文献   

20.

Aim:

To examine the effects of acetaminophen (paracetamol), a nonsteroidal anti-inflammatory drug (NSAID), on different cellular and functional parameters of the human osteosarcoma cell line MG63.

Methods:

Flow cytometry was used to study proliferation, antigenic profile, and phagocytic activity, and radioimmunoassay was used to determine osteocalcin synthesis as a cell differentiation marker.

Results:

Short-term treatment with therapeutic doses of paracetamol(5 or 25 μmol/L) reduced cell proliferation, osteocalcin synthesis, and phagocyte activity, and increased the expression of antigens involved in antigen presentation to T lymphocytes (CD80, CD86, HLA-DR).

Conclusion:

These findings suggest that paracetamol activates the osteoblast, inducing its immunogenic action to the detriment of its bone formation capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号