首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade.  相似文献   

2.
Phase change materials (PCMs) are an effective thermal mass and their integration into the structure of a building can reduce the ongoing costs of building operation, such as daily heating/cooling. PCMs as a thermal mass can absorb and retard heat loss to the building interior, maintaining comfort in the building. Although a large number of PCMs have been reported in the literature, only a handful of them, with their respective advantages and disadvantages, are suitable for building wall construction. Based on the information available in the literature, a critical evaluation of PCMs was performed in this paper, focusing on two aspects: (i) PCMs for building wall applications and (ii) the inclusion of PCMs in building wall applications. Four different PCMs, namely paraffin wax, fatty acids, hydrated salts, and butyl stearate, were identified as being the most suitable for building wall applications and these are explained in detail in terms of their physical and thermal properties. Although there are several PCM encapsulation techniques, the direct application of PCM in concrete admixtures is the most economical method to keep costs within manageable limits. However, care should be taken to ensure that PCM does not leak or drip from the building wall.  相似文献   

3.
This work aims to characterize phase change materials (PCM) for thermal energy storage in buildings (thermal comfort). Fatty acids, biobased organic PCM, are attractive candidates for integration into active or passive storage systems for targeted application. Three pure fatty acids (capric, myristic and palmitic acids) and two eutectic mixtures (capric-myristic and capric-palmitic acids) are studied in this paper. Although the main storage properties of pure fatty acids have already been investigated and reported in the literature, the information available on the eutectic mixtures is very limited (only melting temperature and enthalpy). This paper presents a complete experimental characterization of these pure and mixed fatty acids, including measurements of their main thermophysical properties (melting temperature and enthalpy, specific heats and densities in solid and liquid states, thermal conductivity, thermal diffusivity as well as viscosity) and the properties of interest regarding the system integrating the PCM (energy density, volume expansion). The storage performances of the studied mixtures are also compared to those of most commonly used PCM (salt hydrates and paraffins).  相似文献   

4.
Phase change materials (PCMs) can be thermally enhanced by reduced graphene oxide (rGO)/expanded graphite (EG) aerogel with anisotropic microstructure. An rGO/EG aerogel with anisotropic microstructure was prepared by directionally freezing aqueous suspensions of graphene oxide (GO) and EG, followed by a freeze-drying process and thermal reduction at 250 °C. The anisotropic microstructure of rGO/EG aerogel composite PCM was confirmed by scanning electron microscopy (SEM), thermal conductivity tests and infrared images. The thermal conductivity of PCMs increased remarkably with rGO/EG aerogel. Compared with the thermal conductivity of pure paraffin, it increased by about 50~300% in the longitudinal direction and increased by about 25–150% in the transversal direction. The enhancement of thermal conductivity was attributed to the improvement of the thermal pathway provided by rGO/EG aerogel and the decrease of the interfacial thermal resistance between PCM and fillers. Meanwhile, rGO/EG aerogel was combined with paraffin only by physical adsorption, and no chemical interaction occurs between them, leading to no effect on the phase change behavior. In addition, the addition of rGO/EG aerogel led to a slight increase in the latent heat of the paraffin in the composite PCM.  相似文献   

5.
The use of phase change materials (PCMs) is an attractive method for energy storage and utilization in building envelopes. Here, shape-stabilized phase change materials (SS-PCMs) were prepared via direct adsorption using mesoporous silica (MS) with different pore diameters as the support matrix. The leakage properties, microstructure, chemical structure, thermophysical properties, activation energy, thermal stability and thermal storage-release characteristics of paraffin and SS-PCMs were investigated. The results show that the maximum mass proportion of paraffin in SS-PCMs is 70% when the average pore diameter of mesoporous silica is 15 nm, and the phase change temperature and latent heat of the corresponding SS-PCM are 23.6 °C and 135.4 kJ/kg, respectively. No chemical reaction occurs between mesoporous silica and paraffin and the SS-PCMs exhibit high thermal stability. The high activation energy of the paraffin (70%)/MS1 SS-PCM verifies that the shape and thermal properties can be maintained stably during phase change conversions. The time required for SS-PCMs to complete the thermal storage and release process is reduced by up to 34.0% compared with that for pure paraffin, showing a decline in the thermal conductivity of SS-PCMs after the addition of mesoporous silica. Hence, the prepared paraffin/MS SS-PCMs, in particular paraffin (70%)/MS1 SS-PCM, can be used for storing thermal energy and regulating indoor temperature in buildings.  相似文献   

6.
Spherically encapsulated phase change materials (PCMs) are extensively incorporated into matrix material to form composite latent heat storage system for the purposes of saving energy, reducing PCM cost and decreasing space occupation. Although the melting of PCM sphere has been studied comprehensively by experimental and numerical methods, it is still challenging to quantitatively depict the contribution of complex natural convection (NC) to the melting process in a practically simple and acceptable way. To tackle this, a new effective thermal conductivity model is proposed in this work by focusing on the total melting time (TMT) of PCM, instead of tracking the complex evolution of solid–liquid interface. Firstly, the experiment and finite element simulation of the constrained and unconstrained meltings of paraffin sphere are conducted to provide a deep understanding of the NC-driven melting mechanism and exhibit the difference of melting process. Then the dependence of NC on the particle size and heating temperature is numerically investigated for the unconstrained melting which is closer to the real-life physics than the constrained melting. Subsequently, the contribution of NC to the TMT is approximately represented by a simple effective thermal conductivity correlation, through which the melting process of PCM is simplified to involve heat conduction only. The effectiveness of the equivalent thermal conductivity model is demonstrated by rigorous numerical analysis involving NC-driven melting. By addressing the TMT, the present correlation thoroughly avoids tracking the complex evolution of melting front and would bring great convenience to engineering applications.  相似文献   

7.
8.
The article presents the results of multi-month field tests and numerical analyses describing the thermal functioning of mobile shading systems for building windows containing a phase-change heat accumulator. The experiments were conducted in the summer period with temperate climate conditions in Rzeszów (Poland). The tested shading system was dedicated to the daily life cycle of residents, taking into account both the need to illuminate the rooms with natural light and reducing the undesirable overheating of the rooms in the summer. The obtained empirical results showed a reduction in room overheating in the summer period by 29.4% from composite windows with a phase-change heat accumulator and a mobile shading system as compared to the reference composite window with an analogous mobile shading system. The database of empirical results allowed for the creation and verification of a numerical model of heat conversion, storage and distribution within the composite window containing phase change material and a mobile shading system. The verified model made it possible to analyse the thermal functioning of the modified transparent partitions in cool temperate, temperate and subtropical climates. The article is a solution to the problem of undesirable overheating of transparent building partitions by efficient storage and distribution of solar radiation energy thanks to the use of a mobile shading system and a phase change material, while presenting a useful tool enabling the prediction of energy gains in different climatic conditions.  相似文献   

9.
Gypsum has two important states (fresh and hardened states), and the addition of phase change materials (PCM) can vary the properties of the material. Many authors have extensively studied properties in the hardened state; however, the variation of fresh state properties due to the addition of Micronal® DS 5001 X PCM into gypsum has been the object of few investigations. Properties in fresh state define the workability, setting time, adherence and shrinkage, and, therefore the possibility of implementing the material in building walls. The aim of the study is to analyze, compare and evaluate the variability of fresh state properties after the inclusion of 10% PCM. PCM are added into a common gypsum matrix by three different methods: adding microencapsulated PCM, making a suspension of PCM/water, and incorporating PCM through a vacuum impregnation method. Results demonstrate that the inclusion of PCM change completely the water required by the gypsum to achieve good workability, especially the formulation containing Micronal® DS 5001 X: the water required is higher, the retraction is lower (50% less) due to the organic nature of the PCM with high elasticity and, the adherence is reduced (up to 45%) due to the difference between the porosity of the different surfaces as well as the surface tension difference.  相似文献   

10.
An effective model to calculate thermal conductivity of polymer composites using core-shell fillers is presented, wherein a core material of filler grains is covered by a layer of a high-thermal-conductivity (HTC) material. Such fillers can provide a significant increase of the composite thermal conductivity by an addition of a small amount of the HTC material. The model employs the Lewis-Nielsen formula describing filled systems. The effective thermal conductivity of the core-shell filler grains is calculated using the Russel model for porous materials. Modelling results are compared with recent measurements made on composites filled with cellulose microbeads coated with hexagonal boron nitride (h-BN) platelets and good agreement is demonstrated. Comparison with measurements made on epoxy composites, using silver-coated glass spheres as a filler, is also provided. It is demonstrated how the modelling procedure can improve understanding of properties of materials and structures used and mechanisms of thermal conduction within the composite.  相似文献   

11.
The paper deals with the possibility of using Phase Change Materials (PCM) in concretes and geopolymer composites. The article presents the most important properties of PCM materials, their types, and their characteristics. A review of the latest research results related to their use in geopolymer materials is presented. The benefits of using PCM in building materials include the improvement of thermal comfort inside the building, and also the fact that the additive in the form of PCM reduces thermal gradients and unifies the temperature inside the concrete mix, which can reduce the risk of cracking. The paper also presents a critical analysis related to the feasibility of mass scale implementations of such composites. It was found that the use of PCM in sustainable construction is necessary and inevitable, and will bring a number of benefits, but it still requires large financial resources and time for more comprehensive research. Despite the fact that PCM materials have been known for many years, it is necessary to refine their form to very stable phases that can be used in general construction as well as to develop them in a cost-effective form. The selection of these materials should also be based on the knowledge of the matrix material.  相似文献   

12.
This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)–capric acid (CA), TD–lauric acid (LA), and TD–myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM), 24.53 °C/24.92 °C (FS TD–LA PCM), and 33.15 °C/30.72 °C (FS TD–MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.  相似文献   

13.
The article presents the results of detailed studies of the thermal conductivity of the water slurry of microencapsulated PCM (mPCM) and slurry based on water–propylene glycol solutions. The starting product, MICRONAL® 5428 X, which contains about 43% microencapsulated paraffin with a transformation temperature of 28 °C, was mixed with the base liquid to obtain slurries with mass fractions of mPCM of 4.3, 8.6, 12.9, 17.2, 21.5, 25.8, 30.1, 34.4, 38.7, and 43.0%. Detailed measurements were carried out in the temperature range of 10–40 °C. It was found that: (a) an increase in the temperature of the slurry caused an increase in its thermal conductivity, both when PCM was in the form of a solid and a liquid; (b) the thermal conductivity of the mPCM slurry when the PCM was in liquid form was greater than the thermal conductivity of the slurry when the PCM was liquid; (c) during the phase transformation, a significant increase in the thermal conductivity of the slurry was observed, and its peak occurred when the temperature of the slurry reached the temperature declared by the manufacturer at which the phase-transition peak occurs.  相似文献   

14.
A smart possible way to cool electronics equipment is represented by passive methods, which do not require an additional power input, such as Phase Change Materials (PCMs). PCMs have the benefit of their latent heat being exploited during the phase change from solid to liquid state. This paper experimentally investigates the melting of different PCMs having different melting temperatures (42, 55 and 64 °C). Two copper foams, having 10 PPI and relative densities of 6.7% and 9.5%, i.e., porosities of 93.3% and 90.5%, respectively, are used to enhance the thermal conductivity of PCMs. The block composed by the PCM and the copper foam is heated from one side, applying three different heat fluxes (10, 15 and 20 kW m−2): the higher the heat flux, the higher the temperature reached by the heated side and the shorter the time for a complete melting of the PCM. The copper foam with a relative density of 9.5% shows slightly better performance, whereas the choice of the melting temperature of the PCM depends on the time during which the passive cooling system must work. The effect of the foam material is also presented: a copper foam presents better thermal performances than an aluminum foam with the same morphological characteristics. Finally, experimental dimensionless results are compared against values predicted by a correlation previously developed.  相似文献   

15.
To reduce energy consumption and increase energy efficiency in the building sector, thermal energy storage with phase change materials (PCMs) is used. The knowledge of the thermophysical properties and the characteristics of PCMs (like their enthalpy changes and the distribution of stored energy over a specified temperature range) is essential for proper selection of the PCM and optimal design of the latent thermal energy store (LHTES). This paper presents experimental tests of the thermophysical properties of three medium-temperature PCMs: OM65, OM55, RT55, which can be used in domestic hot water installations and heating systems. Self-made test chambers with temperature control using Peltier cells were used to perform measurements according to the T-history method. In this way the temperature range of the phase transition, latent heat, specific heat capacity, enthalpy and the distributions of stored energy of the three PCMs were determined. The paper also presents measurements of the thermal conductivity of these PCMs in liquid and solid state using a self-made pipe Poensgen apparatus. The presented experimental tests results are in good agreement with the manufacturers’ data and the results of other researchers obtained with the use of specialized instruments. The presented research results are intended to help designers in the selection of the right PCM for the future LHTES co-working with renewable energy systems, waste heat recovery systems and building heating systems.  相似文献   

16.
Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.  相似文献   

17.
In order to limit the environmental impact caused by the use of non-renewable resources, a growing research interest is currently being shown in the reuse of agricultural by-products as new raw materials for green building panels. Moreover, the European directives impose the goal of sustainability supporting the investigation of passive solutions for the reduction of energy consumption. Thus, the promotion of innovative building materials for the enhancement of acoustic and thermal insulation of the buildings is an important issue. The aim of the present research was to evaluate the physical, acoustical, and thermal performances of building panels produced by almond skin residues, derived from the industrial processing of almonds. In this paper different mix designs were investigated using polyvinyl acetate glue and gum Arabic solution as binders. Air-flow resistivity σ and normal incidence sound absorption coefficient α were measured by means of a standing wave tube. Thermal conductivity λ, thermal diffusivity α, volumetric heat capacity ρc were measured using a transient plane source device. Finally, water vapor permeability δp was experimentally determined using the dry cup method. Furthermore, a physical characterization of the specimens in terms of bulk density ρb and porosity η allowed to study the correlation existing between the binder and the aggregates and the consequent acoustical and hygrothermal behavior occurring on the different mix designs. The achieved results suggested the investigated materials comparable to the main products currently existing on the market.  相似文献   

18.
In this work, in-plane and through-plane thermal diffusivities and conductivities of a freestanding sheet of graphene nanoplatelets are determined using photothermal beam deflection spectrometry. Two experimental methods were employed in order to observe the effect of load pressures on the thermal diffusivity and conductivity of the materials. The in-plane thermal diffusivity was determined by the use of a slope method supported by a new theoretical model, whereas the through-plane thermal diffusivity was determined by a frequency scan method in which the obtained data were processed with a specifically developed least-squares data processing algorithm. On the basis of the determined values, the in-plane and through-plane thermal conductivities and their dependences on the values of thermal diffusivity were found. The results show a significant difference in the character of thermal parameter dependence between the two methods. In the case of the in-plane configuration of the experimental setup, the thermal conductivity decreases with the increase in thermal diffusivity, whereas with the through-plane variant, the thermal conductivity increases with an increase in thermal diffusivity for the whole range of the loading pressure used. This behavior is due to the dependence of heat propagation on changes introduced in the graphene nano-platelets structure by compression.  相似文献   

19.
Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.  相似文献   

20.
This article presents the influence of three additions i.e., hydroxyethyl methyl cellulose (HEMC), sodium bicarbonate and flue gas desulfurization (FGD) gypsum on the porosity of gypsum-based materials. The specific microstructure for a material with good thermal insulation properties i.e., numerous closed pores distributed in the binding matrix, was achieved using HEMC (0.3 wt.%) and sodium bicarbonate (0.5–2 wt.%). The addition of HEMC to the gypsum binder determines, as expected, an increase of the porosity due to its ability to stabilize entrained air. In the case of a sodium bicarbonate addition, the pores are formed in the binding matrix due to the entrapment of the gas (CO2) generated by its reaction. Sodium bicarbonate addition delays the setting of gypsum binder therefore in this study FGD gypsum (waste produced in the desulfurization process of combustion gases generated in power plants) was also added to the mixture to mitigate this negative effect. The decrease of geometrical density (up to 13%, in correlation with the additive nature and dosage) correlated with the increase of the porosity, determines, as expected, the decrease of flexural and compressive strengths (33–75%), but improves the thermal properties i.e., decreases the thermal conductivity (9–18%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号