首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于小波变换的医学超声图像去噪及增强方法   总被引:6,自引:3,他引:6       下载免费PDF全文
目的探求一种基于小波变换的医学超声图像去噪及增强方法。方法提出了一种基于小波分析理论的医学超声图像噪声的综合抑制方法,首先对医学超声图像进行对数变换,将乘性噪声变成加性噪声;然后进行多尺度小波变换,将图像分解成一系列不同尺度上的小波系数,对变换后不同尺度的高频子图像进行非线性小波软阈值处理,阈值处理后的高频子图像进行增强;最后,经小波逆变换和指数变换恢复去噪后图像。结果原图像中斑纹噪声被有效去除,图像边缘细节得以保留。结论该方法可有效保留细节信号,极大限度地去除斑纹噪声。  相似文献   

2.
Recently, multivariate analysis algorithms have become a popular tool to diagnose neurological diseases based on neuroimaging data. Most studies, however, are biased for one specific scale, namely the scale given by the spatial resolution (i.e. dimension) of the data. In the present study, we propose to use the dual-tree complex wavelet transform to extract information on different spatial scales from structural MRI data and show its relevance for disease classification. Based on the magnitude representation of the complex wavelet coefficients calculated from the MR images, we identified a new class of features taking scale, directionality and potentially local information into account simultaneously. By using a linear support vector machine, these features were shown to discriminate significantly between spatially normalized MR images of 41 patients suffering from multiple sclerosis and 26 healthy controls. Interestingly, the decoding accuracies varied strongly among the different scales and it turned out that scales containing low frequency information were partly superior to scales containing high frequency information. Usually, this type of information is neglected since most decoding studies use only the original scale of the data. In conclusion, our proposed method has not only a high potential to assist in the diagnostic process of multiple sclerosis, but can be applied to other diseases or general decoding problems in structural or functional MRI.  相似文献   

3.
基于离散小波变换的fMRI数据特征提取   总被引:3,自引:1,他引:2  
目的 设计一种灵敏度高且处理速度快的fMRI数据小波分析方法.方法 先用离散小波变换和频谱分析确定有用信号存在的小波分解尺度,也即特征尺度;再对实验数据进行离散小波分解,重构时将非特征尺度里的小波系数设置为0;再以相关分析对小波重构信号进行激活检测.结果 对视觉数据的分析结果显示,新方法的灵敏度与基于平稳小波变换、SPM2方法相当,而优于基于提升小波变换的方法;新方法的处理速度与基于提升小波变换的方法相当,但较平稳小波变换方法有较大提高.结论 本文为fMRI数据提供了一种更为灵敏且快速的小波分析方法,更为实用.  相似文献   

4.
降噪是医学图像处理中一个非常重要的问题,传统去噪方法在降低噪声的同时会模糊图像的边缘,各向异性扩散滤波在降低图像噪声的同时能够使图像的边缘得到保持.利用小波变换可以对图像进行多尺度分解,使我们可以在不同尺度上对图像进行处理.本文利用各向异性扩散滤波对MRI图像进行降噪,然后利用平稳小波变换对图像进行增强处理.实验结果表明,该方法在有效去除噪声的同时能够增强图像的细节,有效地提高了图像的质量.  相似文献   

5.
基于提升小波变换的功能MRI数据分析   总被引:2,自引:2,他引:0  
目的 构建一种快速的fMRI数据小波分析方法.方法 用提升小波变换代替平稳小波变换分解fMRI数据,以分离其实验响应信号和干扰信号,再由频谱分析识别实验响应信号所在的小波尺度,并只对实验响应信号所在的小波尺度进行重构,最后对重构信号进行相关分析来检测激活.结果 分析视觉实验数据显示,在显著性水平为α<10-6时,本文基于提升小波变换的方法比未去噪的相关分析方法更灵敏,而消耗时间比基于平稳小波变换的方法大幅度减少.同时本文方法只需24个数据点即可进行小波重构,而基于平稳小波变换的方法则需要256个数据点.结论 本文为fMRI数据提出了一种既能快速分析又能有效压缩的小波分析方法.  相似文献   

6.
目的 利用小波变换进行医学图像去噪.方法 通过分析二进小波变换下小波极大模值的特点,即信号的极大模值往往会大于噪声的极大模值,而且噪声的极大模值会随着尺度增大而急剧减少,信号的极大模值却改变很小,由此构造了更有效的去噪准则,即根据不同尺度上的极大模值信息,选择不同的域值来滤除噪声.结果 应用该方法进行医学图像去噪,能保持较高的峰值信噪比、图像细节和边缘特征以及图像清晰度.结论 基于小波极大模值信息的去噪方法能有效地降低医学图像中的噪声.  相似文献   

7.
Ultrasound (US) imaging is widely used for anatomical structure inspection in clinical diagnosis. The training of new sonographers and deep learning based algorithms for US image analysis usually requires a large amount of data. However, obtaining and labeling large-scale US imaging data are not easy tasks, especially for diseases with low incidence. Realistic US image synthesis can alleviate this problem to a great extent. In this paper, we propose a generative adversarial network (GAN) based image synthesis framework. Our main contributions include: (1) we present the first work that can synthesize realistic B-mode US images with high-resolution and customized texture editing features; (2) to enhance structural details of generated images, we propose to introduce auxiliary sketch guidance into a conditional GAN. We superpose the edge sketch onto the object mask and use the composite mask as the network input; (3) to generate high-resolution US images, we adopt a progressive training strategy to gradually generate high-resolution images from low-resolution images. In addition, a feature loss is proposed to minimize the difference of high-level features between the generated and real images, which further improves the quality of generated images; (4) the proposed US image synthesis method is quite universal and can also be generalized to the US images of other anatomical structures besides the three ones tested in our study (lung, hip joint, and ovary); (5) extensive experiments on three large US image datasets are conducted to validate our method. Ablation studies, customized texture editing, user studies, and segmentation tests demonstrate promising results of our method in synthesizing realistic US images.  相似文献   

8.
Denoising of Positron Emission Tomography (PET) images is a challenging task due to the inherent low signal-to-noise ratio (SNR) of the acquired data. A pre-processing denoising step may facilitate and improve the results of further steps such as segmentation, quantification or textural features characterization. Different recent denoising techniques have been introduced and most state-of-the-art methods are based on filtering in the wavelet domain. However, the wavelet transform suffers from some limitations due to its non-optimal processing of edge discontinuities. More recently, a new multi scale geometric approach has been proposed, namely the curvelet transform. It extends the wavelet transform to account for directional properties in the image. In order to address the issue of resolution loss associated with standard denoising, we considered a strategy combining the complementary wavelet and curvelet transforms. We compared different figures of merit (e.g. SNR increase, noise decrease in homogeneous regions, resolution loss, and intensity bias) on simulated and clinical datasets with the proposed combined approach and the wavelet-only and curvelet-only filtering techniques. The three methods led to an increase of the SNR. Regarding the quantitative accuracy however, the wavelet and curvelet only denoising approaches led to larger biases in the intensity and the contrast than the proposed combined algorithm. This approach could become an alternative solution to filters currently used after image reconstruction in clinical systems such as the Gaussian filter.  相似文献   

9.
The detection of significantly activated brain regions in multi-subject functional magnetic resonance imaging (fMRI) studies almost invariably entails the coregistration of individual subjects' data in a standard space. Here, we investigate how sensitivity to detect loci of generic activation in such studies may be conditioned by the precision of anatomical registration. We describe a novel algorithm, implemented in the wavelet domain, for inhomogeneous deformation of individual images to match a template. The algorithm matches anatomical features in a coarse-to-fine fashion, first minimising a cost function in terms of relatively coarse spatial features and then proceeding iteratively to match the images in terms of progressively more detailed anatomical features. Applying the method to data acquired from two groups of 12 healthy volunteers (with mean age 27 and 70 years, respectively), during performance of a paired associate learning task, we show that geometrical overlap between template and individual images is monotonically improved, compared to an affine transform, by additional inhomogeneous deformations informed by more detailed features. Likewise, sensitivity to detect activated voxels can be substantially improved, by a factor of 4 or more, if wavelet-mediated deformations informed by medium-sized anatomical features are applied in addition to a preliminary affine transform. However, sensitivity to detect activated voxels was reduced by "over-registering" data or matching anatomical features at the finest scales of the wavelet transform. The benefits of variable precision registration are particularly salient for data acquired in older subjects, which showed evidence of greater inter-subject anatomic variability and generally required more extensive local deformation to achieve a satisfactory match to the template image. We conclude that major benefits in sensitivity to detect functional activation in multi-subject fMRI studies can be attained with an inhomogeneous deformation applied over appropriate spatial scales.  相似文献   

10.
汤敏  陈峰 《中国临床康复》2011,(22):4094-4097
背景:小波变换只能反映信号的零维奇异性,无法最优表示图像中的线奇异;而且小波变换只存在3个方向,这些都显著影响了它在图像处理领域的应用效果。针对小波变换的缺点,多尺度几何分析理论正在逐步发展,轮廓波变换和曲波变换就是其中的典型代表。目的:定性、定量地比较轮廓波、曲波和小波变换在图像消噪处理中的效果。方法:在简要介绍3种变换基本原理的基础上,比较它们在图像消噪领域的应用,以均方误差和峰值信噪比作为定量指标评价消噪效果,并将其应用于显微镜图像的消噪处理。结果与结论:综合定量评价指标和人眼视觉感受,曲波变换的消噪结果最佳,轮廓波变换效果次之,小波变换效果则不够理想。  相似文献   

11.
The use of the wavelet transform to describe embolic signals.   总被引:5,自引:0,他引:5  
A number of methods to detect cerebral emboli and differentiate them from artefacts using Doppler ultrasound have been described in the literature. In most, Fourier transform-based (FT) spectral analysis has been used. The FT is not ideally suited to analysis of short-duration embolic signals due to an inherent trade-off between temporal and frequency resolution. An alternative approach that might be expected to describe embolic signals well is the wavelet transform. Wavelets are ideally suited for the analysis of sudden short-duration signal changes. Therefore, we have implemented a wavelet-based analysis and compared the results of this with a conventional FFT-based analysis. The temporal resolution, as measured by the half-width maximum, was significantly better for the continuous wavelet transform (CWT), mean (SD) 8.40 (8.82) ms, compared with the 128-point FFT, 12.92 (9.70) ms, and 64-point FFT, 10.80 (5.69) ms. Time localization of the CWT for the embolic signal was also significantly better than the FFT. The wavelet transform appears well suited to the analysis of embolic signals offering superior time resolution and time localization to the FFT.  相似文献   

12.
A new device is described for verifying the calibration accuracy of flow-velocity Doppler ultrasound (US) equipment. A rotating circular disk whose circumferential velocity may be fixed or modulated provides a strong signal source suitable for calibrating clinical Doppler US instruments. Circumferential edge velocity, derived from the disk angular frequency, is used to verify the accuracy of Doppler instrument calibration. A limited survey of routinely used Doppler US instruments demonstrates that calibration accuracy generally is satisfactory for clinical purposes, with minimal variation between instruments. Factors that affect measurements include transducer type, scale range, and display size. All transducers used on a specific piece of equipment need to be tested because the transducer design is an important part of the instrument operation. Variations were observed in reported velocities obtained from different transducers on the same equipment and for the same transducer with different scale ranges. In particular, some scales were more accurate than others, suggesting that individual scales should be tested when performing clinical Doppler US instrument calibration. Other measures of performance including scale display range, sample depth, aliasing, and transducer selection may be studied to identify their effect on measurement accuracy. Temporal modulation of angular velocity produces waveforms that may be used to simulate pulsatile velocity characteristics. The device is simple to construct and use, and it provides a convenient way to verify high-quality instrument performance.  相似文献   

13.

Purpose

In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms.

Methods

A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details.

Results

The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations.

Conclusion

In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.
  相似文献   

14.
Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.OCIS codes: (100.0100) Image processing, (100.7410) Wavelets, (100.3020) Image reconstruction-restoration  相似文献   

15.
We propose a classification algorithm that utilizes the alpha-stable distribution to model the texture features of synthetic aperture radar (SAR) images. The SAR image is first decomposed by stationary wavelet transform (SWT). After that, the alpha-stable distribution is applied to model the high-frequency subband coefficients of the image at each decomposition scale. A regression-type method is then used to estimate the alpha-stable distribution parameters, which form a feature vector that fully describes the texture. Finally, a SAR image classification algorithm is derived by exploiting this feature vector based on the support vector machines (SVM) approach. Because different combinations of alpha-stable distribution parameters contribute to differences in classification precision, a multilevel SVM (MSVM) classification algorithm is also presented to address the issue. Experimental results indicate that the proposed SAR image classification algorithm is effective and the MSVM algorithm improves the classification performance. Moreover, our proposed algorithm has low computational cost as only a small number of the alpha-stable distribution parameters are processed.  相似文献   

16.
Extracting structure of interest from medical images is an important yet tedious work. Due to the image quality, the shape knowledge is widely used for assisting and constraining the segmentation process. In many previous works, shape knowledge was incorporated by first constructing a shape space from training cases, and then constraining the segmentation process to be within the learned shape space. However, such an approach has certain limitations due to the number of variations, eigen-shapemodes, that can be captured in the learned shape space. Moreover, small scale shape variances are usually overwhelmed by those in the large scale, and therefore the local shape information is lost. In this work, we present a multiscale representation for shapes with arbitrary topology, and a fully automatic method to segment the target organ/tissue from medical images using such multiscale shape information and local image features. First, we handle the problem of lacking eigen-shapemodes by providing a multiscale shape representation using the wavelet transform. Consequently, the shape variances existing in the training shapes captured by the statistical learning step are also represented at various scales. Note that by doing so, one can greatly enrich the eigen-shapemodes as well as capture small scale shape changes. Furthermore, in order to make full use of the training information, not only the shape but also the grayscale training images are utilized in a multi-atlas initialization procedure. By combining such initialization with the multiscale shape knowledge, we perform segmentation tests for challenging medical data sets where the target objects have low contrast and sharp corner structures, and demonstrate the statistically significant improvement obtained by employing such multiscale representation, in representing shapes as well as the overall shape based segmentation tasks.  相似文献   

17.
The discrete wavelet transform (DWT) is widely used for multiresolution analysis and decorrelation or "whitening" of nonstationary time series and spatial processes. Wavelets are naturally appropriate for analysis of biological data, such as functional magnetic resonance images of the human brain, which often demonstrate scale invariant or fractal properties. We provide a brief formal introduction to key properties of the DWT and review the growing literature on its application to fMRI. We focus on three applications in particular: (i) wavelet coefficient resampling or "wavestrapping" of 1-D time series, 2- to 3-D spatial maps and 4-D spatiotemporal processes; (ii) wavelet-based estimators for signal and noise parameters of time series regression models assuming the errors are fractional Gaussian noise (fGn); and (iii) wavelet shrinkage in frequentist and Bayesian frameworks to support multiresolution hypothesis testing on spatially extended statistic maps. We conclude that the wavelet domain is a rich source of new concepts and techniques to enhance the power of statistical analysis of human fMRI data.  相似文献   

18.
背景:MAP(最大后验)统计重建方法可以在重建过程中引入合适的先验知识达到去除噪声的目的。目的:根据小波系数的统计特性及能量平衡的原理对高频信息做相应的处理,并将多尺度的小波先验应用到OSL重建算法中以去除噪声。方法:实验从“变换域”的思想出发,在小波域上根据小波系数的统计特性及能量平衡原理对不同尺度的高频信息做相应的处理,并利用处理后的小波系数进行小波重建。结果与结论:基于小波先验的OSL算法比ML—EM算法重建的图像与测试模型的误差变小、相关性变大、噪声变少,重建图像变得比较平滑,视觉效果较清楚。  相似文献   

19.
Ultrasound (US)-guided diffuse optical tomography (DOT) has demonstrated potential value for breast cancer diagnosis and treatment response assessment. However, in clinical use, the chest wall, poor probe-tissue contact, and tissue heterogeneity can all cause image artifacts. These image artifacts, appearing commonly as hot spots in the non-lesion regions (edge artifacts), can decrease the reconstruction accuracy and cause misinterpretation of lesion images. Here we introduce an iterative, connected component analysis-based image artifact reduction algorithm. A convolutional neural network (CNN) is used to segment co-registered US images to extract the lesion location and size to guide the artifact reduction. We demonstrate its performance using Monte Carlo simulations on VICTRE digital breast phantoms and breast patient images. In simulated tissue mismatch models, this algorithm successfully reduces edge artifacts without significantly changing the reconstructed target absorption coefficients. With clinical data it improves the optical contrast between malignant and benign groups, from 1.55 without artifact reduction to 1.91 with artifact reduction. The proposed algorithm has a broad range of applications in other modality-guided DOT imaging.  相似文献   

20.
Transcranial Doppler ultrasound (US) can be used to detect emboli in the cerebral circulation. We have implemented and evaluated the first online wavelet-based automatic embolic signal-detection system, based on a fast discrete wavelet transform algorithm using the Daubechies 8th order wavelet. It was evaluated using a group of middle cerebral artery recordings from 10 carotid stenosis patients, and a 1-h compilation tape from patients with particularly small embolic signals, and compared with the most sensitive commercially available software package (FS-1), which is based on a frequency-filtering approach using the Fourier transform. An optimal combination of a sensitivity of 78.4% with a specificity of 77.5% was obtained. Its overall performance was slightly below that of FS-1 (sensitivity 86.4% with specificity 85.2%), although it was superior to FS-1 for embolic signals of short duration or low energy (sensitivity 75.2% with specificity 50.5%, compared to a sensitivity of 55.6% and specificity of 55.0% for FS-1). The study has demonstrated that the fast wavelet transform can be computed online using a standard personal computer (PC), and used in a practical system to detect embolic signals. It may be particularly good for detecting short-duration low-energy signals, although a frequency filtering-based approach currently offers a higher sensitivity on an unselected data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号