首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. Liners provide a comfortable interface by adding a soft cushion between the residual limb and the socket. The Dermo and the Seal-In X5 liner are two new interface systems and, due to their relative infancy, very little are known about their effect on patient satisfaction. The aim of this study was to compare the interface pressure with these two liners and their effect on patient satisfaction. METHODS: Nine unilateral transtibial amputees participated in the study. Two prostheses were fabricated for each amputee, one with the Seal-In liner and one with the Dermo liner. Interface pressure was measured at the anterior, posterior, medial and lateral regions during walking on the level ground. Each subject filled in a Prosthetic Evaluation Questionnaire (PEQ) regarding the satisfaction with the two liners. Findings The mean peak pressures with the Seal-In liner was 34.0% higher at the anterior, 24.0% higher at the posterior and 7.0% higher at the medial regions of the socket (P=0.008, P=0.046, P=0.025) than it was with the Dermo Liner. There were no significant differences in the mean peak pressures between the two liners at the lateral regions. In addition, significant difference was found between the two liners both for satisfaction and problems (P<0.05). Interpretation There was less interface pressure between the socket and the residual limb with the Dermo liner. The results indicated that the Dermo liner provides more comfort in the socket than the Seal-In liner.  相似文献   

2.
ABSTRACT: The effects of Seal-In X5 and Dermo liner (?ssur) on suspension and patient's comfort in lower limb amputees are unclear. In this report, we consider the case of a 51-yr-old woman with bilateral transtibial amputation whose lower limbs were amputated because of peripheral vascular disease. The subject had bony and painful residual limbs, especially at the distal ends. Two prostheses that used Seal-In X5 liners and a pair of prostheses with Dermo liners were fabricated, and the subject wore each for a period of 2 wks. Once the 2 wks had passed, the pistoning within the socket was assessed and the patient was questioned as to her satisfaction with both liners. This study revealed that Seal-In X5 liner decreased the residual limb pain experienced by the patient and that 1-2 mm less pistoning occurred within the socket compared with the Dermo liner. However, the patient needed to put in extra effort for donning and doffing the prosthesis. Despite this, it is clear that the Seal-In X5 liner offers a viable alternative for individuals with transtibial amputations who do not have enough soft tissue around the bone, especially at the end of the residual limb.  相似文献   

3.

Background

Different suspension systems that are used within prosthetic devices may alter the distribution of pressure inside the prosthetic socket in lower limb amputees. This study aimed to compare the interface pressure of a new magnetic suspension system with the pin/lock and Seal-In suspension systems.

Methods

Twelve unilateral transtibial amputees participated in the study. The subjects walked on a level walkway at a self-selected speed. The resultant peak pressure with the three different suspension systems was recorded using F-socket transducers.

Findings

There were significant statistical differences between the three studied suspension systems. Pair-wise analyses revealed that the mean peak pressure (kPa) was lower with the magnetic system than it was with the pin/lock system over the anterior and posterior aspects during one gait cycle (89.89 vs. 79.26 and 47.22 vs. 26.01, respectively). Overall, the average peak pressure values were higher with the Seal-In system than they were with the new magnetic lock and pin/lock system.

Interpretation

The new magnetic system might reduce the pressure within the prosthetic socket in comparison to the pin/lock and Seal-In system during one gait cycle. This is particularly important during the swing phase of gait and may reduce the pain and discomfort at the distal residual limb in comparison to the pin/lock system.  相似文献   

4.

Background

The technological advances that have been made in developing highly functional prostheses are promising for very active patients but we do not yet know whether they cause an increase in biomechanical load along with possibly negative consequences for pressure conditions in the socket. Therefore, this study monitored the socket pressure at specific locations of the stump when using a microprocessor-controlled adaptive prosthetic ankle under different walking conditions.

Methods

Twelve unilateral transtibial amputees between 43 and 59 years of age were provided with the Proprio-Foot™ (Össur) and underwent an instrumented 3D gait analysis in level, stair, and incline walking, including synchronous data capturing of socket pressure. Peak pressures and pressure time integrals (PTI) at three different locations were compared for five walking conditions with and without using the device’s ankle adaptation mode.

Findings

Highest peak pressures of 2.4 kPa/kg were found for incline ascent at the calf muscle as compared to 2.1 kPa/kg in level walking with large inter-individual variance. In stair ascent a strong correlation was found between maximum knee moment and socket pressure. The most significant pressure changes relative to level walking were seen in ramp descent anteriorly towards the stump end, with PTI values being almost twice as high as those in level walking. Adapting the angle of the prosthesis on stairs and ramps modified the pressure data such that they were closer to those in level walking.

Interpretation

Pressure at the stump depends on the knee moments involved in each walking condition. Adapting the prosthetic ankle angle is a valuable means of modifying joint kinetics and thereby the pressure distribution at the stump. However, large inter-individual differences in local pressures underline the importance of individual socket fitting.  相似文献   

5.
BackgroundPatients with transtibial amputation adopt trunk movement compensations that alter effort and increase the risk of developing low back pain. However, the effort required to achieve high-demand tasks, such as step ascent and descent, remains unknown.MethodsKinematics were collected during bilateral step ascent and descent tasks from two groups: 1) seven patients with unilateral transtibial amputation and 2) seven healthy control subjects. Trunk kinetic effort was quantified using translational and rotational segmental moments (time rate of change of segmental angular momentum). Peak moments during the loading period were compared across limbs and across groups.FindingsDuring step ascent, patients with transtibial amputation generated larger sagittal trunk translational moments when leading with the amputated limb compared to the intact limb (P = 0.01). The amputation group also generated larger trunk rotational moments in the frontal and transverse planes when leading with either limb compared to the healthy group (P = 0.01, P < 0.01, respectively). During step descent, the amputation group generated larger trunk translational and rotational moments in all three planes when leading with the intact limb compared to the healthy group (P < 0.017).InterpretationThis investigation identifies how differing trunk movement compensations, identified using the separation of angular momentum, require higher kinetic effort during stepping tasks in patients with transtibial amputation compared to healthy individuals. Compensations that produce identified increased and asymmetric trunk segmental moments, may increase the risk of the development of low back pain in patients with amputation.  相似文献   

6.
BackgroundLower extremity movement compensations following transtibial amputation are well-documented and are likely influenced by trunk posture and movement. However, the biomechanical compensations of the trunk and lower extremities, especially during high-demand tasks such as step ascent and descent, remain unclear.MethodsKinematic and kinetic data were collected during step ascent and descent tasks for three groups of individuals: diabetic/transtibial amputation, diabetic, and healthy. An ANCOVA was used to compare peak trunk, hip and knee joint angles and moments in the sagittal and frontal planes between groups. Paired t-tests were used to compare peak joint angles and moments between amputated and intact limbs of the diabetic/transtibial amputation group.FindingsDuring step ascent and descent, the transtibial amputation group exhibited greater trunk forward flexion and lateral flexion compared to the other two groups (P < 0.016), which resulted in greater low back moments and asymmetric loading patterns in the lower extremity joints. The diabetic group exhibited similar knee joint loading patterns compared to the amputation group (P < 0.016), during step descent.InterpretationThis study highlights the biomechanical compensations of the trunk and lower extremities in individuals with dysvascular transtibial amputation, by identifying low back, hip, and knee joint moment patterns unique to transtibial amputation during stepping tasks. In addition, the results suggest that some movement compensations may be confounded by the presence of diabetes and precede limb amputation. The increased and asymmetrical loading patterns identified may predispose individuals with transtibial amputation to the development of secondary pain conditions, such as low back pain or osteoarthritis.  相似文献   

7.
Purpose. To assess the mechanical behaviour at interface for unilateral transtibial amputees during walking when the prosthesis is misaligned, since studies examining interface pressure between residual limb and prosthetic socket have been restricted to unsupported stance and natural gait.

Method. One male subject with transtibial amputation volunteers for the study. Interface pressures over five sites are measured under three sagittal alignment settings. MP (mean peak interface pressure), TP90+ (time in which pressure exceeded 90% of peak pressure) and TPI90+ (time-pressure integral at the period of sustained sub-maximal load) are discussed for each alignment setting.

Results. Compared with optimal alignment, the trend of interface pressure, the mean peak pressure do not change much, but the duration of sub-maximal pressure changes remarkably, except that at the patellar tendon, and finally the TPI90+ changes considerably with different alignment settings.

Conclusions. The results offer the clinician and paramedical staff further insight in residual limb/socket interface mechanics in the transtibial amputation patients and provide potentially useful information for socket design and prosthesis fitting.  相似文献   

8.
9.
BackgroundOsteochondroplasty for cam femoroacetabular impingement is a common treatment to improve hip function and prevent joint degeneration. The purpose was to compare in-silico hip biomechanics during stair tasks in pre- and postoperative patients matched with healthy controls.MethodsTen symptomatic cam femoroacetabular impingement patients performed stair ascent and descent pre- and 2 years postoperatively. Patients were age, and body-mass-index matched to controls. Full-body kinematics and kinetics were computed and, muscle and hip contact forces were estimated using musculoskeletal modeling and static optimization. Stance-phases were time-normalized and compared using statistical non-parametric mapping.FindingsPreoperatives showed lower hip abduction than controls during stairs ascent (76–100%, P = .007). Pre- and postoperative showed lower hip external rotation compared to controls on stair ascent (Pre-op vs controls: 71–100%, P = .005; Post-op vs controls: 72–100%, P = .01) and stair descent (Pre-op vs controls: 0–62%, P = .001; Post-op vs controls: 0–60%, P = .001). Postoperatives showed lower iliacus force compared to preoperative (1–3%, P = .012) and control (3–6%, P = .008), and higher gluteus maximus and piriformis forces compared to controls during stair descent. Lower postoperative anterior hip contact force (0–7%, P = .004) during descent, and superior (33–35%, P = .018) during ascent compared to controls were observed. Postoperative contact forces were medialized compared to preoperative (0–2%, P = .011) and controls (1–2%, P = .016).InterpretationForcing participants to adhere to standardized step length/rise minimized sagittal kinematic differences between conditions and groups. Persistent reduced hip external rotation postoperatively and minor muscle force adaptations led to reduced superior hip contact force during stair ascent and reduced anterior and more medialized contact forces during stair descent.  相似文献   

10.
BackgroundThe elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees.MethodsThree-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20 in Hg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups.FindingsThe effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables.InterpretationThere was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20 in Hg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15 in Hg is suggested for unilateral transtibial amputees with elevated vacuum suspension.  相似文献   

11.
BACKGROUND: Studies examining the stump/socket interface stresses have been restricted to unsupported stance and natural gait, i.e. walking at a comfortable speed on flat and straight walkway. However, the pressure behaviour as to the interface in unilateral transtibial amputees during walking on stairs, slope and non-flat road is unclear. METHODS: Pressure distribution changes at multiple points, expressed as mean peak stump/socket interface pressure, mean pressure level over 90% of peak pressure, time in which pressure exceeded 90% of peak pressure and time-pressure integral at the period of sustained sub-maximal load, were measured during natural ambulating and walking on stairs, slope and non-flat road. FINDINGS: Compared with natural gait, the mean peak pressure and sustained sub-maximal load increase notably over the patellar tendon during walking on stairs and non-flat road, and however decrease or change insignificantly at the patellar tendon on slope and over other measured areas in all conditions; moreover the time period of sustained sub-maximal load changes remarkably, except over the patellar tendon during walking up slope and over the popliteal area on non-flat road; finally, the time-pressure integral in the time period of sustained sub-maximal load changes considerably, except at the patellar tendon during walking up slope. INTERPRETATION: The pressure characteristics during natural ambulating seem not to be highly predictive of what occurs in the conditions of walking on stairs, slope and non-flat road, which leads to significant increase in amplitude domain of tissue loading only at the patellar tendon, and however to remarkable changes in temporal sequences of tissue (un-)loading almost in all measured regions.  相似文献   

12.
BackgroundOften in balance assessment variables associated with the center of pressure are used to draw conclusions about an individual’s balance. Validity of these conclusions rests upon assumptions that movement of the center of pressure is inter-dependent on movement of the center of mass. This dependency is mechanical and is referred to as the Inverted Pendulum Model. The following study aimed to validate this model both kinematically and kinetically, in transtibial prosthesis users and a control group.MethodsProsthesis users (n = 6) and matched control participants (n = 6) stood quietly while force and motion data were collected under three conditions (eyes-open, eyes-closed, and weight-bearing feedback). Correlation coefficients were used to investigate the relationships between height and excursion of markers and center of masses in mediolateral/anteroposterior-directions, difference between center of pressure and center of mass and the center of mass acceleration in mediolateral/anteroposterior directions, magnitude of mediolateral/anteroposterior-component forces and center of mass acceleration, angular position of ankle and excursion in mediolateral/anteroposterior-directions, and integrated force signals.FindingsResults indicate kinematic validity of similar magnitudes (mean (SD) marker-displacement) between prosthesis users and control group for mediolateral- (r = 0.77 (0.17); 0.74 (0.19)) and anteroposterior-directions (r = 0.88 (0.18); 0.88 (0.19)). Correlation between difference of center of pressure and center of mass and the center of mass acceleration was negligible on the prosthetic side (r = 0.08 (0.06)) vs. control group (r = -0.51(0.13)).InterpretationResults indicate kinematic validity of the Inverted Pendulum Model in transtibial prosthesis users but kinetic validity is questionable, particularly on the side with a prosthesis.  相似文献   

13.

Background

Stair climbing is a challenging task to the elderly being the task with the first complaint in patients with mild to moderate knee osteoarthritis. Stair climbing results in around six times more compressive load transmitted through the knee joint than walking on level ground. The purpose of this study was to assess whether lateral wedge insoles would reduce medial compartment knee loading when ascending and descending stairs in patients with medial knee osteoarthritis.

Methods

Eight patients with medial knee osteoarthritis were tested in random order with and without a pair of 5° off-the-shelf lateral wedge insoles for two separate activities (stair ascent and stair descent). Kinematic and kinetic data were collected for the lower extremity using a sixteen camera motion capture system and two force plates. Primary outcome measures were the external knee adduction moment and the knee adduction angular impulse.

Findings

During stair ascent and descent, lateral wedge insoles significantly (P < 0.05) reduced the 1st peak external knee adduction moment in early stance (ascent 6.8%, descent 8.4%), the trough in mid stance (ascent 13%, descent 10.7%), 2nd peak in the late stance (ascent 15%, descent 8.3%) and the knee adduction angular impulse compared to the control (standard shoe) with large effect sizes (0.75–0.95).

Interpretation

In this first study on stairs, lateral wedge insoles consistently reduced the overall magnitude of medial compartment loading during stair ascent and descent. Further research is needed to determine the relationship of this with clinical results when ascending and descending stairs with lateral wedge insoles.  相似文献   

14.

Background

Today a number of prosthetic suspension systems are available for transtibial amputees. Consideration of an appropriate suspension system can ensure that amputee's functional needs are satisfied. The higher the insight to suspension systems, the easier would be the selection for prosthetists. This review attempted to find scientific evidence pertaining to various transtibial suspension systems to provide selection criteria for clinicians.

Methods

Databases of PubMed, Web of Science, and ScienceDirect were explored to find related articles. Search terms were as follows: “Transtibial prosthesis (32), prosthetic suspension (48), lower limb prosthesis (54), below-knee prosthesis (58), prosthetic liner (20), transtibial (193), and prosthetic socket (111)”. Two reviewers separately examined the papers. Study design (case series of five or more subjects, retrospective or prospective), research instrument, sampling method, outcome measures and protocols were reviewed.

Findings

Based on the selection criteria, 22 articles (15 prospective studies, and 7 surveys) remained. Sweat control was found to be a major concern with the available suspension liners. Donning and doffing procedures for soft liners are also problematic for some users, particularly those with upper limb weakness. Moreover, the total surface bearing (TSB) socket with pin/lock system is favored by the majority of amputees.

Interpretation

In summary, no clinical evidence is available to suggest what kind of suspension system could have an influential effect as a “standard” system for all transtibial amputees. However, among various suspension systems for transtibial amputees, the Iceross system was favored by the majority of users in terms of function and comfort.  相似文献   

15.
BackgroundFemoroacetabular impingement is a pathomechanical hip condition leading to pain and impaired physical function. It has been shown that those with femoroacetabular impingement exhibit altered gait characteristics during level walking and stair climbing, and decreased muscle force production during isometric muscle contractions. However, no studies to-date have looked at trunk kinematics or muscle activation during dynamic movements such as stair climbing in this patient population. The purpose of this study was to compare biomechanical outcomes (trunk and lower limb kinematics as well as lower limb kinetics and muscle activation) during stair climbing in those with and without symptomatic femoroacetabular impingement.MethodsTrunk, hip, knee and ankle kinematics, as well as hip, knee and ankle kinetics and muscle activity of nine lower limb muscles were collected during stair climbing for 20 people with clinical and radiographic femoroacetabular impingement and compared to 20 age- and sex-matched pain-free individuals.FindingsThose with femoroacetabular impingement ascended the stairs slower (effect size = 0.82), had significantly increased peak trunk forward flexion angles (effect size = 0.99) and external hip flexion moments (effect size = 0.94) and had decreased peak external knee flexion moments (effect size = 0.90) compared to the control group.InterpretationFindings from this study indicate that while those with and without femoroacetabular impingement exhibit many biomechanical similarities when ascending stairs, differences in trunk forward flexion and joint kinetics indicate some important differences. Further longitudinal research is required to elucidate the cause of these differences as well as the clinical relevance.  相似文献   

16.
Visual information is important to maintaining balance. Under conditions of blurred vision, subjects are more cautious and increase lower limb kinaesthetic information during stair descent. Increased kinaesthetic adjustment may lead to an increase in oxygen consumption, the consequences of which could be significant in people with compromised cardiopulmonary reserve such as the frail, elderly and subjects with chronic respiratory disease. To first determine if visual impairment influences oxygen consumption during stair climbing, this study attempted to determine the difference in energy expenditure in terms of oxygen consumption in healthy subjects with normal and impaired vision, during stair ascent and descent. Ten subjects aged between 20 and 22 years were recruited and assigned in random sequence to climb up or down eight flights of stairs (FOS), with and without a pair of goggles designed to reduce visual acuity by about 50%. Oxygen consumption during stair ascent and descent was measured. Results showed that the oxygen consumed by subjects having descended eight FOS was significantly greater when visually impaired compared to normal vision (p = 0.036). Visual acuity has no influence on oxygen consumption during stair ascent. Further investigation of a larger sample of elderly patients with compromised cardiopulmonary function is recommended.  相似文献   

17.
PurposeTo compare the individual influence of different types of socket designs on the hip's range of motion in transfemoral amputees.Patients and methodsWe studied the kinematic parameters of the hip joint for patients with transfemoral amputation under four experimental conditions: without a socket, with a quadrilateral socket, an ischial containment socket, an ischial-ramal containment socket. An opto-electronic system was used to record the movements in the frontal and sagittal planes for a 3D movement analysis.ResultsThe hip's range of motion is always significantly restricted with the sockets, regardless of their type, compared to the situation without a socket (P < 0.05). The adduction and extension movements are the most restricted. The global amplitude (i.e., the sum of all the ranges of motion) is significantly higher for the ischial-ramal containment socket (139.5°) compared to the ischial containment socket (125.4°, P = 0.002) and the quadrilateral socket (127.3°, P = 0.01). No comparable study exists in the literature, especially for the ischial-ramal containment socket.ConclusionThe ischial-ramal containment socket seems to be the most interesting type of socket in terms of the criterion studied. It still remains to identify the possible functional improvements that this design would provoke during gait and during daily activities.  相似文献   

18.
The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients’ narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design.
  • Implications for Rehabilitation
  • Case study will help participants to get cost effective prosthetic leg socket.

  • Develop prosthetic leg socket comfortable as comparative to existing one.

  • Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.

  相似文献   

19.
BackgroundDecreased mechanical work done by the trailing limb when descending a single-step could affect load development and increase injury risk on the leading limb. This study assessed the effect of trailing limb mechanics on the development of lead limb load during a step descent by examining individuals with unilateral transtibial amputations who are known to exhibit reduced work in the prosthetic limb.MethodsEight amputees and 10 able-bodied controls walked 5 m along the length of a raised platform, descended a single-step of 14 cm height, and continued walking. The intact limb of amputees led during descent. Kinematic and kinetic data were recorded using integrated motion capture and force platform system. Lead limb loading was assessed through vertical ground reaction force, and knee moments and joint reaction forces. Sagittal-plane joint work was calculated for the ankle, knee, and hip in both limbs.FindingsNo differences were found in lead limb loading despite differences in trail limb mechanics evidenced by amputees performing 58% less total work by the trailing (prosthetic) limb to lower the centre of mass (P = 0.004) and 111% less for propulsion (P < 0.001). Amputees descended the step significantly slower (P = 0.003) and performed significantly greater lead limb ankle work (P = 0.017). After accounting for speed differences, initial loading at the knee was significantly higher in the lead limb of amputees versus controls.InterpretationIncreasing lead limb work and reducing forward velocity may be effective compensatory strategies to limit lead limb loading during a step descent, in response to reduced trailing limb work.  相似文献   

20.
Abstract

This study describes a newly developed prosthetic leg socket design for a below-knee amputation. Excessive heat and the resulted perspiration within a prosthetic socket were the most common causes for reporting a reduced quality of life for prosthetic users. The product namely AirCirc means air circulation and it has been designed by approach of medical device design process in providing the amputees to maintain the skin temperature inside the socket. This device has been designed to provide the amputees with comfort and ultimate breathable. In order to design the device, the small hole was made in prosthetic socket surface since it has a function as air circulation. Four types of proposed sockets namely P1, P2, P3 and P4 and one control socket were compared on a single patient to determine the best design of prosthetic socket. The result successfully reveals that by using holes can be maintain the temperature inside prosthetic socket. In addition to the eco-friendly material, the woven kenaf was used as material that provides good strength as compared to glass fibre and offer sustainable and biodegradable product yet provides unique and aesthetic surface as came from woven kenaf itself. The objective of this paper is to provide the airflow prosthetic socket design and optimize the use of natural fibre in prostheses field. Thus, with the use of the environmental friendly material, functionality device and heat removal capability make the device suitable for maintaining a comfortable and healthy environment for prosthesis.
  • Implications of Rehabilitation
  • Newly developed prosthetic leg socket design for a below-knee amputation

  • Device has been designed to provide the amputees with comfort and ultimate breathable

  • Woven kenaf was used as material that provides good strength as compared to glass fibre for sustainable and biodegradable product

  • Results show that by using holes can be maintain the temperature inside prosthetic socket

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号