首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Receptor-regulated Smads and/or mitogen-activated protein kinases (MAPKs) are involved in transforming growth factor-beta (TGF-beta)-induced expression of various genes, including plasminogen activator inhibitor-1 (PAI-1). Because the sequence of the promoter region in rat PAI-1 gene differs from that in the human gene, we examined the mechanisms of TGF-beta-induced rat PAI-1 expression in rat mesangial cells. METHODS: TGF-beta1-induced PAI-1 and c-fos mRNA expressions were determined by Northern blot analysis. Activation of MAPKs and Smad proteins was evaluated by an immunoblot analysis. DNA binding activities of nuclear protein were examined by using an electrophoretic mobility shift assay (EMSA). The activities of PAI-1 promoter were measured by a luciferase reporter assay. RESULTS: Extracellular-regulated kinase (ERK) and c-Jun NH-terminal kinase (JNK) phosphorylation, c-fos mRNA expression, and activator protein-1 (AP-1) DNA binding activity stimulated by TGF-beta1 were completely suppressed by the ERK kinase (MEK) inhibitors. EMSA and reporter analysis revealed that an AP-1-like sequence located in the proximal region of the rat PAI-1 promoter was the target for TGF-beta1, and the disruption of this AP-1-like sequence suppressed basal and TGF-beta1-induced promoter activation. TGF-beta1 also stimulated nuclear translocation of Smads and binding to palindromic Smad binding element (SBE) located in the rat PAI-1 promoter, without being affected by MEK inhibitor. Point mutation and deletion of palindromic SBE did not affect TGF-beta1-induced rat PAI-1 promoter activity. Moreover, interferon-gamma (IFN-gamma) inhibited TGF-beta1-induced PAI-1 expression through selectively suppressing the ERK-AP-1 pathway. CONCLUSION: These results suggest that the essential requirement of MAPK/AP-1 activation for TGF-beta1-induced PAI-1 expression is unique to rat mesangial cells.  相似文献   

2.
High ambient glucose activates intracellular signaling pathways to induce cytokines such as TGF-beta1 in the extracellular matrix accumulation of diabetic nephropathy. These same pathways also may directly modulate TGF-beta1 signaling. R-Smad phosphorylation, association with Smad4, and nuclear accumulation after TGF-beta1 treatment (1.0 ng/ml) were significantly higher in mesangial cells that were conditioned to 20 mM glucose for 72 h than mesangial cells in 6.5 mM glucose, suggesting that high glucose enhanced responsiveness to TGF-beta1. Neither TGF-beta1 bioactivity nor TGF-beta receptor binding was significantly different between in 6.5 and 20 mM glucose-conditioned cultures. Furthermore, adding a neutralizing anti-TGF-beta1 antibody during glucose conditioning did not affect the enhanced Smad responsiveness, indicating that enhancement likely did not result from increased TGF-beta expression. In contrast, a mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK inhibitor, PD98059, completely abrogated the effect of high glucose. Glucose stimulation of ERK was inhibited by the general protein kinase C (PKC) inhibitor calphostin C and by the PKCdelta-specific inhibitor rottlerin, whereas G?6976, an inhibitor of conventional PKC, had no effect on ERK activity. Specificity of the PKC inhibitors was further verified by PKCbeta and delta kinase assay. High glucose increased expression of several PKC isozymes, but only PKCdelta showed proportionally increased membrane translocation and kinase activity in cells that were conditioned to 20 mM glucose. Finally, both ERK and PKCdelta inhibition during glucose conditioning abrogated enhanced alpha1(I) collagen mRNA and promoter induction by TGF-beta1. Taken together, these data strongly suggest that heightened ERK and PKCdelta activity in high ambient glucose conditions interact with the Smad pathway, leading to enhanced responsiveness to TGF-beta1 and increased extracellular matrix production in mesangial cells.  相似文献   

3.
BACKGROUND: In addition to inhibiting cell growth, transforming growth factor-beta (TGF-beta) has recently been reported to induce apoptosis in various cell lines. Smad proteins are the downstream effectors of TGF-beta signaling. Among them, Smad7 exerts negative feedback control over the action of TGF-beta. However, we do not know how the Smad proteins contribute to TGF-beta-induced apoptosis in mesangial cells. To investigate the function of Smad proteins, we examined the effect of Smad overexpression using adenoviral vector in mesangial cells. METHODS: Primary cultured rat mesangial cells were transfected with Smad7-promoter-luciferase-plasmid by electroporation. Smad7 promoter activity was investigated by luciferase assay. The apoptotic phenomena elicited by TGF-beta and Smad7 overexpression were investigated using adenoviral vector (AdCMV-Smad7). Apoptosis was detected by the cell death detection ELISA assay, CPP32/caspase-3 assay, and nucleosomal DNA laddering. RESULTS: TGF-beta significantly increased the protein expression and the promoter activity of Smad7 in rat mesangial cells. Overexpression of Smad7 induced DNA fragmentation and significant increases in cell death ELISA and CPP32/caspase-3 assay. On the other hand, overexpression of Smad2 and Smad3 did not elicit any significant increases in CPP32/caspase-3 activity. Furthermore, the antisense oligonucleotide to Smad7 prevented the TGF-beta-induced apoptosis. Overexpression of Smad7 did not affect nuclear factor-kappaB activity in mesangial cells. CONCLUSIONS: These data indicate that TGF-beta-induced apoptosis in mesangial cells is mediated through the activation of caspase-3 by Smad7, but not by Smad2 or Smad3. Our results provide new clarification on the function of Smad7 in TGF-beta signaling in mesangial cells.  相似文献   

4.
BACKGROUND: The best characterized signaling pathway employed by transforming growth factor-beta (TGF-beta) is the Smad pathway; however, its role in matrix production in mesangial cells is unclear. We focused on Smad4, as Smad4 is essential for the activation of Smad-dependent target genes. METHODS: To investigate the function of Smad4 in extracellular matrix (ECM) production, we generated several stably transfected mesangial cell lines (MMC) that have a deletion in the linker region (Smad4 Delta M4: Delta 275-322) or have a deletion in MH1 of Smad4 (Smad4N4: Delta 1-136). The ECM genes, alpha1 type I collagen (COL1A1), plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) were assessed in wild-type mesangial cells and stably transfected Smad4-DN cell lines in the absence and presence of TGF-beta. RESULTS: As compared to wild-type MMC that had a 10.8-fold stimulation of TGF-beta-induced p3TP-Lux activity, MMC stably transfected with Smad4 Delta M4 and Smad4N4 had only a 2.0-fold and 1.3-fold stimulation, respectively, indicating that they had dominant-negative effects on TGF-beta signaling. Basal and TGF-beta-induced COL1A1 expression in Smad4 dominant-negative cells were dramatically reduced to very low levels. The early (2 hours) TGF-beta-induced PAI-1 mRNA expression was inhibited; however, the sustained (24 to 48 hours) TGF-beta-induced expression was not affected in Smad4 dominant-negative cells. For FN, TGF-beta-induced expression was maintained in Smad4-dominant negative cells. CONCLUSION: These results indicate that Smad4 is essential for basal and TGF-beta-induced COL1A1 expression, and contributes to the early, but not sustained TGF-beta-induced PAI-1 expression in mesangial cells. However, TGF-beta-induced FN expression is independent of Smad4. In conclusion, Smad4 has a discriminate effect in mediating specific ECM molecules stimulated by TGF-beta in mesangial cells.  相似文献   

5.
6.
Goldberg HJ  Scholey J  Fantus IG 《Diabetes》2000,49(5):863-871
Increased flux through the hexosamine biosynthetic pathway is associated with altered gene expression. To investigate the underlying mechanisms, we treated glomerular mesangial cells with glucosamine and studied the regulation of the plasminogen activator inhibitor (PAI)-1 gene. Incubating mesangial cells with 2 mmol/l glucosamine for 4 days resulted in a 3.1+/-0.4-fold increase in PAI-1 mRNA levels (P < 0.01) and a 33+/-9-fold increase in the activity of a transiently transfected PAI-1 promoter-luciferase reporter gene (P < 0.01). Cotransfection of an expression vector for a dominant-negative type II TGF-beta receptor with the PAI-1 promoter-reporter gene did not interfere with this effect of glucosamine. However, mutation of 2 putative Sp1 sites in the PAI-1 promoter, at -76 to -71 and -44 to -39, markedly reduced induction of PAI-1 luciferase activity by glucosamine, from 8.9+/-1.9-fold to 1.7+/-0.5-fold (P < 0.01). An electrophoretic mobility shift assay demonstrated that glucosamine increased Sp1 DNA binding by 31+/-11% (P < 0.05), implying that the effects of glucosamine were explained, in part, by changes in Sp1 DNA binding. High glucose (20 mmol/l) also activated the transiently transfected PAI-1 promoter (2.5+/-0.4-fold). This effect was diminished by mutation of both the PAI-1 promoter Sp1 sites (1.2+/-0.3-fold, P < 0.05). In addition, 6-diazo-5-oxo-L-norleucine, a glutamine:fructose-6-phosphate-amidotransferase inhibitor, blocked the induction by high glucose (4.7+/-0.8- to 0.9+/-0.1-fold, P < 0.01). These results indicate that stimulation of the PAI-1 promoter by both high glucose and glucosamine involves Sp1 and that the hexosamine pathway may be involved in the regulation of gene expression by high glucose in glomerular mesangial cells.  相似文献   

7.
8.
TGF-beta1 has been implicated in glomerular extracellular matrix accumulation, although the precise cellular mechanism(s) by which this occurs is not fully understood. The authors have previously shown that the Smad signaling pathway is present and functional in human glomerular mesangial cells and plays a role in activating type I collagen gene expression. It also was determined that TGF-beta1 activates ERK mitogen-activated protein kinase in mesangial cells to enhance Smad activation and collagen expression. Here, it was shown that TGF-beta1 rapidly induces cytoskeletal rearrangement in human mesangial cells, stimulating smooth muscle alpha-actin detection in stress fibers and promoting focal adhesion complex assembly and redistribution. Disrupting the actin cytoskeleton with cytochalasin D (Cyto D) selectively decreased basal and TGF-beta1-induced cell-layer collagen I and IV accumulation. The balance of matrix metalloproteinases (MMP) and inhibitors was altered by Cyto D or TGF-beta1 alone, increasing MMP activity, increasing MMP-1 expression, and decreasing tissue inhibitor of matrix metalloproteinase-2 expression. Cyto D also decreased basal and TGF-beta1-stimulated alpha1(I) collagen mRNA but did not inhibit TGF-beta-stimulated alpha1(IV) mRNA expression. A similar decrease in alpha1(I) mRNA expression caused by the actin polymerization inhibitor latrunculin B was partially blocked by the addition of jasplakinolide, which promotes actin assembly. The Rho-family GTPase inhibitor C. difficile toxin B or the Rho-associated kinase inhibitor Y-27632 also blocked TGF-beta1-stimulated alpha1(I) mRNA expression. Cytoskeletal disruption reduced Smad2 phosphorylation but had little effect on mRNA stability, TGF-beta receptor number, or receptor affinity. Thus, TGF-beta1-mediated collagen I accumulation is associated with cytoskeletal rearrangement and Rho-GTPase signaling.  相似文献   

9.
目的 通过观察氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)对系膜细胞(Mesangial Cells,MCs)分泌炎症介质功能的影响及MAPK信号通路和核因子-κB(nuclear factor kappa B,NF-κB)活性的改变,进一步阐明脂质在肾损伤中的作用机制.方法 利用ox-LDL诱导大鼠系膜细胞增殖,分别采用ELISA、real-time PCR、western blot技术检测MCs炎症介质、MAPK通路相关蛋白(p38、JNK、ERK)及NF-κB的表达水平.结果 利用ox-LDL诱导大鼠系膜细胞增殖并加入CXCR6受体后,其表面炎症因子[CXCL16、CD36、ADAM10、ADAM17、干扰素(IFN)、白细胞介素(IL6)、肿瘤坏死因子(TNF-α)]的表达水平以及MAPK信号通路(p38、JNK、ERK)、NF-κB的磷酸化水平显著升高(P〈0.01).结论 ox-LDL可促使系膜细胞释放CXCL16、CD36、ADAM10、ADAM17、IFN、IL6、TNF-α等炎症介质,CXCR6可介导这一途径.ox-LDL激活MAPK信号转导通路,使p38、ERK1/2、SAPK/JNK的磷酸化水平升高,激活了NF-κB p65的活性,CXCR6-CXCL16介导MAPK信号途径.  相似文献   

10.
CTGF expression in mesangial cells: involvement of SMADs,MAP kinase,and PKC   总被引:40,自引:0,他引:40  
BACKGROUND: The induction of excess matrix in renal fibrosis seems to be mediated, at least in part, by the transforming growth factor-beta (TGF-beta)-mediated induction of connective tissue growth factor (CTGF) in mesangial cells. METHODS: By examining CTGF protein and mRNA expression and promoter activity in the presence or absence of TGF-beta or inhibitors, the signaling pathways controlling basal and TGF-beta-induced CTGF expression in mesangial cells were investigated. RESULTS: TGF-beta enhances CTGF mRNA and protein expression in mesangial cells. Mutation of a consensus SMAD binding element in the CTGF promoter completely abolished TGF-beta-induced CTGF expression and reduced basal CTGF expression. The previously identified basal control element-1 (BCE-1) site, but not Sp1 contributes to basal CTGF promoter activity. Ras/MEK/ERK, protein kinase C (PKC) and tyrosine kinase activity also contribute to basal and TGF-beta-induced CTGF promoter activity in cultured mesangial cells. CONCLUSIONS: The TGF-beta-induction of CTGF in mesangial cells requires SMADs and PKC/ras/MEK/ERK pathways. SMADs are involved in basal CTGF expression, which presumably reflects the fact that mesangial cells express TGF-beta endogenously. TGF-beta also induces CTGF through ras/MEK/ERK. Inhibiting ras/MEK/ERK seems not to reduce phosphorylation (that is, activation) of SMADs, suggesting that SMADs, although necessary, are insufficient for the TGF-beta-stimulation of the CTGF promoter through ras/MEK/ERK. Thus, maximal TGF-beta induction of CTGF requires synergy between SMAD and ras/MEK/ERK signaling.  相似文献   

11.
BACKGROUND: Plasminogen activator inhibitor type 1 (PAI-1) is the primary physiologic inhibitor of plasminogen activator in vivo. Increased PAI-1 expression is associated with arteriosclerosis. Transforming growth factor-beta (TGF-beta) induces PAI-1 production via Smads. METHODS: In vivo, TGF-beta receptors (TbetaRs), Smad2, Smad3, and Smad4, PAI-1, and Smad2 phosphorylation were examined by immunohistochemistry in 3 native aortas, 14 rat aortic syngrafts, and 19 allografts collected at 15, 30, and 45 days post-transplantation. In vitro, phosphorylation of Smad2 and induction of PAI-1 mRNA in human aortic smooth muscle cells (SMCs) in response to TGF-beta treatment were detected by Western blot and by TaqMan real-time RT-PCR, respectively. RESULTS: Immunohistochemical staining revealed that vascular parenchymal cells contained TbetaRI, TbetaRII, Smad2, Smad3, and Smad4, known signaling transducers for TGF-beta/Smad pathway, in all samples. Intense staining for phospho-Smad2 was observed in 94% of endothelial cells (ECs), 86% of intimal cells, 27% of medial SMCs, and 38% of adventitial cells at all 3 time points in all aortic allografts, but only in 5% of ECs in syngrafts. PAI-1 immunoreactivity was detected in similar number of cells, and from consecutive sections, phospho-Smad2 colocalized with PAI-1, in the aortic allografts. Low basal level PAI-1 expression was observed in aortic syngrafts and native vessels. Smad2 phosphorylation and time-dependent PAI-1 induction were detected in cultured SMCs upon TGF-beta treatment. CONCLUSIONS: Phospho-Smad2 staining in aortic allografts indicates the activation of TGF-beta signaling in allo-transplantation; and co-localization of PAI-1 and phospho-Smad2 suggests that PAI-1 upregulation is mediated mainly by TGF-beta/Smad pathway in aortic allografts.  相似文献   

12.
13.
Kim HW  Kim BC  Song CY  Kim JH  Hong HK  Lee HS 《Kidney international》2004,66(5):1859-1865
BACKGROUND: Transforming growth factor-beta (TGF-beta) receptor complex and its downstream Smad signaling intermediates constitute an extracellular matrix (ECM) accumulation pathway. METHODS: In the present study, we examined whether decreased expression of the TGF-beta type II receptor (TGF-betaIIR) in TGF-betaIIR gene heterozygous (TGF-betaIIR+/-) (HT) mice could inhibit the Smad signaling pathway and subsequent progression of renal lesions when streptozotocin (STZ) diabetes is induced. RESULTS: At the end of the 28-week experiment after STZ injections, wild-type diabetic mice showed severe glomerular hypertrophy and mesangial matrix accumulation occasionally featuring nodular glomerulosclerosis. In contrast, mean glomerular area and mesangial volume density were significantly decreased in the HT diabetic mice as compared with the wild-type diabetic mice. Immunostaining for phosphorylated Smad2/Smad3 and TGF-betaIIR in the glomerular cells was also significantly reduced in the HT diabetic mice. Southwestern histochemistry using digoxigenin-labeled CAGA sequence probes showed that localization of labeled probes to the nuclei of glomerular cells in the HT diabetic mice was significantly less frequent than that in the wild-type diabetic animals. Northern blot analysis showed that alpha1(IV) collagen mRNA levels were significantly reduced in the kidney tissue of HT diabetic mice as compared with the wild-type diabetic mice. CONCLUSION: These results suggest that decreased expression of TGF-betaIIR in the HT diabetic mice can inhibit the progression of diabetic renal injury by inhibiting the downstream Smad signaling pathway and subsequent ECM gene expression. Thus, TGF-betaIIR appears to play an important role in the progression of diabetic nephropathy by mediating intracellular Smad signaling.  相似文献   

14.
15.
Inhibitory smads and tgf-Beta signaling in glomerular cells   总被引:9,自引:0,他引:9  
Smad6 and Smad7 are inhibitory SMADs with putative functional roles at the intersection of major intracellular signaling networks, including TGF-beta, receptor tyrosine kinase (RTK), JAK/STAT, and NF-kappaB pathways. This study reports differential functional roles and regulation of Smad6 and Smad7 in TGF-beta signaling in renal cells, in murine models of renal disease and in human glomerular diseases. Smad7 is upregulated in podocytes in all examined glomerular diseases (focal segmental glomerulosclerosis [FSGS], minimal-change disease [MCD], membranous nephropathy [MNP], lupus nephritis [LN], and diabetic nephropathy [DN]) with a statistically significant upregulation in "classical" podocyte-diseases such as FSGS and MCD. TGF-beta induces Smad7 synthesis in cultured podocytes and Smad6 synthesis in cultured mesangial cells. Although Smad7 expression inhibited both Smad2- and Smad3-mediated TGF-beta signaling in podocytes, it inhibited only Smad3 but not Smad2 signaling in mesangial cells. In contrast, Smad6 had no effect on TGF-beta/Smad signaling in podocytes and enhanced Smad3 signaling in mesangial cells. These data suggest that Smad7 is activated in injured podocytes in vitro and in human glomerular disease and participates in negative control of TGF-beta/Smad signaling in addition to its pro-apoptotic activity, whereas Smad6 has no role in TGF-beta response and injury in podocytes. In contrast, Smad6 is upregulated in the mesangium in human glomerular diseases and may be involved in functions independent of TGF-beta/Smad signaling. These data indicate an important role for Smad6 and Smad7 in glomerular cells in vivo that could be important for the cell homeostasis in physiologic and pathologic conditions.  相似文献   

16.
17.
18.
19.
Zhu Y  Casado M  Vaulont S  Sharma K 《Diabetes》2005,54(7):1976-1984
We previously identified an E-box to be implicated in high-glucose-induced transforming growth factor-beta1 (TGF-beta1) gene stimulation in murine mesangial cells. In the present study, we evaluated the role of upstream stimulatory factors (USFs) in mediating glucose-induced stimulation of TGF-beta1. Mesangial cells cultured in glucose concentrations exceeding 2.7 mmol/l D-glucose exhibited increased levels of USF1 and USF2 protein by Western analysis and electrophoretic mobility shift assay (EMSA). An E-box element from the murine TGF-beta1 promoter revealed USF1 and USF2 binding by EMSA. Chromatin immunoprecipitation assay revealed in vivo binding of USF1 to a glucose-responsive region of the TGF-beta1 promoter. Transient cotransfection studies of 293 cells with USF1 led to a twofold increase in TGF-beta1 promoter activity and a 46% increase in secreted TGF-beta1 protein levels. Wild-type and USF2 knockout mice exhibited a 2.5-fold stimulation of renal TGF-beta1 expression upon fasting and refeeding with a carbohydrate-rich diet, whereas USF1 knockout mice exhibited only a minimal increase of renal TGF-beta1 upon refeeding. USF1 mRNA levels were increased in mouse kidneys with carbohydrate refeeding, and USF1 protein was increased in diabetic rat kidneys compared with controls. We conclude that USF1 is stimulated by modest increases in glucose concentration in murine mesangial cells, bind to the murine TGF-beta1 promoter, contribute to carbohydrate-induced renal TGF-beta1 expression, and may play a role in diabetes-related gene regulation in the kidney.  相似文献   

20.
目的观察转化生长因子(TGF)β1对肾小球系膜细胞(GMC)纤溶酶原激活物抑制物(PAI)-1表达的影响,并探讨反应性氧基(ROS)在TGF-β1诱导的PAI-1表达中的作用。方法体外培养大鼠GMC,分别用TGF-β1(2ng/ml)和葡萄糖氧化酶(GO)(10mU/ml)刺激,并用BSO和抗氧化剂N-乙酰半胱氨酸(NAC)进行干预处理。采用Western印迹检测PAI-1蛋白表达;RT-PCR和Northern杂交检测PAI-1mRNA表达;合成的荧光素纤溶酶底物测定纤溶酶活性。结果外源性TGF-β1和GO可显著上调大鼠系膜细胞PAI-1蛋白和mRNA的表达并降低纤溶酶活性。BSO可显著增强TGF-β1和GO诱导的系膜细胞PAI-1mRNA的表达;而NAC可显著地逆转由TGF-β1和GO诱导的PAI-1mRNA表达的上调作用。结论TGF-β1可显著上调系膜细胞PAI-1的表达并抑制纤溶酶活性。ROS在TGF-β1诱导的系膜细胞PAI-1表达上调的信号传递途径中可能起了信号传递分子的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号