首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Craving is one of the primary behavioral components of drug addiction, and cue-elicited craving is an especially powerful form of this construct. While cue-elicited craving and its underlying neurobiological mechanisms have been extensively studied with respect to alcohol and other drugs of abuse, the same cannot be said for marijuana. Cue-elicited craving for other drugs of abuse is associated with increased activity in a number of brain areas, particularly the reward pathway. This study used functional magnetic resonance imaging (fMRI) to examine cue-elicited craving for marijuana. Thirty-eight regular marijuana users abstained from use for 72 h and were presented with tactile marijuana-related and neutral cues while undergoing a fMRI scan. Several structures in the reward pathway, including the ventral tegmental area, thalamus, anterior cingulate, insula, and amygdala, demonstrated greater blood oxygen level dependent (BOLD) activation in response to the marijuana cue as compared with the neutral cue. These regions underlie motivated behavior and the attribution of incentive salience. Activation of the orbitofrontal cortex and nucleus accumbens was also positively correlated with problems related to marijuana use, such that greater BOLD activation was associated with greater number of items on a marijuana problem scale. Thus, cue-elicited craving for marijuana activates the reward neurocircuitry associated with the neuropathology of addiction, and the magnitude of activation of these structures is associated with severity of cannabis-related problems. These findings may inform the development of treatment strategies for cannabis dependence.  相似文献   

2.
Similarities and differences between obesity and addiction are a prominent topic of ongoing research. We conducted an activation likelihood estimation meta‐analysis on 87 studies in order to map the functional magnetic resonance imaging (fMRI) response to reward in participants with obesity, substance addiction and non‐substance (or behavioural) addiction, and to identify commonalities and differences between them. Our study confirms the existence of alterations during reward processing in obesity, non‐substance addiction and substance addiction. Specifically, participants with obesity or with addictions differed from controls in several brain regions including prefrontal areas, subcortical structures and sensory areas. Additionally, participants with obesity and substance addictions exhibited similar blood‐oxygen‐level‐dependent fMRI hyperactivity in the amygdala and striatum when processing either general rewarding stimuli or the problematic stimuli (food and drug‐related stimuli, respectively). We propose that these similarities may be associated with an enhanced focus on reward – especially with regard to food or drug‐related stimuli – in obesity and substance addiction. Ultimately, this enhancement of reward processes may facilitate the presence of compulsive‐like behaviour in some individuals or under some specific circumstances. We hope that increasing knowledge about the neurobehavioural correlates of obesity and addictions will lead to practical strategies that target the high prevalence of these central public health challenges.  相似文献   

3.
Humor und Gehirn     
In recent years, a number of studies have been published on cerebral activation induced by funny stimuli. This article provides an overview on the structures involved and findings concerning the neuropsychological faculties necessary for joke comprehension, e.g., working memory and mental flexibility. On the other hand, there are also many aspects of humor, like joke production, that are not neuropsychologically well studied; an overview of current knowledge will be given. In addition, there is little research on the effect of aging on the different aspects of cerebral humor processing.  相似文献   

4.
BACKGROUND & AIMS: Irritable bowel syndrome (IBS) is characterized by visceral hypersensitivity, possibly related to abnormal brain-gut communication. Positron emission tomography imaging has suggested specific central nervous system (CNS) abnormalities in visceral pain processing in IBS. This study aimed to determine (1) if functional magnetic resonance imaging (fMRI) detects CNS activity during painful and nonpainful visceral stimulation; and (2) if CNS pain centers in IBS respond abnormally. METHODS: fMRI was performed during nonpainful and painful rectal distention in 18 patients with IBS and 16 controls. RESULTS: Rectal stimulation increased the activity of anterior cingulate (33/34), prefrontal (32/34), insular cortices (33/34), and thalamus (32/34) in most subjects. In IBS subjects, but not controls, pain led to greater activation of the anterior cingulate cortex (ACC) than did nonpainful stimuli. IBS patients had a greater number of pixels activated in the ACC and reported greater intensity of pain at 55-mm Hg distention than controls. CONCLUSIONS: IBS patients activate the ACC, a critical CNS pain center, to a greater extent than controls in response to a painful rectal stimulus. Contrary to previous reports, these data suggest heightened pain sensitivity of the brain-gut axis in IBS, with a normal pattern of activation.  相似文献   

5.
Previous research and theory suggest that two stable personality dimensions, extroversion and neuroticism, differentially influence emotional reactivity to a variety of pleasurable phenomena. Here, we use event-related functional MRI to address the putative neural and behavioral associations between humor appreciation and the personality dimensions of introversion-extroversion and emotional stability-neuroticism. Our analysis showed extroversion to positively correlate with humor-driven blood oxygenation level-dependent signal in discrete regions of the right orbital frontal cortex, ventrolateral prefrontal cortex, and bilateral temporal cortices. Introversion correlated with increased activation in several regions, most prominently the bilateral amygdala. Although neuroticism did not positively correlate with any whole-brain activation, emotional stability (i.e., the inverse of neuroticism) correlated with increased activation in the mesocortical-mesolimbic reward circuitry encompassing the right orbital frontal cortex, caudate, and nucleus accumbens. Our findings tie together existing neurobiological studies of humor appreciation and are compatible with the notion that personality style plays a fundamental role in the neurobiological systems subserving humor appreciation.  相似文献   

6.
OBJECTIVE: To use functional magnetic resonance imaging (fMRI) to evaluate the pattern of cerebral activation during the application of painful pressure and determine whether this pattern is augmented in patients with fibromyalgia (FM) compared with controls. METHODS: Pressure was applied to the left thumbnail beds of 16 right-handed patients with FM and 16 right-handed matched controls. Each FM patient underwent fMRI while moderately painful pressure was being applied. The functional activation patterns in FM patients were compared with those in controls, who were tested under 2 conditions: the "stimulus pressure control" condition, during which they received an amount of pressure similar to that delivered to patients, and the "subjective pain control" condition, during which the intensity of stimulation was increased to deliver a subjective level of pain similar to that experienced by patients. RESULTS: Stimulation with adequate pressure to cause similar pain in both groups resulted in 19 regions of increased regional cerebral blood flow in healthy controls and 12 significant regions in patients. Increased fMRI signal occurred in 7 regions common to both groups, and decreased signal was observed in 1 common region. In contrast, stimulation of controls with the same amount of pressure that caused pain in patients resulted in only 2 regions of increased signal, neither of which coincided with a region of activation in patients. Statistical comparison of the patient and control groups receiving similar stimulus pressures revealed 13 regions of greater activation in the patient group. In contrast, similar stimulus pressures produced only 1 region of greater activation in the control group. CONCLUSION: The fact that comparable subjectively painful conditions resulted in activation patterns that were similar in patients and controls, whereas similar pressures resulted in no common regions of activation and greater effects in patients, supports the hypothesis that FM is characterized by cortical or subcortical augmentation of pain processing.  相似文献   

7.
8.
Gene-gene interaction associated with neural reward sensitivity   总被引:3,自引:1,他引:2  
Reward processing depends on dopaminergic neurotransmission and is modulated by factors affecting dopamine (DA) reuptake and degradation. We used fMRI and a guessing task sensitive to reward-related activation in the prefrontal cortex and ventral striatum to study how individual variation in genes contributing to DA reuptake [DA transporter (DAT)] and degradation [catechol-o-methyltransferase (COMT)] influences reward processing. Prefrontal activity, evoked by anticipation of reward irrespective of reward probability and magnitude, was COMT genotype-dependent. Volunteers homozygous for the Met allele, associated with lower enzyme activity and presumably greater DA availability, showed larger responses compared with volunteers homozygous for the Val allele. A similar COMT effect was observed in the ventral striatum. As reported previously, the ventral striatum was also found to code gain-related expected value, i.e., the product of reward magnitude and gain probability. Individual differences in ventral striatal sensitivity for value were in part explained by an epistatic gene-gene interaction between COMT and DAT. Although most genotype combinations exhibited the expected activity increase with more likely and larger rewards, two genotype combinations (COMT Met/Met DAT 10R and COMT Val/Val 9R) were associated with blunted ventral striatal responses. In view of a consistent relationship between reduced reward sensitivity and addiction, our findings point to a potential genetic basis for vulnerability to addiction.  相似文献   

9.
We investigated whether estrogenic actions of testosterone during development which mediate the suppression of feminine reproductive behavior and cyclic gonadotropin secretion also contribute to reported sex differences in the induction of choline acetyltransferase (ChAT) after estrogen priming in the diagonal band region of the preoptic area. Newborn female rats received estradiol (E2 females); newborn males received 1,4,6-androstatrien-3,17-dione (ATD), an inhibitor of aromatase (ATD males); and some of both sexes received vehicle treatment (control). In adulthood, feminine sexual behavior (lordosis) was tested after E2 plus progesterone priming. The neonatal treatments reversed the sex-specific response pattern; E2 females were defeminized and displayed minimal lordosis, as did control males, while ATD males showed maximal lordosis, as did control females. E2 was then administered, and ChAT activity was measured in the horizontal and vertical nuclei of the diagonal bands (hDB and vDB, respectively). Controls exhibited the normal sex-specific response to E2. Females showed increased ChAT activity in the hDB and unaltered activity in the vDB: males had unaltered ChAT activity in the hDB and decreased activity in the vDB. In neonatally treated males and females, ChAT activity after E2 administration was not altered from the normal sex-specific pattern in the hDB, i.e. all females showed increased hDB ChAT after E2, and no male responded. In the vDB, groups defeminized in terms of lordosis (E2 females and control males) showed higher ChAT activity in the absence of E2 priming, and E2 treatment decreased vDB ChAT in these groups. In addition, ATD males showed a unique response to E2 in the vDB, namely increased ChAT activity. Although neonatal E2 and ATD treatments did not completely reverse the sex-specific pattern of E2 priming on ChAT activity, the results obtained suggest that a net increase in diagonal band cholinergic function, as indexed by increased ChAT activity after E2 priming, may contribute to the ability of hormones to induce lordosis and/or LH surges.  相似文献   

10.
11.
Goel N  Plyler KS  Daniels D  Bale TL 《Endocrinology》2011,152(5):2001-2010
The higher incidence of stress-mediated affective disorders in women may be a function of gonadal hormone influence on complex interactions between serotonin and neural circuits that mediate the hypothalamic-pituitary-adrenal (HPA) stress axis. The paraventricular nucleus of the hypothalamus (PVN) receives serotonergic innervation, and selective serotonin reuptake inhibitors such as citalopram activate the HPA axis independent of stress. We have previously demonstrated that the magnitude of this serotonergic activation was greater in females and was attenuated by testosterone administration; however, the potential central sites of action where androgens reduce these serotonergic effects have not been determined. Therefore, we examined a time course of corticosterone production and used central c-Fos protein levels to assay neuronal activation in stress-related brain regions in female, male, and gonadectomized male mice after an acute citalopram injection (15 mg/kg). In the hippocampus, c-Fos-immunoreactivity was greater in males than in females or gonadectomized males. This same pattern emerged in the lateral septum after vehicle and gonadectomy reversed the effect of citalopram. These regions are important for inhibitory influences on the PVN, and accordingly, hippocampal c-Fos levels were negatively correlated with corticosterone production. No sex differences in c-Fos were detected in the PVN, cingulate cortex, or paraventricular thalamus in response to vehicle or citalopram. These data support brain region-specific regulation of the HPA axis where sex differences may be mediated partly through androgen enhancement of signaling in inhibitory regions.  相似文献   

12.
AIMS: Deficient recruitment of motivational circuitry by non-drug rewards has been postulated as a pre-morbid risk factor for substance dependence (SD). We tested whether parental alcoholism, which confers risk of SD, is correlated with altered recruitment of ventral striatum (VS) by non-drug rewards in adolescence. DESIGN: During functional magnetic resonance imaging, adolescent children of alcoholics (COA; age 12-16 years) with no psychiatric disorders (including substance abuse) and similarly aged children with no risk factors responded to targets to win or avoid losing $0, $0.20, $1, $5 or a variable amount (ranging from $0.20 to $5). RESULTS: In general, brain activation by either reward anticipation or outcome notification did not differ between COA and age/gender-matched controls. Cue-elicited reward anticipation activated portions of VS in both COA and controls. In nucleus accumbens (NAcc), signal change increased with anticipated reward magnitude (with intermediate recruitment by variable incentives) but not with loss magnitudes. Reward deliveries activated the NAcc and mesofrontal cortex in both COA and controls. Losses activated anterior insula bilaterally in both groups, with more extensive right anterior insula activation by losses in controls. NAcc signal change during anticipation of maximum rewards (relative to non-reward) correlated positively with both Brief Sensation-Seeking Scale scores and with self-reported excitement in response to maximum reward cues (relative to cues for non-reward). CONCLUSIONS: Among adolescents with no psychiatric disorders, incentive-elicited VS activation may relate more to individual differences in sensation-seeking personality than to presence of parental alcoholism alone. Future research could focus on adolescents with behavior disorders or additional risk factors.  相似文献   

13.
Background:  Neuroimaging studies showed clear evidence of alcoholism-related damage to the frontal lobes and cerebellum. Although these regions have been involved in language processing, language skills are relatively spared in alcoholics. Here, we aimed at identifying neural substrates associated with the preserved mechanisms of language processing in alcoholics. We hypothesized that alcoholics would show a different pattern of neural activity compared with the controls.
Methods:  Alcoholic and nonalcoholic subjects performed an auditory language task while receiving a functional magnetic resonance imaging (fMRI) scan in a 1.5 T magnet. This task has been previously shown to solicit the comprehension processing in healthy controls, with reliable fMRI response in the left frontal and temporal/parietal lobes.
Results:  Behavioral results showed comparable performance (error rates, response time) between the alcoholics and the matched controls. However, analysis of the functional data revealed that the alcoholics exhibited greater fMRI response in the left middle frontal gyrus (pars triangularis), the right superior frontal gyrus, and the cerebellar vermis relative to the controls.
Conclusions:  These findings suggest that frontocerebellar neural activity, supporting the comprehension processing of the auditory language task, may require compensatory mechanisms in alcoholics in order to maintain the same level of performance as the controls.  相似文献   

14.
We test the hypothesis that motivational and cognitive processes are linked by a specific neural system to reach maximal efficiency. We studied six normal subjects performing a working memory paradigm (n-back tasks) associated with different levels of monetary reward during an fMRI session. The study showed specific brain activation in relation with changes in both the cognitive loading and the reward associated with task performance. First, the working memory tasks activated a network including the dorsolateral prefrontal cortex [Brodmann area (BA) 9/46] and, in addition, in the lateral frontopolar areas (BA 10), but only in the more demanding condition (3-back task). This result suggests that lateral prefrontal areas are organized in a caudo-rostral continuum in relation with the increase in executive requirement. Second, reward induces an increased activation in the areas already activated by working memory processing and in a supplementary region, the medial frontal pole (BA 10), regardless of the level of cognitive processing. It is postulated that the latter region plays a specific role in monitoring the reward value of ongoing cognitive processes. Third, we detected areas where the signal decreases (ventral-BA 11/47 and subgenual prefrontal cortices) in relation with both the increase of cognitive demand and the reward. The deactivation may represent an emotional gating aimed at inhibiting adverse emotional signals to maximize the level of performance. Taken together, these results suggest a balance between increasing activity in cortical cognitive areas and decreasing activity in the limbic and paralimbic structures during ongoing higher cognitive processing.  相似文献   

15.
Recognizing errors and adjusting responses are fundamental to adaptive behavior. The error-related negativity (ERN) and error-related functional MRI (fMRI) activation of the dorsal anterior cingulate cortex (dACC) index these processes and are thought to reflect the same neural mechanism. In the present study, we evaluated this hypothesis. Although errors elicited robust dACC activation using fMRI, combined electroencephalography and magnetoencephalography data localized the ERN to the posterior cingulate cortex (PCC). ERN amplitude correlated with fMRI activation in both the PCC and dACC, and these two regions showed coordinated activity based on functional connectivity MRI. Finally, increased microstructural integrity of the posterior cingulum bundle, as measured by diffusion tensor imaging, predicted faster error correction. These findings suggest that the PCC generates the ERN and communicates with the dACC to subserve error processing. They challenge current models that view fMRI activation of the dACC as the hemodynamic reflection of the ERN.  相似文献   

16.
Background: Children and adolescents, family history positive (FH+) for alcoholism, exhibit differences in brain structure and functional activation when compared to family history negative (FH?) counterparts. Given that frontal brain regions, and associated reciprocal connections with limbic structures, undergo the most dramatic maturational changes during adolescence, the objective of this study was to compare functional brain activation during a frontally mediated test of response inhibition in 32 adolescents separated into low‐risk (FH?) and high‐risk (FH+) groups. Methods: Functional magnetic resonance (fMRI) blood oxygen level–dependent data were acquired at 1.5 Tesla during performance of Stroop Color Naming, Word Reading, and Interference. Preprocessing and statistical analyses, covaried for age, were conducted in SPM99 using a search territory that included superior, middle, and inferior frontal gyri (trigone region), anterior cingulate gyrus (CG), and left and right amygdala. Results: Significantly greater activation in the fronto‐limbic search territory was observed in FH+ relative to FH? subjects during Stroop Interference. In addition, a significant regression between brain activation and family history density was observed, with a greater density being associated with increased activation in regions including middle frontal gyrus (BA9) and CG (BA24). Conclusions: These data demonstrate a significant influence of FH status on brain activation during the performance of a response inhibition task, perhaps reflecting a neurobiological vulnerability associated with FH status that may include reduced neuronal efficiency and/or recruitment of additional neuronal resources. These findings are important given that the adolescent developmental period is already associated with reduced inhibitory capacity, even prior to the onset of alcohol use.  相似文献   

17.
The neural underpinnings of age-related memory impairment remain to be fully elucidated. Using a subsequent memory face–name functional MRI (fMRI) paradigm, young and old adults showed a similar magnitude and extent of hippocampal activation during successful associative encoding. Young adults demonstrated greater deactivation (task-induced decrease in BOLD signal) in medial parietal regions during successful compared with failed encoding, whereas old adults as a group did not demonstrate a differential pattern of deactivation between trial types. The failure of deactivation was particularly evident in old adults who performed poorly on the memory task. These low-performing old adults demonstrated greater hippocampal and prefrontal activation to achieve successful encoding trials, possibly as a compensatory response. Findings suggest that successful encoding requires the coordination of neural activity in hippocampal, prefrontal, and parietal regions, and that age-related memory impairment may be primarily related to a loss of deactivation in medial parietal regions.  相似文献   

18.
The renin-angiotensin system is a far more complex enzymatic cascade than realized previously. Mounting evidence suggests sex-specific differences in the regulation of the renin-angiotensin system and arterial pressure. We examined the hemodynamic responses, angiotensin II receptor subtypes, and angiotensin-converting enzyme 2 gene expression levels after graded doses of angiotensin II in males and females. Mean arterial pressure was measured via telemetry in male and female rats in response to a 2-week infusion of vehicle, low-dose (50 ng/kg per minute SC) or high-dose (400 ng/kg per minute SC) angiotensin II. The effect of concurrent infusion of the angiotensin II type 2 receptor (AT(2)R) blocker (PD123319) was also examined. The arterial pressure response to high-dose angiotensin II was attenuated in females compared with males (24+/-8 mm Hg versus 42+/-5 mm Hg; P for the interaction between sex and treatment <0.002). Remarkably, low-dose angiotensin II decreased arterial pressure (11+/-4 mm Hg; P for the interaction between sex and treatment <0.02) at a dose that did not have an effect in males. This decrease in arterial pressure in females was abolished by AT(2)R blockade. Renal AT(2)R, angiotensin-converting enzyme 2, and left ventricular AT(2)R mRNA gene expressions were markedly greater in females than in males with a renal angiotensin II type 1a receptor:AT(2)R ratio of approximately 1 in females. Angiotensin II infusion did not affect renal AT(2)R mRNA expression but resulted in significantly less left ventricular mRNA expression. Renal angiotensin-converting enzyme 2 mRNA expression levels were greater in females than in males treated with high-dose angiotensin II (approximately 2.5 fold; P for the interaction between sex and treatment <0.05). In females, enhancement of the vasodilatory arm of the renin-angiotensin system, in particular, AT(2)R and angiotensin-converting enzyme 2 mRNA expression, may contribute to the sex-specific differences in response to renin-angiotensin system activation.  相似文献   

19.
AIM: To determine by brain functional magnetic resonance imaging (fMRI) whether cerebral processing of non-visceral stimuli is altered in irritable bowel syndrome (IBS) patients compared with healthy subjects. To circumvent spinal viscerosomatic convergence mechanisms, we used auditory stimulation, and to identify a possible influence of psychological factors the stimuli differed in their emotional quality. METHODS: In 8 IBS patients and 8 controls, fMRI measurements were performed using a block design of 4 auditory stimuli of different emotional quality (pleasant sounds of chimes, unpleasant peep (2000 Hz), neutral words, and emotional words). A gradient echo T2*-weighted sequence was used for the functional scans. Statistical maps were constructed using the general linear model. RESULTS: To emotional auditory stimuli, IBS patients relative to controls responded with stronger deactiva-tions in a greater variety of emotional processing regions, while the response patterns, unlike in controls, did not differentiate between distressing or pleasant sounds. To neutral auditory stimuli, by contrast, only IBS patients responded with large significant activations. CONCLUSION: Altered cerebral response patterns to auditory stimuli in emotional stimulus-processing regions suggest that altered sensory processing in IBS may not be specific for visceral sensation, but might reflect generalized changes in emotional sensitivity and affective reactivity, possibly associated with the psychological comorbidity often found in IBS patients.  相似文献   

20.
Maintenance of genome integrity in germ cells is crucial for the success of future generations. In Drosophila, and mammals, transposable element activity in the germline can cause DNA breakage and sterility. Recent studies have shown that proteins involved in piRNA (PIWI-interacting RNA) biogenesis are necessary for retrotransposon silencing in the Drosophila germline. Females mutant for genes in the piRNA biogenesis pathway produce eggs with patterning defects that result from Chk-2 (checkpoint kinase-2) DNA damage checkpoint activation. Here we show that large ribonucleoprotein aggregates form in response to DNA damage checkpoint activation in egg chambers of females defective in piRNA biogenesis. Aggregate formation is specific to piRNA biogenesis mutants, as other mutations that activate the same Chk-2-dependent checkpoint do not cause aggregate formation. These aggregates contain components of the dynein motor machinery, retrotransposon RNA, and protein and axial patterning RNAs. Disruption of the aggregates by colcemid treatment leads to increased retrotransposon RNA levels, indicating that these structures may be the destination of retrotransposon RNA transport and may be degradation or sequestration sites. We propose that aggregate formation is a cellular response to protect germ cells from DNA damage caused by elevated retrotransposon expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号