首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously found that unilateral cochlear ablation altered transmitter release from glutamatergic synaptic endings in several brain stem auditory nuclei. To determine if this release activity could be regulated by protein kinase C (PKC), which has been associated with regulation of transmitter release, the electrically evoked release of [3H]d-aspartate ([3H]d-Asp) was quantified in vitro as an index of exocytosis from glutamatergic presynaptic endings in the major subdivisions of the cochlear nucleus (CN) and in the main nuclei of the superior olivary complex (SOC). Treating dissected tissues with a PKC activator, such as phorbol 12,13-diacetate (PDA) or phorbol 12,13-dibutyrate (PDBu) (3 microM), elevated the evoked release of [3H]d-Asp by 1.5- to 3.3-fold. The PKC inhibitor Ro31-8220 (50 nM) did not alter the evoked release but blocked the stimulatory effects of PDA and PDBu. These findings suggested that PKC could positively regulate transmitter release from glutamatergic presynaptic endings in brain stem auditory pathways. Seven days after unilateral cochlear ablation, when cochlear nerve endings had degenerated in the ipsilateral CN, PDBu elevated the evoked release bilaterally in each CN subdivision and SOC nucleus, implying that PKC could regulate glutamatergic release in the noncochlear pathways remaining in the ipsilateral CN and in the other pathways after unilateral hearing loss. After 145 postlesion days, Ro31-8220 blocked endogenous elevations in the evoked release in the ipsilateral SOC but did not alter the elevated or upregulated release in the other tissues. This suggested that the elevations of glutamatergic release activity in the ipsilateral SOC that appeared after unilateral cochlear ablation depended on endogenous activation of PKC.  相似文献   

2.
We reported previously that unilateral cochlear ablation (UCA) in young adult guinea pigs induced protein kinase C (PKC)-dependent plastic changes in the electrically evoked release of exogenous [14C]glycine ([14C]Gly) or [14C]-gamma-aminobutyric acid ([14C]GABA) in several brain stem auditory nuclei. The present study assessed whether such changes depended on protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII). In the major subdivisions of the cochlear nucleus (CN) and the main nuclei of the superior olivary complex (SOC) dissected from intact animals, dibutyryl-cyclic adenosine monophosphate (DBcAMP) (0.2 mM), a PKA activator, elevated release by 1.6-2.3-fold. The PKA inhibitor, H-89 (2 microM), did not alter the release but blocked the stimulatory effects of DBcAMP. These findings suggested that PKA could positively regulate glycinergic and GABAergic release. After UCA, PKA regulation declined and failed in the ventral CN but persisted in the SOC nuclei. After 145 postablation days, H-89 reversed elevations of [14C]GABA release in the medial nucleus of the trapezoid body (MNTB). A CaMKII inhibitor, KN-93, reversed depressions of [14C]Gly release in the DCN. Thus, the postablation plasticities in these nuclei probably depended on PKA or CaMKII. Both H-89 and KN-93 depressed [14C]Gly release in the lateral superior olive (LSO) and ipsilateral medial superior olive (MSO), suggesting that either kinase was used by endogenous mechanisms in these nuclei to upregulate glycinergic release. In contrast, KN-93 elevated [14C]GABA release in the contralateral MNTB, suggesting a downregulatory action of CaMKII, an action opposite to that of PKA.  相似文献   

3.
We noted previously that after unilateral cochlear ablation (UCA) in young adult guinea pigs, plastic changes in glutamatergic transmitter release in several brain stem auditory nuclei depended on protein kinase C. In this study, we assessed whether such changes depended on protein kinase A (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII). The electrically-evoked release of D-[3H]aspartate (D-[3H]Asp) was quantified in vitro as an index of glutamatergic transmitter release in the major subdivisions of the cochlear nucleus (CN) and the main nuclei of the superior olivary complex (SOC). In tissues from intact animals, dibutyryl-cyclic adenosine monophosphate (DBcAMP), a PKA activator, elevated D-[3H]Asp release by 1.9-3.7-fold. The PKA inhibitor, H-89 (2 microM), did not alter the evoked release but blocked the stimulatory effects of DBcAMP. These findings suggested that PKA could positively regulate glutamatergic transmitter release. Seven days after the ablation of one cochlea and its cochlear nerve, the stimulatory effect of DBcAMP remained evident. After 145 postablation days, H-89 blocked the plastic elevations of D-[3H]Asp release in the ipsilateral CN and lateral (LSO) and medial (MSO) superior olive. A CaMKII inhibitor, KN-93, produced similar blocks, suggesting that the postablation plasticities in these nuclei depended on PKA or CaMKII. Both H-89 and KN-93 elevated release in the medial nucleus of the trapezoid body (MNTB) and the contralateral MSO, suggesting that either kinase could be used by endogenous mechanisms in these nuclei to downregulate glutamatergic release.  相似文献   

4.
Yan L  Suneja SK  Potashner SJ 《Brain research》2007,1135(1):102-106
Glycinergic synaptic inhibition is part of acoustic information processing in brain stem auditory pathways and contributes to the regulation of neuronal excitation. We found previously that unilateral cochlear ablation (UCA) in young adult guinea pigs decreased [3H]strychnine binding activity in several brain stem auditory nuclei. This study determined if the UCA-induced deficit could be regulated by protein kinase C (PKC), protein kinase A (PKA) or Ca2+/calmodulin-dependent protein kinase II (CaMKII). The specific binding of [3H]strychnine was measured in slices of the dorsal (DCN), posteroventral (PVCN) and anteroventral (AVCN) cochlear nucleus (CN), the lateral (LSO) and medial (MSO) superior olive, and the inferior colliculus (IC) 145 days after UCA. Tissues from age-matched unlesioned animals served as controls. UCA induced deficits in specific binding in the AVCN, PVCN, and LSO on the ablated side and in the MSO bilaterally. These deficits were reversed by 3 microM phorbol 1,2-dibutyrate, a PKC activator, or 0.2 mM dibutyryl-cAMP, a PKA activator. However, 50 nM Ro31-8220, a PKC inhibitor, and 2 microM H-89, a PKA inhibitor, had no effect in unlesioned controls and after UCA. In contrast, 4 microM KN-93, a CaMKII inhibitor, relieved or reversed the UCA-induced binding deficits and elevated binding in the IC. These findings suggest that a UCA-induced down-regulation of glycine receptor synthesis may have occurred via reduced phosphorylation of proteins that control receptor synthesis; this effect was reversed by diminishing CaMKII activity or increasing PKC and PKA activity.  相似文献   

5.
6.
The effects of (+/-)3,4-methylenedioxyamphetamine (MDA) were studied in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac, using the two-electrode voltage-clamp method. The RP4 neuron generated spontaneous action potentials. Extracellular or intracellular application of MDA elicited action potential bursts of the central RP4 neuron. The action potential bursts elicited by MDA were not blocked when neurons were immersed in high-Mg2+ solution, Ca2+-free solution, nor after continuous perfusion with atropine, d-tubocurarine, propranolol, prazosin, haloperidol, sulpiride or methiothepin. Notably, the induction of action potential bursts was blocked by pretreatment with protein kinase C (PKC) inhibitors, chelerythrine and Ro 31-8220, but not by protein kinase A (PKA) inhibitors, KT-5720 and H89, nor by the phospholipase C (PLC) inhibitor, U73122. PKC activators, i.e., phorbol 12,13-dibutyrate (PDBu) and 1-oleoyl-2-acety-sn-glycerol (OAG; a membrane-permeant DAG analog), facilitate the induction of action potential bursts elicited by MDA. Voltage-clamp studies revealed that MDA decreased the delayed rectifying K+ current (I(KD)) of the RP4 neuron. Further, although Ro 31-8220 did not affect the I(KD), Ro 31-8220 decreased the inhibitory effect of MDA on the I(KD). These results suggest that the generation of action potential bursts elicited by MDA was not due to (1) the synaptic effects of neurotransmitters, (2) the cholinergic, adrenergic, dopaminergic or serotoninergic receptors of the excitable membrane. Instead, the MDA-elicited action potential bursts are closely related to PKC activity and the inhibitory effects on the I(KD).  相似文献   

7.
Here, we found that a single intrathecal (i.t.) administration of a protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), induced pain-like behaviors in mice. Furthermore, i.t.-administered PDBu caused the increased c-fos-like immunoreactivity in the parafascicular nuclei (PF), amygdala and cingulate cortex (CG), but not hippocampus. These findings suggest that the stimulation of spinal PKC results in an enhancement of neuronal activity in the PF, amygdala and CG associated with hyperalgesia.  相似文献   

8.
Tyrosine kinase B (TrkB) levels in the adult guinea pig cochlear nucleus (CN) were determined from Western blots for up to 60 days after unilateral cochlear ablation (UCA). Compared to TrkB levels on the intact side, those on the lesioned side were elevated in the anteroventral CN (AVCN) at 7 and 60 days and in the posteroventral CN (PVCN) at 30 days. TrkB levels were depressed in the AVCN and the dorsal CN (DCN) at 30 days. Elevations in the AVCN on the lesioned side at 7 days coincided with a period of synaptogenesis. Other changes were temporally related to up- or downregulations of transmitter release and synaptic receptor activities that were evident after UCA. The findings suggest that changes in signaling through TrkB may contribute to the plasticities in the CN that were evident after UCA.  相似文献   

9.
Hypothermia diminishes the ischemia-induced protein kinase C (PKC) translocation and inhibition, and also reduces transmitter release during ischemia. To study the role of PKC in the mechanism of glutamate release during ishcemia, we measured extracellular glutamate levels in the striatum with the microdialysis technique, in the presence and absence in the dialysate of the PKC activator 4β-phorbol-12,13-dibutyrate (PDBu) and the protein kinase inhibitor staurosporine. We confirm that hypothermia attenuates the elevation of extracellular levels of glutamate in the striatum during ischemia. In the presence of PDBu, the glutamate levels in the dialysate increased from 0.3 μmol/L to an end ischemic level of 4.8 μmol/L during hypothermic ischemia (33°C). These levels were significantly higher than in hypothermic ischemia (33°C) without added PDBu. Staurosporine significantly mitigated the glutamate levels during normothermic ischemia. Our data suggest that PKC is involved in the temperature-dependent elevations of extracellular glutamate levels in the striatum during ischemia, and we propose that compounds preventing PKC activation may mimic the hypothermic protective action against ischemic brain damage.  相似文献   

10.
Oocytes of the frog Xenopus laevis express various exogenous neurotransmitter receptors and ion channels when injected with RNA from excitable tissues. The oocytes serve as a convenient model system in which modulation of neurotransmitter responses can be studied. We examined the effects of activators and an inhibitor of protein kinase C (PKC) on responses to serotonin (5-HT), acetylcholine (ACh), kainate, and gamma-aminobutyric acid (GABA) in oocytes injected with RNA from rat brain. The PKC activators beta-phorbol esters 4 beta-phorbol-12-myristate-13-acetate (PMA) and 4 beta-phorbol-12,13-dibutyrate (PDBu), as well as the synthetic diacylglycerol, 1-oleyl-2-acetylglycerol (OAG), significantly inhibited the responses to 5-HT and ACh (both known to be mediated by mobilization of intracellular Ca2+); the first (transient) phase of these responses was affected stronger than the second, slow phase. PKC activators also reduced the response to GABA. The effect of PDBu on the response to kainate was dual; either inhibition or potentiation were observed at different concentrations of PDBu. The inactive analogue of PMA, the alpha-PMA, was without effect on the responses to 5-HT and GABA. The PKC inhibitor 1,5-isoquinolinesulfonyl-2-methylpiperazine (H7) suppressed the inhibitory effect of PDBu on 5-HT response. Amiloride, a blocker of the Na+/H+ exchange (which is known to be activated by PKC in some tissues), did not suppress the effects of PDBu. We concluded that activation of PKC down-regulates the responses to 5-HT, ACh and GABA, and has a dual effect on response to kainate. Possible mechanisms of these effects are discussed.  相似文献   

11.
M Bachoo  T Heppner  J Fiekers  C Polosa 《Brain research》1992,585(1-2):299-302
The superior cervical ganglion of rats was perfused with Ringer solution containing hexamethonium to produce a steady, partial, nicotinic block. The compound action potential (CAP) evoked by supramaximal single shock stimulation of the cervical sympathetic trunk (CST) was recorded from the internal carotid nerve. Bolus injection of the protein kinase C (PKC) activators 4 beta-phorbol-12,13-dibutyrate (PDBu) or 4 beta-phorbol-12,13-diacetate (PDAc) produced a marked, prolonged, dose-dependent potentiation of the CAP amplitude (e.g. 90% decay 2 h). A non-PKC activating phorbol ester (PE), 4 alpha-phorbol-12,13-didecanoate, produced no potentiation. The PE-induced potentiation was antagonized by the PKC inhibitor H-7. In addition, after 1 h exposure to PDBu (3 microM) and recovery from the potentiation (e.g. 2-4 h), a second exposure to PDBu or PDAc produced no potentiation. A 5 s 40 Hz supramaximal train to the CST produced a long lasting potentiation of the CAP (long-term potentiation, LTP) as described previously. However, a similar train did not evoke LTP after perfusion for 1 h with PDBu. The train-evoked LTP was depressed by the PKC inhibitor H-7 at a concentration which antagonized the PE-evoked potentiation. These data suggest that (i) PKC activation potentiates nicotinic transmission, and (ii) a component of the train-evoked LTP is mediated by PKC.  相似文献   

12.
Unilateral cochlear ablation (UCA) in adults deafferented one cochlear nucleus (CN) and induced several plasticities in central auditory pathways. To assess whether signal transduction could contribute to these changes, we determined if UCA induced activity in the extracellular signal-regulated kinase (ERK) and the stress-activated protein kinase (SAPK) signal transduction pathways. Using Western blots, we measured phosphorylated ERK1 (ERK1-P), ERK2 (ERK2-P), p46 and p54 SAPK (SAPK-P) and c-Jun (c-Jun-P) levels in the major subdivisions of the CN, the principal nuclei of the superior olivary complex (SOC) and the central nucleus of the inferior colliculus (ICc) for up to 145 days postablation. ERK1-P and ERK2-P were typically elevated at 7 and 145 days but depressed at 30 days, 60 days, or both. In addition, ERK1-P and ERK2-P were elevated at 3 days in the anteroventral (AVCN) and posteroventral CN (PVCN). Immunohistochemical labeling indicated that after 5 days, most ERK1/2-P in the CN was in neuronal nuclei. Only minor changes were evident in total ERK1 and ERK2 levels. Several correlations were evident between the postablation plasticities observed previously and altered ERK1-P and ERK2-P levels. Few changes were found in SAPK-P and c-Jun-P levels. Concomitant elevations of SAPK-P and c-Jun-P were not evident, except in the superficial dorsal CN (DCN) at postablation day 3, consistent with a cell-stress response. These findings suggest that signals induced as a consequence of UCA are transduced mainly through the neuronal ERK pathway. This activity probably influenced gene expression and cytoplasmic regulatory mechanisms that contributed to the plasticities induced by UCA.  相似文献   

13.
Using phorbol 12,13-dibutyrate (PDBu) autoradiography, we investigated the effect of hypothermia on protein kinase C (PKC) activation in rat brain 2 h after focal ischemia. In normothermia, a significant increase of PDBu binding was observed in ischemic brain. Hypothermia suppressed the increase of PDBu binding in degree and extent. These observations suggest that intraischemic hypothermia attenuates the activation of PKC, and this may in part be participate in the protective effect of hypothermia.  相似文献   

14.
Nair SG  Gudelsky GA 《Brain research》2004,1013(2):168-173
The acute administration of 3,4-methylenedioxymethamphetamine (MDMA) elevates extracellular concentrations of dopamine (DA) and serotonin (5-HT) in the rat striatum and medial prefrontal cortex (mPFC). The release of DA induced by MDMA is thought to involve both transporter and impulse-mediated processes. Furthermore, the impulse-dependent release of DA in the striatum elicited by MDMA appears to involve 5-HT2 receptor activation. Since 5-HT2 receptors are known to utilize protein kinase C (PKC) for intracellular signaling, we examined the effects of modulators of PKC activity on DA release stimulated by MDMA. Reverse dialysis of the PKC inhibitors bisindolylmaleimide I (BIM; 30 microM) or chelerythrine chloride (100 microM) through a microdialysis probe significantly attenuated the MDMA (10 mg/kg, i.p.)-induced increase in the extracellular concentration of DA in the striatum. In contrast, BIM did not significantly alter the increase in the extracellular concentration of DA in the striatum elicited by amphetamine (5 mg/kg, i.p.). Reverse dialysis of a PKC activator, phorbol 12,13-dibutyrate (PDBu) (0.5 microM), through the microdialysis probe into the striatum, significantly increased MDMA-induced DA release. In contrast to the inhibitory effects of the PKC inhibitors on MDMA-induced DA release in the striatum, intracortical infusion of BIM enhanced MDMA-induced release of DA in the mPFC. These data suggest that PKC-mediated signaling pathways differentially modulate MDMA-induced DA release from mesocorticolimbic and nigrostriatal neurons.  相似文献   

15.
There is evidence suggesting that protein kinase C (PKC) activation can prevent the enhanced network excitability associated with status epilepticus and group I metabotropic glutamate receptor (mGluR)-induced epileptogenesis. However, we observed no suppression of mGluR-induced burst prolongation in the guinea pig hippocampal slice when applied in the presence of the PKC activator phorbol-12,13-dibutyrate (PDBu). Furthermore, PDBu alone converted picrotoxin-induced interictal bursts into ictal-length discharges ranging from 2 to 6s in length. This effect could not be elicited by the inactive analog 4-alpha-PDBu and was suppressed with the PKC inhibitor chelerythrine, indicating PKC dependence. PKC activation can enhance neurotransmitter release, and both glutamate and acetylcholine are capable of eliciting similar prolonged synchronized discharges. However, neither mGluR1 nor NMDA receptor antagonist suppressed PDBu-driven burst prolongation, suggesting that increased glutamate release alone is unlikely to account for the PKC-induced expression of ictaform discharges. Similarly, atropine, a broad-spectrum muscarinic receptor antagonist, had no effect on PKC-induced burst prolongation. By contrast, AMPA/kainate receptor antagonist abolished PKC-induced burst prolongation, and mGluR5 antagonist significantly blunted the maximum burst length induced by PKC. These data suggest that PKC-induced prolongation of epileptiform bursts is dependent on changes specific to mGluR5 and AMPA/kainate receptors and not mediated simply by a generalized increase in transmitter release.  相似文献   

16.
It has been suggested that the maintenance of long-term potentiation (LTP) in the hippocampal mossy fiber (MF) synapse involves a presynaptic mechanism that does not require the activation of protein kinase C (PKC), since this enzyme appears to be absent in the MF presynaptic terminals. In the present study the authors evaluated this proposal by directly comparing the metabolic properties of hippocampal MF synaptosomes and a conventional P2B synaptosomal preparation prepared from the same hippocampal tissue. Protein kinase C-dependent histone phosphotranferase activity was found to be comparable in MF and P2B synaptosomes. Western blot analysis was performed using antisera prepared against four of the PKC isoforms, and the results demonstrate that the alpha, beta, and gamma PKC isoforms are present in relatively equivalent amounts in these two subcellular fractions. However, the cytosolic fraction derived from the hippocampal MF synaptosomes appeared to contain a greater amount of the PKC-epsilon isoform when compared to the P2B synaptosomal preparation. Four distinct endogenous substrates present in the MF synaptosomes are shown to be phosphorylated in response to PKC activation. A functional role for PKC in the hippocampal MF nerve endings seems to be indicated by the finding that 4 beta-phorbol 12,13-dibutyrate (PDBu) and 4 beta-phorbol 12,13-diacetate produce a dose-dependent potentiation of the K(+)-evoked release of endogenous glutamate and dynorphin B, while the inactive 4-alpha-phorbol was without effect. The PDBu-induced enhancement of transmitter release was blocked by the PKC inhibitor, staurosporine. In addition, PDBu significantly facilitated the rise in cytosolic free calcium that immediately followed depolarization of the MF synaptosomal membrane. It is concluded that hippocampal MF presynaptic terminals possess a variety of PKC isoforms and that their activation may have an important facilitory influence on MF synaptic transmission and plasticity.  相似文献   

17.
Stocca G  Lovinger DM 《Hippocampus》2003,13(3):355-360
Synaptic transmission involves Ca2+ influx at presynaptic terminals. Adenosine receptors inhibit transmission, and this effect can be abolished by activation of PKC with phorbol esters. Whether protein kinase C (PKC) acts via alterations in Ca2+ entry at the presynaptic terminal is unknown. In the present study, we recorded the presynaptic Ca2+ transients (preCa(delta)) in hippocampal stratum radiatum, using fluorescence photometry. The calcium dye Fura-2 AM was used to load the Schaffer collateral/commissural tract and its terminals. Tetrodotoxin (TTX)-sensitive Na+ channels and Cd2+-sensitive, high-voltage activated Ca2+ channels (HVACCs) were required to elicit the preCa(delta). Application of the phorbol ester phorbol-12,13-dibutyrate (PDBu) abolished the adenosine inhibition of both preCa(delta) and the field excitatory postsynaptic potentials (fEPSPs). PDBu consistently potentiated fEPSPs, and also increased preCa(delta) in a large majority of the slices examined. Regardless of whether potentiation was observed, PDBu always prevented adenosine inhibition of preCa(delta). In contrast, the inactive phorbol ester, 4alpha-phorbol, did not alter adenosine inhibition of preCa(delta), indicating that PKC activation is necessary for the occurrence of the observed effects. Our findings suggest that PKC activation abolishes adenosine's inhibitory effect on synaptic activity involving presynaptic Ca2+ entry.  相似文献   

18.
The role of protein kinase C (PKC) in the control of neurotransmitter release from cultured rat cerebellar granule cells was investigated. Release of preloaded [3H]-d -aspartate which is incorporated into synaptic vesicles in this preparation was evoked by electrical field stimulation or elevated KCl. PKC activation by phorbol esters resulted in a large facilitation of field-evoked Ca2+-dependent [3H]-d -aspartate release and a lesser enhancement of KCl-stimulated release. Inhibition of PKC by Ro 31-8220 or staurosporine virtually abolished field-evoked release but had no effect on KCl-evoked release. Field-evoked, but not KCl-evoked, synaptic vesicle exocytosis monitored by the fluorescent vesicle probe FM2-10 was inhibited by staurosporine. PKC was not directly modulating neurite Ca2+ channels coupled to release, as Ro 31-8220 did not inhibit these channels. Activation or inhibition of PKC modulated field-evoked plasma membrane depolarization, but had no effect on KCl-evoked depolarization, consistent with a regulation of Na+ or K+ channels activated by field stimulation. No modulation of field-evoked neurite Na+ influx was seen using phorbol esters. Phorbol ester-induced facilitation of field-evoked [3H]-d -aspartate release and neurite Ca2+ entry was non-additive with that produced by the specific K+ channel antagonist dendrotoxin-1, suggesting that PKC modulates transmitter release from field-stimulated cerebellar granule cells by inhibiting a dendrotoxin-1-sensitive K+ channel.  相似文献   

19.
In young adult guinea pigs, the effects of unilateral cochlear ablation were determined on the specific binding of [3H]strychnine measured in subdivisions of the cochlear nucleus (CN), the superior olivary complex, and the auditory midbrain, after 2, 7, 31, 60, and 147 postlesion days. Changes in binding relative to that in age-matched controls were interpreted as altered activity and/or expression of synaptic glycine receptors. Postlesion binding declined ipsilaterally in most of the ventral CN and in the lateral superior olive (LSO). Binding was modestly deficient in the ipsilateral dorsal CN and in the anterior part of the contralateral anteroventral CN. Binding was elevated in the contralateral LSO. Transient changes also occurred. Binding was elevated transiently, between 2 and 31 days, contralaterally in parts of the anteroventral CN, bilaterally in the medial superior olive (MSO), and bilaterally in most of the midbrain nuclei. Binding was deficient transiently, at 60 days, in most of the contralateral CN and bilaterally in the midbrain nuclei. The present findings, together with previously reported postlesion changes in glycine release, were consistent with persistently weakened glycinergic inhibitory transmission ipsilaterally in the ventral CN and the LSO and bilaterally in the dorsal CN. Glycinergic inhibitory transmission was strengthened in the contralateral LSO and transiently strengthened in the MSO bilaterally. A hypothetical model of the findings suggested that glycine receptor regulation may depend on excitatory and glycinergic input to auditory neurons. The present changes in glycine receptor activity may contribute to altered auditory functions, which often accompany hearing loss.  相似文献   

20.
The effects of the phorbol ester 4ß-phorbol-12,13 dibutyrate (PDBu) and the protein kinase (PK) inhibitors H-7 and sphingosine were investigated on the short-term potentiation (STP) of the population excitatory postsynaptic potential (EPSP) induced by perfusion of N-methyl-d-aspartate (NMDA) in the stratum radiatum of CA1 of the rat hippocampal slice. Bath perfusion of 130 μM NMDA for 10 s caused an initial depression of the population EPSP followed by a STP, which averaged 46% and lasted 16 min. PDBu (100 nM) perfused for 2 h completely inhibited the NMDA induced STP, suggesting that the stimulation of PKC inhibited an NMDA receptor activated process which induced the STP. The protein kinase inhibitors H-7 and sphingosine did not alter the NMDA induced STP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号