首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A variety of G protein-coupled receptors (GPCRs) are phosphorylated by G protein-coupled receptor kinase 2 (GRK2). This event promotes the binding of regulatory proteins termed beta-arrestins to GPCRs, leading to uncoupling from G proteins and receptor internalization. Recent data indicate that GRK2 and beta-arrestins also play an important role in the stimulation of the extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) cascade by GPCRs. In this report, we have investigated the existence of functional interactions between GRK2 and MAPK. We show that activation of beta(2)-adrenergic receptors (beta(2)-AR) promotes the rapid association of GRK2 and MAPK in living cells, as assessed by coimmunoprecipitation experiments in COS-7 cells transfected with beta(2)-AR, GRK2, and an epitope-tagged MAPK. Coimmunoprecipitation of MAPK and GRK2 is blocked by inhibition of the MAPK cascade and is not observed upon activation of MAPK in the absence of beta(2)-AR stimulation, thus indicating that both an active MAPK and agonist occupancy of GPCR are required for the association to occur. Interestingly, we have found that purified ERK1/MAPK can directly phosphorylate the C-terminal domain of GRK2, and that the phosphorylation process is favored by the presence of Gbetagamma-subunits or an activated receptor. Furthermore, GRK2 phosphorylation by MAPK leads to a decreased activity of GRK2 toward GPCR. Taken together, our results suggest that stimulation of GPCRs promotes the rapid association of GRK2 and MAPK leading to modulation of GRK2 functionality, thus putting forward a new feedback mechanism for the regulation of GPCR signaling.  相似文献   

2.
G protein-coupled receptors (GPCRs) are seven transmembrane proteins that form the largest single family of integral membrane receptors. GPCRs transduce information provided by extracellular stimuli into intracellular second messengers via their coupling to heterotrimeric G proteins and the subsequent regulation of a diverse variety of effector systems. Agonist activation of GPCRs also initiates processes that are involved in the feedback desensitization of GPCR responsiveness, the internalization of GPCRs, and the coupling of GPCRs to heterotrimeric G protein-independent signal transduction pathways. GPCR desensitization occurs as a consequence of G protein uncoupling in response to phosphorylation by both second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). GRK-mediated receptor phosphorylation promotes the binding of beta-arrestins, which not only uncouple receptors from heterotrimeric G proteins but also target many GPCRs for internalization in clathrin-coated vesicles. beta-Arrestin-dependent endocytosis of GPCRs involves the direct interaction of the carboxyl-terminal tail domain of beta-arrestins with both beta-adaptin and clathrin. The focus of this review is the current and evolving understanding of the contribution of GRKs, beta-arrestins, and endocytosis to GPCR-specific patterns of desensitization and resensitization. In addition to their role as GPCR-specific endocytic adaptor proteins, beta-arrestins also serve as molecular scaffolds that foster the formation of alternative, heterotrimeric G protein-independent signal transduction complexes. Similar to what is observed for GPCR desensitization and resensitization, beta-arrestin-dependent GPCR internalization is involved in the intracellular compartmentalization of these protein complexes.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or interacting directly with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo).  相似文献   

4.
The signaling of seven transmembrane receptors/G-protein- coupled receptors (GPCRs) is regulated by a number of receptor interacting proteins, including βarrestins (βarrs) and GPCR kinases (GRKs). In the present report, we have analyzed the interaction pattern between the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), βarr2, and GRK2 using bioluminescence resonance energy transfer assays. We found that βarr2 interacts with the GLP-1R in a biphasic manner with a phosphorylation-independent and a phosphorylation-dependent component. In competition experiments, we observed βarr2 competing with GRK2 for interaction with GLP-1R. We propose a model were βarr2 competes with GRK2 for interaction with the activated and GRK phosphorylated GLP-1R, suggesting a new role of βarr2 in regulating the orchestration of GRK2 functionality.  相似文献   

5.
Non-visual GRKs: are we seeing the whole picture?   总被引:4,自引:0,他引:4  
G-protein-coupled receptor kinases (GRKs) comprise a family of seven mammalian serine/threonine protein kinases that phosphorylate and regulate agonist-occupied or constitutively active G-protein-coupled receptors (GPCRs). Studies of the details and consequences of these mechanisms have focused heavily on the original β-adrenoceptor kinase (β-ARK) family (GRK2 and GRK3) and, in particular, on phosphorylation-dependent recruitment of adaptor proteins such as the β-arrestins. However, recent work has indicated roles for the other, non-visual GRKs (GRK4, GRK5 and GRK6) and has revealed potential phosphorylation-independent regulation of GPCRs by GRK2 and GRK3. In this article, we review this newer information and attempt to put it into context with GRKs as physiological regulators that could be appropriate targets for future pharmacological intervention.  相似文献   

6.
G protein-coupled receptors represent the most diverse group of proteins involved in transmembrane signalling, that participate in the regulation of a wide range of physicochemical messengers through the interaction with heterotrimeric G proteins. In addition, GPCRs stimulation also triggers a negative feedback mechanism, known as desensitization that prevents the potentially harmful effects caused by persistent receptor stimulation. In this adaptative response, G protein-coupled receptor kinases (GRKs) play a key role and alterations in their function are related to diverse pathophysiological situations. Based on the scarce knowledge about the regulation of GRK2 by other kinases of the same family, the aim of the present work was to investigate the regulation of GRK2 levels in systems where other GRKs are diminished by antisense technique. Present findings show that in U937 cells GRK2 levels are regulated by GRK3 and not by GRK6 through a mechanism involving InsP upregulation. This work reports a novel GRK3-mediated GRK2 regulatory mechanism and further suggests that GRK2 may also act as a compensatory kinase tending to counterbalance the reduction in GRK3 levels. This study provides the first evidence for the existence of GRKs cross-regulation.  相似文献   

7.
The closely related G protein-coupled receptor kinases GRK2 and GRK3 are both expressed in cardiac myocytes. Although GRK2 has been extensively investigated in terms of regulation of cardiac beta-adrenergic receptors, the substrate specificities of the two GRK isoforms at G protein-coupled receptors (GPCR) are poorly understood. In this study, the substrate specificities of GRK2 and GRK3 at GPCRs that control cardiac myocyte function were determined in fully differentiated adult cardiac myocytes. Concentration-effect relationships of GRK2, GRK3, and their respective competitive inhibitors, GRK2ct and GRK3ct, at endogenous endothelin, alpha(1)-adrenergic, and beta(1)-adrenergic receptor-generated responses in cardiac myocytes were achieved by adenovirus gene transduction. GRK3 and GRK3ct were highly potent and efficient at the endothelin receptors (IC(50) for GRK3, 5 +/- 0.7 pmol/mg of protein; EC(50) for GRK3ct, 2 +/- 0.2 pmol/mg of protein). The alpha(1)-adrenergic receptor was also a preferred substrate of GRK3 (IC(50),7 +/- 0.4 pmol/mg of protein). GRK2 lacked efficacy at both endothelin and alpha(1)-adrenergic receptors despite massive overexpression. On the contrary, both GRK2ct and GRK3ct enhanced beta(1)-adrenergic receptor-induced cAMP production with comparable potencies. However, the potency of GRK3ct at beta(1)-adrenergic receptors was at least 20-fold lower than that at endothelin receptors. In conclusion, this study demonstrates distinct substrate specificities of GRK2 and GRK3 at different GPCRs in fully differentiated adult cardiac myocytes. As inferred from the above findings, GRK2 may play its primary role in regulation of cardiac contractility and chronotropy by controlling beta(1)-adrenergic receptors, whereas GRK3 may play important roles in regulation of cardiac growth and hypertrophy by selectively controlling endothelin and alpha(1)-adrenergic receptors.  相似文献   

8.
Assay technologies that measure the activation of heterotrimeric (alphabetagamma) G proteins by G-protein-coupled receptors (GPCRs) are well established within the pharmaceutical industry, either for pharmacological characterization or for the identification of natural or surrogate receptor ligands. Despite recent evidence indicating that GPCR-linked signalling events might not be mediated exclusively by G proteins, G-protein activation remains a common benchmark for assessing GPCR family members. Thus, assay systems that translate ligand-mediated modulation of GPCRs into G-protein-dependent intracellular responses still represent key components of both basic research and the drug discovery process. In this article, the current knowledge and recent progress of integrating Galpha subunits into assay systems for GPCR drug discovery will be reviewed. Emphasis is given to novel promiscuous and chimeric Galpha proteins. Because of their ability to interact with a wide range of GPCRs, such novel G proteins are likely to be incorporated rapidly into drug discovery programmes.  相似文献   

9.
In this study, we investigated the regulation of different G protein-coupled receptor (GPCR)-stimulated signaling pathways by GPCR kinase 2 (GRK2). We used thyrotropin receptor, which is coupled to different G proteins, to investigate the regulation of Galphas- and Galphaq-mediated signaling (assessed by cAMP and inositol phosphate production, respectively). In transfected cells, both pathways were desensitized by GRK2. However a kinase-dead GRK2 mutant (GRK2-K220R) only decreased inositol phosphate production, indicating that GRK2 could regulate Galphaq signaling through a phosphorylation-independent mechanism. Similar results were obtained with serotonin receptor 5-hydroxytryptamine(2C), which is coupled to Galphaq. This effect was mimicked by the N-terminal domain of GRK2 (GRK2-Nter), but not by the C-terminal domain. In cells transfected with Galphaq, direct activation of Galphaq signaling (by AlF(4)(-)) was desensitized by GRK2-Nter, indicating an effect at the Galpha-level. For comparison, in parallel samples we studied a protein regulator of G protein signaling RGS4 and we found a similar regulatory profile. We therefore hypothesized that the GRK2-Nter could directly interact with the Galphaq subunit to regulate its signaling, as demonstrated for several RGS proteins. This hypothesis is further supported by the presence, within the GRK2-Nter, of an RGS homology domain. In direct binding experiments, we found that GRK2-Nter interacts with Galphaq (only when activated) but not with Galphas and Galphao. We conclude that GRK2, besides desensitizing the GPCR by phosphorylation, is able to selectively bind to Galphaq and to regulate its signaling.  相似文献   

10.
Although originally linked to receptor desensitization, G-protein-coupled receptor (GPCR) phosphorylation has now been implicated in coupling receptors to specific signalling pathways. Generally, this phosphorylation event is thought to be mediated by one of the members of the GPCR kinase (GRK) family. However, recent studies have indicated that protein kinases distinct from the GRK family might also be involved in agonist-mediated GPCR phosphorylation. This review analyses the approaches employed to investigate the nature of GPCR phosphorylation and discusses recent developments implicating other kinases, particularly casein kinase 1 alpha, in the phosphorylation of GPCRs.  相似文献   

11.
G protein-coupled receptor kinase 2(GRK2),as a key Ser/Thr protein kinase,belong to the member of the G protein-coupled receptor kinase(GRK)family.The C-terminus of GRK2 including a plekstrin homology domain and the N-terminus of GRK2 including the RGS homology domain with binding sites for several proteins and lipids such as G protein-coupled receptors(GPCRs),G protein,phospholipase C,phosphatidylinositol 4,5-bisphosphate,extracellular signal-regulated kinase,protein kinase A and Gβγ,which can regulate the activity of GRK2.GRK2 can regulate GPCR desensitization and internalization by phosphorylating the GPCR,promoting the affinity of binding to arrestins,and uncoupling the receptors from G proteins,which play an important role in maintaining the balance between the receptors and signal transduction.Previous studies have indicated that cardiac GRK2overexpression can promote the phosphorylation ofβ-adrenergic receptor(βAR)leading toβAR desensitization and internalization,which play a pivotal role in inducing heart failure(HF)-related dysfunction and myocyte death.GRK2,as a regulator of cell function,is overexpression in hypertension.Overexpression GRK2 can inhibit Akt/e NOS signaling pathway and decreased the production and activation of e NOS leading to endothelial dysfunction.Collagen-induced arthritis induces the upregulation of GRK2 expression in fibroblast-like synoviocytes.In this review,we mainly discussed the evidence for the association between GRK2 overexpression and various diseases,which suggests that GRK2 may be an effective drug target for preventing and treating heart failure,hypertension and inflammatory disease.  相似文献   

12.
G protein coupled receptors (GPCRs) are extremely important drug targets and the beta-arrestin intracellular scaffolding and adaptor proteins regulate major aspects of their pharmacology. beta-arrestin binding to activated, GPCR kinase (GRK)-phosphorylated receptors has the capacity to terminate G protein coupling, internalize the receptors into clathrin-coated vesicles and establish a secondary signaling complex independent of G protein signaling. These events appear to be differentially regulated by GRK phosphorylation, ubiquitination and potentially beta-arrestin oligomerization, which are likely to be highly receptor and cell-type dependent. The role of beta-arrestins in switching from G-protein dependent to independent signaling places them in a pivotal position to dictate the downstream effects of ligand binding. Consequently, we must appreciate the functioning of these molecules as we strive to discover and optimize new GPCR drug therapies for endocrine, metabolic and immune disorders.  相似文献   

13.
In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF.  相似文献   

14.
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.  相似文献   

15.
G-protein coupled receptors (GPCRs) are regulated by several processes. One is the phosphorylation by G-protein coupled receptor kinases (GRKs) linked to processes like receptor desensitisation, internalisation and downregulation. GRKs also seem to be involved in various processes such as opioid addiction and cardiovascular diseases. So far, no specific and potent inhibitors of GRKs are available except some polyanionic compounds like heparin. A rational approach for a search for inhibitors based on a homologous molecular model of GRK2 revealed disulphonic acid analogues of suramin (NF503 and NF062) as lead compounds for inhibitors of GRK2 (IC50 values of 14 and 25 μM, respectively). GRK2 is extensively expressed in the CNS and therefore, mainly considered responsible for the regulation of GPCRs. So far, no therapeutic patents for inhibition of GRKs are available. Nevertheless, a broad range of serine/threonine kinase inhibitors are reported in the patent literature. An overview of these mainly N-heterocyclic or amino group containing compounds is given in this review. Furthermore, other approaches to inhibit GRKs such as the use of antibodies, antisense oligonucleotides, or adenoviral mediated gene delivery of a peptide inhibitor of GRK2 are presented. Screening against various GRKs is likely to yield new lead compounds to further evaluate a (patho)physiological role of GRKs. Possible therapeutic applications of GRK inhibitors are discussed.  相似文献   

16.
The standard model of signal transduction from G-protein-coupled receptors (GPCRs) involves guanine nucleotide cycling by a heterotrimeric G-protein assembly composed of Galpha, Gbeta, and Ggamma subunits. The WD-repeat beta-propeller protein Gbeta and the alpha-helical, isoprenylated polypeptide Ggamma are considered obligate dimerization partners; moreover, conventional Gbetagamma heterodimers are considered essential to the functional coupling of Galpha subunits to receptors. However, our recent discovery of a Gbeta5 binding site (the Ggamma-like or "GGL" domain) within several regulators of G-protein signaling (RGS) proteins revealed the potential for functional GPCR/Galpha coupling in the absence of a conventional Ggamma subunit. In addition, we posit that the interaction between Gbeta5 isoforms and the GGL domains of RGS proteins represents a general mode of binding between beta-propeller proteins and their partners, extending beyond the realm of G-protein-linked signal transduction.  相似文献   

17.
G蛋白偶联受体(GPCR),是一类重要的细胞表面受体。G蛋白偶联受体激酶(GRK)属于丝氨酸/苏氨酸蛋白激酶家族,其亚型广泛存在与各种组织,能够特异性地使活化的GPCR发生磷酸化及脱敏,从而终止GPCR介导的信号转导通路。新的研究还发现,GRK不仅作用于GPCR,也可以通过使非GPCR磷酸化或通过非磷酸化作用参与信号转导。GRK不仅能够调节GPCR和非GPCR,其自身活性也可受到多种因素的调节。本文结合GRK的多种功能作用和GRK活性调控,对GRK在脑、内分泌、生殖系统、消化系统及黑色素肿瘤中的作用做简要综述。  相似文献   

18.
1. G-Protein-coupled receptors (GPCRs) constitute a large family of cell surface proteins. Their primary function is to transmit extracellular stimuli to intracellular signals. It is estimated that the human genome contains more than 1000 genes that code for proteins of the GPCR structure. These receptors also comprise the most important class of therapeutic drug targets. 2. The mechanism of GPCR signalling was initially envisioned as involving coupling to the heterotrimeric G-proteins only. However, recent developments in the field suggest that such a simplistic model cannot be sustained any longer. The emerging view is that a wide range of accessory proteins are involved in the regulation of every aspect of GPCR activity. 3. G-Protein-coupled receptor-interacting proteins are implicated in the regulation of several aspects of GPCR biology, including receptor targeting to the respective sites of action, receptor anchoring, signalling and receptor desensitization. In some cases (e.g. receptor activity modifying proteins), they may contribute to the receptor structure and form a part of the ligand-binding domain. 4. These findings have contributed to new concepts of cellular organization in which modular protein-protein interactions provide a network through which signalling pathways are assembled and controlled.  相似文献   

19.
G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7-TMRs), are the largest protein receptor superfamily in the body. These receptors and their ligands direct a diverse array of physiological responses, and hence have broad relevance to numerous diseases. As a result, they have generated considerable interest in the pharmaceutical industry as drug targets. Recently, GPCRs have been demonstrated to elicit signals through interaction with the scaffolding proteins, beta-arrestins-1 and 2, independent of heterotrimeric G-protein coupling. This review discusses several known G-protein-independent, beta-arrestin-dependent pathways and their potential physiological and pharmacological significance. The emergence of G-protein-independent signalling changes the way in which GPCR signalling is evaluated, from a cell biological to a pharmaceutical perspective and raises the possibility for the development of pathway specific therapeutics.  相似文献   

20.
The many components of G-protein-coupled receptor (GPCR) signal transduction provide cells with numerous combinations with which to customize their responses to hormones, neurotransmitters, and pharmacologic agonists. GPCRs function as guanine nucleotide exchange factors for heterotrimeric (alpha, beta, gamma) G proteins, thereby promoting exchange of GTP for GDP and, in turn, the activation of 'downstream' signaling components. Recent data indicate that individual cells express mRNA for perhaps over 100 different GPCRs (out of a total of nearly a thousand GPCR genes), several different combinations of G-protein subunits, multiple regulators of G-protein signaling proteins (which function as GTPase activating proteins), and various isoforms of downstream effector molecules. The differential expression of such protein combinations allows for modulation of signals that are customized for a specific cell type, perhaps at different states of maturation or differentiation. In addition, in the linear arrangement of molecular interactions involved in a given GPCR-G-protein-effector pathway, one needs to consider the localization of receptors and post-receptor components in subcellular compartments, microdomains, and molecular complexes, and to understand the movement of proteins between these compartments. Co-localization of signaling components, many of which are expressed at low overall concentrations, allows cells to tailor their responses by arranging, or spatially organizing in unique and kinetically favorable ways, the molecules involved in GPCR signal transduction. This review focuses on the role of lipid rafts and a subpopulation of such rafts, caveolae, as a key spatial compartment enriched in components of GPCR signal transduction. Recent data suggest cell-specific patterns for expression of those components in lipid rafts and caveolae. Such domains likely define functionally important, cell-specific regions of signaling by GPCRs and drugs active at those GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号