首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu XQ  Zhang L 《Drug discovery today》2012,17(17-18):974-987
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.  相似文献   

2.
Ion channels play a pivotal role in blood pressure regulation. Amongst them, much attention has been directed to dihydropyridine (DHP)-sensitive (L-type) voltage-dependent Ca(2+) channels (VDCCs) and iberiotoxin-sensitive Ca(2+)-dependent K(+) channels which are distributed over the whole vascular tree and contribute to vascular tone regulation. Recent advances in vascular electrophysiology have, however, added novel and interesting molecules to this repertoire. In small mesenteric arterioles, the predominant VDCC phenotype is not L-type but DHP-insensitive, high voltage-activated VDCCs that exhibit unique properties distinguishable from those of hitherto-known VDCCs. Surprisingly, mibefradil, a well-known T-type selective blocker potently inhibits these channels, and the use of this blocker has indicated that Ca(2+) entry through these channels may be one of the important determinants of peripheral vascular tone. Another new candidate likely involved in blood pressure control is the mammalian homologue of Drosophila transient receptor potential (TRP) protein, including TRPC4 and TRPC6. Experiments in genetically engineered TRPC4-deficient mice have suggested that expression of TRPC4 is indispensable for agonist-induced Ca(2+) entry in endothelial cells and production of nitric oxide and vasorelaxation. TRPC6 is likely to contribute to sustained Ca(2+) entry into vascular smooth muscle cells activated by stimulation of sympathetic nerves and elevation of intravascular pressure. Antisense oligonucleotide experiments have suggested that this protein is an essential component of alpha1-adrenoceptor activated and mechanosensitive cation channels in some vascular tissues. This review overviews what is known about the role of ionic channels in blood pressure control with main focus on the above-mentioned new molecules as promising targets for drug discovery and development.  相似文献   

3.
4.
血管平滑肌钾通道及其调节因素   总被引:3,自引:0,他引:3  
血管张力是决定血管阻力和血流量的重要因素 ,而改变钾通道活性能直接影响血管张力。钾通道开放引起钾外流 ,细胞膜超极化 ,关闭电压依赖性钙通道 ,钙内流减少 ,血管舒张 ;当钾通道受抑制时 ,可使细胞膜去极化 ,从而使电压依赖的钙通道开放 ,细胞外钙内流 ,钙离子使肌球蛋白轻链磷酸化 ,粗细肌丝发生相对运动 ,血管收缩。本文介绍血管平滑肌上 4种钾通道的基因结构、电生理学与药理学特性  相似文献   

5.
Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm).  相似文献   

6.
High conductance Ca(2+) activated K(+) channels (BK(Ca)) in vascular smooth muscles play important roles in controlling the vascular tone by determining the level of membrane potential and Ca(2+) influx through voltage gated Ca(2+) channels. Agents that alter the activity of Ca(2+) channels or BK(Ca) thus affect the vascular tone in both physiological and pathological conditions. Danshen, the dried root of Salvia miltiorrhiza, is a commonly used traditional Chinese medicine and is widely used as an effective remedy for cardiovascular and cerebral vascular diseases partly by its vasodilatation. Sodium tanshinoneII-A sulfonate (DS-201) is a water-soluble derivative of Tanshinone IIA, the main active component of Danshen. The purpose of this study was to explore possible mechanisms of vasodilative effects of DS-201 using porcine coronary artery smooth muscle. DS-201 induced relaxation of the coronary smooth muscle which had been contracted with 30 mM KCl, and the relaxation was inhibited by 100 nM iberiotoxin (IbTX), a specific BK(Ca) channel blocker. Using perforated whole-cell recordings and single channel recordings, effects of DS-201 on BK(Ca) were examined. The results showed that DS-201 activated BK(Ca). Extracellular application of DS-201 at 40, 80 microM under the whole-cell configuration induced increases of the BK(Ca) macroscopic currents by 43.6%, 42.1% respectively, and the spontaneous transient outward K(+) currents (STOCs) by 48.7%, 47.4% respectively. In inside-out patches, bath application of 20-150 muM of DS-201 activated BK(Ca) by 5.4-173.2 fold. These results indicate that the vasodilatation by DS-201 is related to activation of BK(Ca).  相似文献   

7.
Tsai CC  Lai TY  Huang WC  Yang T  Liu IM  Wong KL  Chan P  Cheng JT 《Planta medica》2003,69(6):557-558
In the present study, the effect of tetramethylpyrazine (TMP) on calcium (Ca 2+) influx was investigated in cultured vascular smooth muscle (A7r5) cells using Fura-2 as an indicator. The increase of Ca 2+ concentration in A7r5 cells produced by vasopressin or phenylephrine was attenuated by TMP from 0.01 micromol/L to 1 mmol/L. The decrease in the intracellular potassium concentration in A7r5 cells by TMP from 0.01 micromol/L to 10 micromol/L was characterized using PBFI/AM. Inhibitors specific to the small conductance calcium-activated potassium (SKCa ) channel or the ATP-sensitive potassium (K ATP ) channel abolished the actions of TMP. The obtained results indicate that the decrease of Ca 2+ influx into A7r5 cells by TMP is mainly mediated by the opening of potassium channels.  相似文献   

8.
1. Multiple sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) and two types of sarcoplasmic reticulum Ca2+ channels, the ryanodine receptor and the inositol 1,4,5 triphosphate (IP3) receptor are expressed. The heterogeneity of the Ca2+ pumps and Ca2+ channels in vascular cells will be discussed. 2. An age-related change in expression of the SERCA isoforms is observed in smooth muscle cells. 3. The sarcoplasmic reticulum Ca(2+)-uptake rate and the level of SERCA 2 mRNA are different in thoracic than in abdominal aortas and in aortas from spontaneously hypertensive rats than from normotensive rats. 4. Proliferation of vascular smooth muscle cells is associated with major changes in intracellular Ca(2+)-handling mechanisms.  相似文献   

9.
TRPC6     
TRPC6 is a Ca(2+)-permeable non-selective cation channel expressed in brain, smooth muscle containing tissues and kidney, as well as in immune and blood cells. Channel homomers heterologously expressed have a characteristic doubly rectifying current-voltage relationship and are six times more permeable for Ca2+ than for Na+. In smooth muscle tissues, however, Na+ influx and activation of voltage-gated calcium channels by membrane depolarization rather than Ca2+ elevation by TRPC6 channels is the driving force for contraction. TRPC6 channels are directly activated by the second messenger diacylglycerol (DAG) and regulated by specific tyrosine or serine phosphorylation. Extracellular Ca2+ has inhibitory effects, while Ca2+/calmodulin acting from the intracellular side has potentiator effects on channel activity. Given its specific expression, TRPC6 is likely to play a number of physiological roles. Studies with TRPC6(-/-) mice suggest a role for the channel in the regulation of vascular and pulmonary smooth muscle contraction. TRPC6 was identified as an essential component of the slit diaphragm architecture of kidney podocytes. Other functions in immune and blood cells, as well as in brain and in smooth muscle-containing tissues such as stomach, colon and myometrium, remain elusive.  相似文献   

10.
11.
Stevioside is a sweet-tasting glycoside isolated from the leaves of Stevia rebaudiana. It has been used as a noncaloric sugar substitute in Japan and Brazil for decades. Previous studies have shown that it lowered blood pressure in spontaneously hypertensive rats by intravenous injection. This study was designed to evaluate the hypotensive effect of stevioside in dogs and to define the underlying mechanism. After nasogastric administration of stevioside powder (200 mg/kg), the blood pressure of healthy mongrel dogs began to significantly decrease at 60 min and returned to baseline level at 180 min. The reduction of blood pressure was more rapid (at 5-10 min) and effective after intravenous injection. However, no significant change of blood pressure was noted after injection through left vertebral artery, implicating that the hypotensive effect is not related to the central nervous system. Stevioside also showed significant hypotensive effects in renal hypertensive dogs, in a dose-dependent manner. In cultured rat aortic smooth muscle cells (A7r5 cell line), stevioside can dose-dependently inhibit the stimulatory effects of vasopressin and phenylephrine on intracellular Ca(2+) in a calcium-containing medium. However, no intracellular Ca(2+) inhibitory effect was observed in calcium-free medium, implicating that stevioside may inhibit the Ca(2+) influx from extracellular fluid. Our present data show that stevioside did not influence the calcium ionophore (A23187) induced Ca(2+) influx, indicating that the antagonistic effect was through Ca(2+) channels. This study confirmed that stevioside is an effective antihypertensive natural product, and its hypotensive mechanism may be probably due to inhibition of the Ca(2+) influx.  相似文献   

12.
In monocrotaline-treated rat pulmonary artery from which endothelium was removed, greater spontaneous muscular tone was observed under resting conditions than in vehicle-treated artery. The aim of the present study was to show the possible contribution of Cl- channels in the mechanism of the elevated tone. Verapamil almost completely inhibited the elevated spontaneous muscular tone by decreasing [Ca2+]i. The elevated muscular tone was also inhibited by 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS), a Cl- channel inhibitor. After the inhibition of muscular tone by DIDS, verapamil did not induce further relaxation. Quantitative RT-PCR analysis indicated that the mRNA levels of ClC3 and Ca2+-activated Cl- channels did not change in the pulmonary hypertensive pulmonary artery from those of vehicle-treated rats. These results suggest that the elevated muscular tone observed in the monocrotaline-induced hypertensive pulmonary artery is due to membrane depolarization of smooth muscle cells and that this phenomenon might be mediated by the activation of DIDS-sensitive Cl- channels.  相似文献   

13.
血管平滑肌和内皮细胞Ca2+内流机制及其与Cl-通道的关系   总被引:8,自引:1,他引:7  
血管平滑肌和内皮细胞的Ca2+内流机制不同,前者是兴奋性细胞,Ca2+内流通过电压依赖性(VDC)和非电压依赖性Ca2+通道;后者是非兴奋性细胞,Ca2+内流主要通过非VDC途径。Cl-通道参与了这两种细胞的Ca2+调控,平滑肌细胞Cl-通道开放导致细胞膜去极化,促进VDC开放,Ca2+内流增加;而内皮细胞Cl-通道开放导致细胞膜超极化,使Ca2+进入细胞内的电化学趋势增加,胞外Ca2+经非VDC途径内流增加。目前对血管平滑肌和内皮细胞Cl-通道的分型、特性和功能还不清楚。  相似文献   

14.
1. The mechanism responsible for blood pressure reduction in spontaneously hypertensive rats (SHR) after prolonged cholecalciferol treatment was studied. Two-week treatment of SHR with 0.125 mg cholecalciferol kg-1 body weight per day orally caused significant reductions of systolic blood pressure and of the resting perfusion pressure of the mesenteric vascular bed at constant flow. 2. In addition, the treated animals presented a normalization of the maximum vasoconstriction response to noradrenaline and a reduction of the maximum effect of the adrenaline concentration-response curves. This latter effect probably was due to recovery of the impaired Ca(2+)-dependent K+ channels coupled to alpha 2-adrenoceptors since it was prevented by apamin. 3. The treatment with cholecalciferol also normalized the smooth muscle cell membrane potential of de-endothelialized mesenteric arteries of SHR and their hyperpolarizing responses to alpha 2-adrenergic agonists, which were depressed in untreated SHR. 4. In mesenteric rings with endothelium, alpha 2-adrenergic agonists caused similar hyperpolarizing responses in the SHR and in normotensive Wistar (NWR) and Wistar Kyoto (WKY). In non cholecalciferol-treated SHR the hyperpolarizing mediator involved in this effect was NO, while in NWR it was the endothelium-derived hyperpolarizing factor (EDHF). After cholecalciferol treatment, the hyperpolarization induced by alpha 2-adrenergic agonists in SHR smooth muscle cells was mediated by EDHF, as in NWR. 5. Our results indicate that the hypotensive effect of cholecalciferol in the SHR is probably due to the normalization of vascular reactivity, by restoring the functioning of apamin- and ATP-sensitive K+ channels located in the vascular smooth muscle cell membrane, which are impaired in the SHR.  相似文献   

15.
该文阐述电压依赖性钙通道不同分型与亚型和抗高血压药物的关系。(1)传统的L型电压依赖性钙通道阻断剂舒张肾入球小动脉,但对肾出球小动脉无作用。第3代新的双氢吡啶类钙通道阻断剂(manidipine,nilvadipine,benzin-damine和efonidipine)能同时作用L及T型钙通道,对肾出球小动脉也能舒张,故对肾性高血压有效,并起保护肾脏作用。(2)L型钙通道的主要组成α1c亚基,在高血压时表达增加,使钙通道数量增多,从而加速高血压的发展,故能使α1c亚基数目恢复正常的药物,有望用于临床治疗高血压。  相似文献   

16.
Establishment of stable cell lines that constitutively express Ca(2+) channels at high density and that are useful for in vitro studies may be complicated by problems with seal quality and duration during whole-cell patch-clamp electrophysiology. The current studies describe the generation and characterization of cells that express the human alpha1H T-type Ca(2+) channel under the control of a tetracycline-inducible expression system. Western blot and immunostaining studies revealed that expression of the alpha1H protein occurred only in the presence of tetracycline. Using the whole-cell patch-clamp method, the cells displayed peak inward currents of 1.15 +/- 0.14 nA in response to voltage-clamp steps. The T-type Ca(2+) current was inhibited by the T-type Ca(2+) channel antagonist, mibefradil, with an IC(50) of 160 nM. This cell line, with inducible channel expression, sealed with longer duration during whole-cell patch-clamp recording when compared with a cell line that constitutively expresses the alpha1H Ca(2+) channel. Ca(2+) influx through this channel could also be detected after the addition of extracellular Ca(2+). The amount of Ca(2+) influx was dependent on the [Ca](o) with an EC(50) of 4 mM. The Ca(2+) influx was also inhibited by mibefradil with a potency (IC(50) = 183 nM) similar to that observed in the voltage-clamp studies. Overall, this inducible alpha1H Ca(2+) channel-expressing cell line is useful for the study of human T-type Ca(2+) channel function, and offers advantages over a similar cell line that constitutively expresses the channel.  相似文献   

17.
1. Experimental hypertension is associated with several functional alterations of vascular endothelium and smooth muscle, but relatively few studies have examined the control of arterial tone in isolated vascular preparations from patients with essential hypertension. Therefore, we compared functional characteristics in vitro of distal ring segments of the mesenteric artery from 17 hypertensive and 22 normotensive humans. 2. Arterial constrictor responses induced by cumulative addition of Ca(2+) in the presence of noradrenaline (NA) were more effectively inhibited by the Ca(2+) entry blocker nifedipine (0.5 nM) in hypertensive than normotensive subjects (by 55.4+/-4.9, n=17 and 35.0+/(-5.2%), n=22, respectively). Also the contractions elicited by high concentrations of KCl were more effectively inhibited by nifedipine in arterial rings from hypertensive than normotensive patients (by 38.9+/(-3.7), n=17 and 20. 2+/(-4.6%), n=22, respectively). However, the concentration-response curves of contractions to NA, serotonin and KCl in the absence of nifedipine were similar between the study groups. 3. The concentration-response curves of endothelium-dependent relaxations to acetylcholine and Ca(2+) ionophore A23187, as well as of endothelium-independent relaxations to the nitric oxide donor nitroprusside, beta-adrenoceptor agonist isoprenaline and K+ channel opener cromakalim did not show any differences between the groups. Moreover, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (0.1 mM) almost abolished the relaxations to acetylcholine and Ca(2+) ionophore in both groups, indicating that these responses were largely mediated by nitric oxide. The function of arterial sodium pump was evaluated by relaxations elicited by the return of K+ upon contractions induced by K+-free solution. The rate of K+-relaxation was similar in hypertensive and normotensive arteries (for all these responses n=20 - 22 in the normotensive and 15 - 17 in the hypertensive group). 4. These results suggest abnormal function of voltage-dependent Ca(2+) channels in arterial smooth muscle of hypertensive patients, whereas vascular responses to endothelium-dependent and -independent vasodilators and classical contractile agents were similar between hypertensive and normotensive subjects. The present findings support the view that blockade of voltage-dependent Ca(2+) channels is an effective means of reducing arterial tone in essential hypertension.  相似文献   

18.
Ca(2+) channels involved in the endothelin-1-induced mitogenic response of cultured rat thoracic aorta smooth muscle cells, A7r5 cells, were characterized using the Ca(2+) channel blockers, LOE 908 and SK&F 96365. Stimulation of A7r5 cells with endothelin-1 induced a mitogenic response as well as a biphasic increase in the intracellular-free Ca(2+) concentration. Based on the sensitivity to nifedipine, a specific blocker of L-type voltage-operated Ca(2+) channel (VOCC), Ca(2+) influx through VOCC has a minor role in endothelin-1-induced mitogenic responses. On the other hand, Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) plays an important part in endothelin-1-induced mitogenesis. Moreover, based on their sensitivity to SK&F 96365 and LOE 908, VICCs consist of two types of Ca(2+)-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC). Ca(2+) influx through NSCC-1, NSCC-2 and SOCC contributes to 35%, 30% and 35%, respectively, to the nifedipine-resistant component of the endothelin-1 mitogenic response.  相似文献   

19.
Previously, it was found that total saponins from panax notoginseng inhibited Ca2+ influx coupling to activation of alpha1-adrenoceptor. This study was designed to investigate the effects of ginsenoside-Rd from total saponins of panax notoginseng on receptor-operated (ROCC) and store-operated (SOCC) Ca2+ channels in vascular smooth muscle cells using fura-2 fluorescence, whole cell patch clamp ion channel recording, radio-ligand-receptor binding, 45Ca2+ radio-trace and organ bath techniques. It was found that ginsenoside-Rd reduced phenylephrine-induced contractile responses and Ca2+ influx in normal media without significant effect on these responses in Ca2+ -free media. Ginsenoside-Rd also decreased phenylephrine- and thapsigargin-induced inward Ca2+ currents, and attenuated thapsigargin- and 1-oleoy-2-acetyl-sn-glycerol (OAG)-induced cation entries that are coupled to ROCC and SOCC respectively. Ginsenoside-Rd failed to inhibit KCl-induced contraction of rat aortal rings and Ca2+ influx, and did not alter voltage-dependent inward Ca2+ current (VDCC) which was blocked by nifedipine. Also, ginsenoside-Rd did not change binding site and affinity of [3H]-prazosin for alpha1-adrenoceptor in the vascular plasma membrane. These results suggest that ginsenoside-Rd, as an inhibitor, remarkably inhibits Ca2+ entry through ROCC and SOCC without effects on VDCC and Ca2+ release in vascular smooth muscle cells.  相似文献   

20.
In non-excitable cells, activation of G-protein-coupled phospholipase C (PLC)-linked receptors causes the release of Ca(2+) from intracellular stores, which is followed by transmembrane Ca(2+) entry. This Ca(2+) entry underlies a small and sustained phase of the cellular [Ca(2+)](i) increases and is important for several cellular functions including gene expression, secretion and cell proliferation. This form of transmembrane Ca(2+) entry is supported by agonist-activated Ca(2+)-permeable ion channels that are activated by store depletion and is referred to as store-operated Ca(2+) entry (SOCE) and represents a major pathway for agonist-induced Ca(2+) entry. In excitable cells such as smooth muscle cells, Ca(2+) entry mechanisms responsible for sustained cellular activation are normally considered to be mediated via either voltage-operated or receptor-operated Ca(2+) channels. Although SOCE occurs following agonist activation of smooth muscle, this was thought to be more important in replenishing Ca(2+) stores rather than acting as a source of activator Ca(2+) for the contractile process. This review summarizes our current knowledge of SOCE as a regulator of vascular smooth muscle tone and discusses its possible role in the cardiovascular function and disease. We propose a possible hypothesis for its activation and suggest that SOCE may represent a novel target for pharmacological therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号