首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The pharmacological profile and the anatomical localization of dopamine D1-like and D2-like receptors were studied in sections of rat adrenal medulla, with radioligand binding and autoradiographic techniques, respectively. [3H]([R]-(+)-chloro-2,3,4,5-tetrahydro-5-phenyl-1H-3benzazepin-al hemimaleate) (SCH 23390) was used as a ligand for dopamine D1-like receptors and [3H]spiperone was used as a ligand for dopamine D2-like receptors. Radioligand binding and light microscope autoradiography did not show specific [3H]SCH 23390 binding in sections of rat adrenal medulla. This suggests that rat adrenal medulla does not express dopamine D1-like receptors. [3H]Spiperone was specifically bound to sections of rat adrenal medulla. The binding was time-, temperature- and concentration-dependent, with a dissociation constant (Kd) of 1.05 nM and a maximum density of binding sites (Bmax) of 100.2 ± 3.8 fmol/mg tissue. The pharmacological profile of [3H]spiperone binding to rat adrenal medulla was similar to that displayed by neostriatum, which is known to express dopamine D2 receptors. Light microscope autoradiography showed the accumulation of specifically bound [3H]spiperone as silver grains within sections of adrenal medulla. Silver grains were found primarily over the cellular membrane of chromaffin cells. The above data indicate that chromaffin cells of the rat adrenal medulla express dopamine receptors belonging to the dopamine D2 receptor subtype. These receptors are probably involved in the modulation of catecholamine release from chromaffin cells, as documented by functional studies.  相似文献   

2.
The endocannabinoid system consists of several endogenous lipids, including anandamide and 2-arachidonoyl-glycerol (2-AG), and constitute a retrograde signalling system, which modulates neurotransmitter release and synaptic plasticity. Specific brain-type cannabinoid receptors (CB1) are widely distributed in the central nervous system, and are localized presynaptically. Mounting evidence, reviewed here, indicates that cannabinoids can act to increase food consumption, and cannabinoid CB1 receptor antagonists/inverse agonists reduce food intake and suppress operant responding for food rewards. Hence, endocannabinoids provide the first example of a retrograde signalling system, which is strongly implicated in the control of food intake. Benzodiazepine and opioid palatability-dependent appetite are well-established processes supported by several sources of convergent evidence; they provide pharmacological benchmarks against which to evaluate the endocannabinoids. To date, evidence that endocannabinoids specifically modulate palatability as an affective evaluative process is insufficient and not compelling. Endocannabinoids may have important clinical utility in the treatment of human obesity and forms of eating disorders.  相似文献   

3.
Recent research suggests that the endogenous cannabinoids (“endocannabinoids”) and their cannabinoid receptors have a major influence during pre- and postnatal development. First, high levels of the endocannaboid anandamide and cannabinoid receptors are present in the preimplantation embryo and in the uterus, while a temporary reduction of anandamide levels is essential for embryonal implantation. In women accordingly, an inverse association has been reported between fatty acid amide hydrolase (the anandamide degrading enzyme) in human lymphocytes and miscarriage. Second, CB1 receptors display a transient presence in white matter areas of the pre- and postnatal nervous system, suggesting a role for CB1 receptors in brain development. Third, endocannabinoids have been detected in maternal milk and activation of CB1 receptors appears to be critical for milk sucking by newborn mice, apparently activating oral–motor musculature. Fourth, anandamide has neuroprotectant properties in the developing postnatal brain. Finally, prenatal exposure to the active constituent of marihuana (Δ9-tetrahydrocannabinol) or to anandamide affects prefrontal cortical functions, memory and motor and addictive behaviors, suggesting a role for the endocannabinoid CB1 receptor system in the brain structures which control these functions. Further observations suggest that children may be less prone to psychoactive side effects of Δ9-tetrahydrocannabinol or endocannabinoids than adults. The medical implications of these novel developments are far reaching and suggest a promising future for cannabinoids in pediatric medicine for conditions including “non-organic failure-to-thrive” and cystic fibrosis.  相似文献   

4.
Recent reports have shown that the selective dopamine D1-like agonist SKF 83822 [which stimulates adenylate cyclase, but not phospholipase C] induces prominent behavioral seizures in mice, whereas its benzazepine congener SKF 83959 [which stimulates phospholipase C, but not adenylate cyclase] does not. To investigate the relative involvement of D1 vs D5 receptors in mediating seizures, ethological behavioral topography and cortical EEGs were recorded in D1, D5 and DARPP-32 knockout mice in response to a convulsant dose of SKF 83822. SKF 83822-induced behavioral and EEG seizures were gene dose-dependently abolished in D1 knockouts. In both heterozygous and homozygous D5 knockouts, the latency to first seizure was significantly increased and total EEG seizures were reduced relative to wild-types. The majority (60%) of homozygous DARPP-32 knockouts did not have seizures; of those having seizures (40%), the latency to first seizure was significantly increased and the number of high amplitude, high frequency polyspike EEG events was reduced. In addition, immunoblotting was performed to investigate downstream intracellular signalling mechanisms at D1-like receptors following challenge with SKF 83822 and SKF 83959. In wild-types administered SKF 83822, levels of ERK1/2 and GluR1 AMPA receptor phosphorylation increased two-fold in both the striatum and hippocampus; in striatal slices DARPP-32 phosphorylation at Thr34 increased five-fold relative to vehicle-treated controls. These findings indicate that D1, and to a lesser extent D5, receptor coupling to DARPP-32, ERK1/2 and glutamatergic signalling is involved in mediating the convulsant effects of SKF 83822.  相似文献   

5.
The purpose of the present study was to determine whether exposure to amphetamine during the preweanling period would alter dopaminergic functioning in the dorsal striatum of adult rats. In three experiments, we assessed the effects of repeated amphetamine treatment on striatal protein kinase A (PKA) activity, dopamine (DA) D1-like and D2-like binding sites, and DA content. Rats were pretreated with saline or amphetamine (2.5 mg/kg, ip) for 7 consecutive days starting on postnatal day (PD) 11. At PD 90, rats were killed and their dorsal striata (i.e., caudate–putamen) were removed and frozen until time of assay. Amphetamine pretreatment produced long-term reductions in both striatal PKA activity and DA content. Early amphetamine exposure also resulted in an upregulation of D2-like binding sites, while leaving D1-like binding sites unaffected. It is likely that the upregulation of D2-like binding sites was stimulated by the persistent decline in striatal DA levels. Although speculative, it is possible that excess striatal D2-like receptors were responsible for inhibiting PKA activity through actions on the cAMP signal transduction pathway. The behavioral relevance of these amphetamine-induced neurochemical changes has not yet be determined.  相似文献   

6.
A drug discrimination procedure was used to examine the neuropharmacology of (−)-ephedrine (5 mg/kg), a sympathomimetic amine found in a variety of dietary supplements. (−)-Ephedrine has caused concern because of its use as a precursor in the manufacture of street drugs (e.g. methamphetamine) and its potential for abuse and toxicity. In the present study, the catecholamine reuptake inhibitors mazindol and nomifensine, the norepinephrine (NE) reuptake inhibitor desipramine, and the dopamine D2-like (e.g. D2, D3 and D4) agonist quinpirole substituted for (−)-ephedrine (80% (−)-ephedrine-lever responding). The NE reuptake inhibitor nisoxetine, the D1-like (e.g. D1 and D5) agonists (±)-SKF 38393 and SKF 82958, and the mixed D1-/D2-like agonist apomorphine occasioned intermediate levels of responding (50–79% (−)-ephedrine-lever responding). The (−)-ephedrine cue was antagonized by the D1-like antagonist SCH 23390 and the 1-adrenoceptor antagonist prazosin as well as the D2-like antagonists (−)-eticlopride and haloperidol, although only at doses that disrupted responding in some rats. The discriminative stimulus effects of a small dose of (−)-ephedrine (1.25 mg/kg) were enhanced by the 2-adrenoceptor antagonist idazoxan and to a lesser extent by the β-adrenoceptor antagonist (−)-propranolol. However, the 2-adrenoceptor agonist clonidine (0.04 mg/kg) did not attenuate the (−)-ephedrine stimulus. These results suggest that D1-, D2-like, and 1-adrenergic receptors mediate the discriminative stimulus effects of (−)-ephedrine. Substitution of desipramine for (−)-ephedrine and not for some other stimulants suggests that NE transmission is a prominent feature of the (−)-ephedrine discriminative stimulus, and that NE underlies therapeutic and abuse-related effects of (−)-ephedrine that diverge from those of other stimulants.  相似文献   

7.
Male Wistar rats were trained to discriminate (−)-nicotine (0.4 mg/kg) from saline under a two-lever, fixed-ratio 10 schedule of water reinforcement. During test sessions the following drugs were coadministered with saline (substitution studies) or nicotine (0.025–0.4 mg/kg; combination studies): the 4β2 nicotinic acetylcholine receptor subtype antagonist dihydro-β-erythroidine (DHβE), the non-selective nicotinic acetylcholine receptor subtype antagonist mecamylamine, the 7 nicotinic acetylcholine receptor subtype antagonist methyllycaconitine (MLA), the 4β2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA), the cannabinoid CB1 receptor antagonist/partial agonist rimonabant, the cannabinoid CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]heptan-2-yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methybenzyl)pyrazole-3-carboxamide (SR 144528), the cannabinoid CB1/2 receptor agonists (−)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol (CP 55,940) or R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)-methanone mesylate (WIN 55,212-2), the endogenous cannabinoid agonist and non-competitive 7 nicotinic acetylcholine receptor subtype antagonist anandamide, the anandamide uptake and fatty acid amide hydrolase inhibitor N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM-404), the fatty acid amide hydrolase inhibitor cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB 597), AM-404 + anandamide or URB 597 + anandamide. 5-IA (0.01 mg/kg) fully substituted for nicotine, while other drugs were inactive. In combination studies, DHβE and mecamylamine dose-dependently attenuated the discriminative stimulus effects of nicotine and the full substitution of 5-IA, while MLA, rimonabant, SR 144528, CP 55,940, WIN 55,212-2, and URB 597 did not alter the nicotine cue. Pretreatment with AM-404 + anandamide or URB 597 + anandamide weakly enhanced nicotine-lever responding. Our pharmacological analyses demonstrates that the expression of nicotine discrimination is under the control of nicotinic acetylcholine receptor subtypes composed of 4β2 (but not of 7) subunits. Furthermore, we excluded the involvement of either cannabinoid CB1 and CB2 receptors or increases in the endocannabinoid tone in the nicotine discrimination.  相似文献   

8.
Capsaicin and its analogue N-arachidonoyl-vanillyl-amine (arvanil) are agonists of vanilloid VR1 receptors, and suppress spontaneous activity in mice through an unknown mechanism. Here, we tested in rats the effect on motor behavior of: (1) capsaicin; (2) N-linoleoyl-vanillyl-amine (livanil) and N--linolenoyl-vanillyl-amine (linvanil), which, unlike arvanil, have very little affinity for cannabinoid CB1 receptors; and (3) the endocannabinoid anandamide (N-arachidonoyl-ethanolamine), which is a full agonist at both cannabinoid CB1 and vanilloid VR1 receptors. All compounds, administered i.p., dose-dependently (0.1–10 mg/kg) inhibited ambulation and stereotypic behavior and increased inactivity in the open field test. The rank of potency observed in vivo (livanil>capsaicin>linvanil>anandamide) bore little resemblance with the relative potencies in a functional assay for rat vanilloid VR1 receptors (livanil=linvanil>capsaicin>anandamide) and even less with the relative affinities in rat CB1 receptor binding assays (anandamide>livanil>linvanil>capsaicin). The vanilloid VR1 receptor antagonist capsazepine (10 mg/kg, i.p.) blocked the effect of capsaicin but not of livanil or anandamide, whereas the CB1 receptor antagonist (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide.HCl (SR141716A, 3 mg/kg, i.p.) antagonized the actions of the CB1 receptor agonist Δ9-tetrahydrocannabinol, but not of livanil, anandamide or capsaicin. Anandamide occluded the effects of livanil on locomotion, possibly suggestive of a common mechanism of action for the two compounds. Finally, stimulation with capsaicin of cells expressing rat vanilloid VR1 receptors led to anandamide formation. These data suggest that motor behavior can be suppressed by the activation of: (1) vanilloid receptors, possibly via the intermediacy of anandamide; or (2) capsazepine- and SR141716A-insensitive sites of action for anandamide, livanil and linvanil, possibly the same that were previously suggested to mediate arvanil hypokinetic effects in mice.  相似文献   

9.
Recent research in our laboratory has demonstrated that stress activates an endogenous cannabinoid mechanism that suppresses sensitivity to pain [Nature 435 (2005) 1108]. In this work, CB1 antagonists administered systemically blocked stress-induced analgesia induced by brief, continuous foot-shock. The present studies were conducted to examine the role of cannabinoid CB1 receptors in the brainstem rostral ventromedial medulla (RVM) and midbrain dorsolateral periaqueductal gray (PAG) in cannabinoid stress-induced analgesia (SIA). Pharmacological blockade of vanilloid TRPV1 receptors with capsazepine, administered systemically, did not alter cannabinoid SIA, suggesting that cannabinoid SIA was not dependent upon TRPV1. Microinjection of the competitive CB1 antagonist rimonabant (SR141716A) into either the RVM or dorsolateral PAG suppressed stress antinociception in this model. Rimonabant was maximally effective following microinjection into the dorsolateral PAG. The fatty-acid amide hydrolase (FAAH) inhibitor arachidonoyl serotonin (AA-5-HT) was subsequently used to block hydrolysis of endocannabinoids and enhance SIA. Systemic and site-specific injections of AA-5-HT into either the dorsolateral PAG or RVM induced CB1-mediated enhancements of SIA. Palmitoyltrifluoromethylketone, a potent inhibitor of FAAH and phospholipase A2 activity, administered systemically, exerted similar effects. In all conditions, the antinociceptive effects of each FAAH inhibitor were completely blocked by coadministration of the CB1 antagonist rimonabant. The present results provide evidence that a descending cannabinergic neural system is activated by environmental stressors to modulate pain sensitivity in a CB1-dependent manner.  相似文献   

10.
Cannabinoid CB2 receptors have been implicated in antinociception in animal models of both acute and chronic pain. We evaluated the role both cannabinoid CB1 and CB2 receptors in mechanonociception in non-arthritic and arthritic rats. The antinociceptive effect of Δ9-tetrahydrocannabinol (Δ9THC) was determined in rats following administration of the cannabinoid CB1 receptor-selective antagonist, SR141716A, the cannabinoid CB2 receptor-selective antagonist, SR144528, or vehicle. Male Sprague–Dawley rats were rendered arthritic using Freund’s complete adjuvant and tested for mechanical hyperalgesia in the paw-pressure test. Arthritic rats had a baseline paw-pressure of 83 ± 3.6g versus a paw-pressure of 177 ± 6.42g in non-arthritic rats. SR144528 or SR141716A (various doses mg/kg; i.p.) or 1:1:18 (ethanol:emulphor:saline) vehicle were injected 1 h prior to Δ9THC (4mg/kg; i.p) or 1:1:18 vehicle and antinociception determined 30min post Δ9THC. AD50's for both antagonists were calculated with 95% confidence limits. In addition, midbrain and spinal cord were removed for determination of cannabinoid CB1 and CB2 receptor protein density in the rats. SR144528 significantly attenuated the antinociceptive effect of Δ9THC in the arthritic rats [AD50 = 3.3 (2.7–4) mg/kg], but not in the non-arthritic rats at a dose of 10/mg/kg. SR141716A significantly attenuated Δ9THC-induced antinociception in both the non-arthritic [AD50 = 1.4 (0.8–2) mg/kg] and arthritic rat [AD50 = 2.6 (1.8–3.1) mg/kg]. SR141716A or SR144528 alone did not result in a hyperalgesic effect as compared to vehicle. Our results indicate that the cannabinoid CB2 receptor plays a critical role in cannabinoid-mediated antinociception, particularly in models of chronic inflammatory pain.  相似文献   

11.
Polymorphisms in genes involved in neurotransmission in relation to smoking   总被引:4,自引:0,他引:4  
Smoking behavior is influenced by both genetic and environmental factors. The genetic contribution to smoking behavior is at least as great as its contribution to alcoholism. Much progress has been achieved in genomic research related to cigarette-smoking within recent years. Linkage studies indicate that there are several loci linked to smoking, and candidate genes that are related to neurotransmission have been examined. Possible associated genes include cytochrome P450 subfamily polypeptide 6 (CYP2A6), dopamine D1, D2, and D4 receptors, dopamine transporter, and serotonin transporter genes. There are other important candidate genes but studies evaluating the link with smoking have not been reported. These include genes encoding the dopamine D3 and D5 receptors, serotonin receptors, tyrosine hydroxylase, trytophan 2,3-dioxygenase, opioid receptors, and cannabinoid receptors. Since smoking-related factors are extremely complex, studies of diverse populations and of many aspects of smoking behavior including initiation, maintenance, cessation, relapse, and influence of environmental factors are needed to identify smoking-associated genes. We now review genetic polymorphisms reported to be involved in neurotransmission in relation to smoking.  相似文献   

12.
The phenotype of spontaneous behaviour in mice with targeted gene deletion of the D1A dopamine receptor was investigated topographically. Via direct visual observation, individual elements of behaviour were resolved and quantified using an ethologically-based, rapid time-sampling behavioural check-list procedure. Relative to wildtypes (D1A +/+), D1A-null (−/−) mice evidenced over initial exploration significant reductions in rearing free, sifting and chewing, but significant increases in locomotion, grooming and intense grooming. Sniffing and rearing to a wall habituated less readily in D1A-null mice such that these behaviours occurred subsequently to significant excess: increases in locomotion were persistent. The ethogram of spontaneous behaviour in D1A-null mice was characterised by neither ‘hypoactivity’ or ‘hyperactivity’ but, rather, by prominent topographical shifts between individual elements of behaviour that could not be encapsulated by either term. Given the substantial body of evidence that grooming and particularly intense grooming constitute the most widely accepted behavioural index of D1-like receptor function, the elevation of such behaviour in D1A-null mice was paradoxical; it may reflect (over)compensatory processes subsequent to developmental absence of D1A receptors and/or the involvement of a D1-like receptor other than/additional to the D1A subtype.  相似文献   

13.
Alterations in cortical EEG activity in male rats produced by putative agonists at dopamine (DA) autoreceptors and by antagonists at postsynaptic DA receptors were compared in order to study, whether an impairment in dopaminergic neurotransmission via two different mechanisms might result in similar or different effects. Simultaneously to the EEG recordings, gross behaviour was observed. Putative agonists at DA autoreceptors (apomorphine 0.05 mg/kg, quinpirole 0.05 mg/kg, or talipexole 0.02 mg/kg s.c.) produced increases in the power iin all of the frequency bands, except beta-2, with the most pronounced increase in the delta band. These EEG alterations were accompanied by hypokinesia, ptosis and yawning. In contrast, antagonists at DA receptors (haloperidol 0.1 mg/kg i.p., D2 blocker) or SCH 23390 (0.2 mg/kg i.p., D1 blocker) led to little increases in the delta band, but more pronounced increases in the alpha-2 band. Behavioural signs were hypokinesia, but little ptosis and yawning. The combination of both blockers produced, in addition, strong increases in the delta band and behavioural signs of ptosis and yawning. These results suggest that activation of putative dopamine autoreceptors produced EEG patterns and behavioural patterns different from those produced by blockade of either D1 or D2 postsynaptic dopamine receptors. In contrast, the effects following a stimulation of putative DA autoreceptors, which are expected to decrease the release of the agonist and its action at postsynaptic D1 and D2 receptors, were very similar to those found after a combined blockade of both types of postsynaptic dopamine receptors.  相似文献   

14.
Serotonergic and dopaminergic involvement in hyperthermia induced by a serotonin (5-hydroxytryptamine, 5-HT)-releasing drug, p-chloroamphetamine, was investigated in mice. Neither the 5-HT transporter inhibitor fluoxetine nor the 5-HT depleter p-chlorophenylalanine affected p-chloroamphetamine-induced hyperthermia. The dopamine depleter -methyl-p-tyrosine significantly reduced p-chloroamphetamine-induced hyperthermia. The dopamine D1 receptor antagonist 7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390) antagonized p-chloroamphetamine-induced hyperthermia, although the dopamine D2 receptor antagonist sulpiride was without effect. These results indicate that p-chloroamphetamine-induced hyperthermia in mice is mediated by dopamine release followed by activation of the dopamine D1 receptor.  相似文献   

15.
These experiments aimed to assess whether enhanced activity at the cannabinoid CB1 receptor elicits antidepressant-like effects. To examine this we administered 1 and 5 mg/kg doses of the endocannabinoid uptake inhibitor AM404; 5 and 25 μg/kg doses of HU-210, a potent CB1 receptor agonist; 1, 2.5 and 5 mg/kg of oleamide, which elicits cannabinoidergic actions; 1 and 5 mg/kg doses of AM 251, a selective CB1 receptor antagonist, as well as 10 mg/kg desipramine (a positive antidepressant control) and measured the duration of immobility, during a 5-min test session of the rat Porsolt forced swim test. Results demonstrated that administration of desipramine reduced immobility duration by about 50% and that all of AM404, oleamide and HU-210 administration induced comparable decreases in immobility that were blocked by pretreatment with AM 251. Administration of the antagonist AM 251 alone had no effect on immobility at either dose. These data suggest that enhancement of CB1 receptor signaling results in antidepressant effects in the forced swim test similar to that seen following conventional antidepressant administration.  相似文献   

16.
The dopamine D3 receptor agonist PD 128907 decreased body temperature in the rat. The selective dopamine D3 and D4 receptor antagonists, A-437203 and L-745,870, respectively, did not prevent this effect. In contrast, PD 128907-induced hypothermia was antagonized by SCH 23390, a selective D1 receptor antagonist, and by L-741,626, a selective D2 receptor antagonist. Moreover, the selective D2 receptor agonist trihydroxy-N-n-propylnoraporphine (TNPA) elicited a robust hypothermia which was prevented by pretreatment with L-741,626 but not by A-437203. In agreement with previous data obtained in D3 knock-out mice, present results suggest that D2 rather than D3 receptors mediate dopamine receptor agonist-induced hypothermia in rats. In addition, it appears that both D1 and D2 receptors may be involved in a cooperative manner.  相似文献   

17.
Involvement of cannabinoid CB2 receptor and effect of cannabinoid CB2 receptor antagonist/inverse agonists on cutaneous inflammation were investigated. Mice ears topically exposed to an ether-linked analogue of 2-arachidonoylglycerol (2-AG-E) or selective cannabinoid CB2 receptor agonist, {4-[4-(1,1-dimethylheptyl)-2,6-dimethoxy-phenyl]-6.6-dimethyl-bicyclo[3.1.1]hept-2-en-2-yl}-methanol (HU-308), had early and late ear swelling (0–24 h and 1–8 days after exposure, respectively). Both types of responses induced by 2-AG-E were significantly suppressed by oral administration of cannabinoid CB2 receptor antagonist/inverse agonists, [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide}} (SR144528). In contrast, JTE-907 did not affect arachidonic acid-induced swelling. Orally administered JTE-907 (0.1–10 mg/kg) and SR144528 (1 mg/kg) also produced significant inhibition of dinitrofluorobenzene-induced ear swelling, with increased cannabinoid CB2 receptor mRNA expression observed in the inflamed ear. These results suggest that cannabinoid CB2 receptor is partially involved in local inflammatory responses and cannabinoid CB2 receptor antagonist/inverse agonist has beneficial effects on ear swelling.  相似文献   

18.
The thrifty genotype hypothesis postulates that the genetically determined ability to grow obese and insulin resistant in times of food abundance confers a survival advantage in times of famine. Obviously, this ability poses a major health threat in modern times, where food is always available in large quantities. In the last 10–15 years, many genes encoding pathways that orchestrate energy balance and fuel flux have been discovered. This paper summarizes the evidence that diminished dopaminergic tone in hypothalamic nuclei contributes to the “thrifty” genotype/phenotype. Reduced dopaminergic neurotransmission in the suprachiasmatic nucleus of seasonally obese animals appears to drive noradrenalin and NPY mediated transmissions in other nuclei to induce the obesity syndrome at the appropriate time of year. Treatment with dopamine D2 receptor agonists can fully reverse the metabolic syndrome in these animals. Similar mechanisms are operative in non-seasonal obese animal models. In man, treatment with dopamine D2 receptor antagonists induces obesity and type 2 diabetes mellitus, whereas dopamine D2 receptor activation ameliorates the metabolic profile in obese nondiabetic and diabetic humans. Various loss of function mutations of the dopamine D2 receptor gene are associated with overweight in humans. In concert, the data support the notion that diminution of dopaminergic (dopamine D2 receptor mediated) transmission in relevant hypothalamic nuclei sets the stage for efficient partitioning of ingested nutrients to contribute to a phenotype that is not so thrifty anymore.  相似文献   

19.
Rationale Marijuana use in adolescents is a highly social activity, and interacting endocannabinoid and opioid systems may modulate social reward. However, cannabinoid exposure has been reported to reduce social behavior. Objectives The aim of this study was to elucidate the mechanisms underlying the paradoxical relationship between cannabinoid exposure and sociability. Materials and methods We investigated the effect of cannabinoid agonists with a different mechanism of action on social play behavior in adolescent rats. In addition, we examined whether endocannabinoid neurotransmission interacts with opioid and dopaminergic neurotransmission in the modulation of social play behavior. Results The direct CB1 cannabinoid receptor agonist WIN55,212-2 reduced social play. However, the indirect cannabinoid agonist URB597, which inhibits the hydrolysis of the endocannabinoid anandamide, enhanced social play. This effect of URB597 depended upon stimulation of opioid and dopamine receptors. The well-known stimulatory effect of morphine on social play was attenuated by the CB1 cannabinoid receptor antagonist SR141716A, but independent of dopamine receptor stimulation. Combined treatment with ineffective doses of URB597 and morphine increased social play. Conclusions Cannabinoid neurotransmission can both enhance and inhibit social interaction in adolescent rats depending on how the endocannabinoid system is stimulated. Activation of cannabinoid receptors throughout the brain, which occurs during cannabis use, inhibits sociability. In contrast, on-demand release of endocannabinoids facilitates social interaction, which is magnified by indirect cannabinoid agonists through an interaction with opioid and dopaminergic neurotransmission. These results shed light on the paradoxical relationship between cannabis exposure and sociability and suggest that endocannabinoid degradation inhibitors hold promise for the treatment of social dysfunctions.  相似文献   

20.
Dopamine D1 and D2 receptors and uptake sites were studied in the gerbil hippocampus, parietal cortex and thalamus 1 h to 7 days after 10 min of cerebral ischemia using the occlusion of bilateral common carotid arteries. [3H]SCH23390 ([N-methyl-3H]R[+]-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-7-ol-benzazepine) and [3H]mazindol were used as markers of dopamine D1 receptors and uptake sites, respectively. [3H]Nemonapride was used to label dopamine D2 receptors. No obvious alteration in [3H]SCH23390 and [3H]mazindol binding was found in the hippocampus up to 48 h after ischemia. These bindings showed a significant reduction in the hippocampus after 7 days of recirculation. In contrast, [3H]nemonapride binding was unaffected in the hippocampus during the recirculation periods. The parietal cortex and thalamus also exhibited no significant changes in [3H]SCH23390, [3H]nemonapride and [3H]mazindol binding after ischemia. MAP2 (microtubule-associated protein 2) immunoreactivity was unchanged in all regions up to 48 h after ischemia. Thereafter, a marked loss of MAP2-immunoreactive neurons was observed in the hippocampal CA1 and CA3 neurons 7 days after recirculation. These findings were consistent with histological observations with cresyl violet staining. Our results demonstrate that dopamine D1 receptors and dopamine uptake sites in the hippocampus are susceptible to cerebral ischemia, whereas dopamine D2 receptors in this region are particularly resistant. Furthermore, these findings suggest that dopamine transmission may not be major factor in producing ischemic hippocampal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号