首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhesin‐mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species‐specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non‐mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram‐positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD‐SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species‐ and subspecies‐dependent adhesin interactions.  相似文献   

2.
It is well established that aging is associated with increased susceptibility to infectious diseases. Fusobacterium nucleatum is a well‐known bacterial species that plays a central bridging role between early and late colonizers in the human oral cavity. Further, the ability of F. nucleatum to invade gingival fibroblasts (GFs) is critical to the development of periodontal diseases. However, the mechanisms underlying the age‐related infection of GFs by F. nucleatum remain unknown. We used young (fourth passage) and senescent (22nd passage) GFs to investigate the mechanisms of F. nucleatum infection in aged GFs and first observed increased invasion of F. nucleatum in senescent GFs. We also found that the co‐localization of caveolin‐1 (Cav‐1), a protein marker of aging, with F. nucleatum and the knockdown of Cav‐1 in GFs reduced F. nucleatum invasion. Additionally, F. nucleatum infection triggered the production of reactive oxygen species (ROS) through activation of NADPH oxidase in GFs, but senescent GFs exhibited significantly lower levels of NADPH oxidase activity and ROS production compared with young GFs in both the uninfected and infected conditions. Also, senescent GFs exhibited a decline in proinflammatory cytokine production and extracellular signal regulated kinase (ERK) phosphorylation following F. nucleatum infection. Interestingly, the knockdown of Cav‐1 in senescent GFs increased NADPH oxidase activity and caused the upregulation of interleukin‐6 and interleukin‐8 and the phosphorylation of ERK. Collectively, the increased expression of Cav‐1 might play a critical role in F. nucleatum invasion and could hinder the host response in senescent GFs.  相似文献   

3.
Background: Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)‐6, IL‐8, and matrix metalloproteinase (MMP)‐9 by oral epithelial cells. Methods: Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real‐time polymerase chain reaction analysis while protein secretion was monitored by enzyme‐linked immunosorbent assays. Results: Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum–bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL‐6, IL‐8, and MMP‐9 by oral epithelial cells. However, pretreating the epithelial cells with an anti‐CD46 polyclonal antibody attenuated the production of IL‐6, IL‐8, and MMP‐9 in response to F. nucleatum. Such an inhibitory effect was not observed with non‐specific antibodies. Conclusions: The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.  相似文献   

4.
Autoinducer 2 (AI-2) is a quorum sensing molecule and plays an important role in dental biofilm formation, mediating interspecies communication and virulence expression of oral bacteria. Fusobacterium nucleatum connects early colonizing commensals and late colonizing periodontopathogens. F. nucleatum AI-2 and quorum sensing inhibitors (QSIs) can manipulate dental biofilm formation. In this study, we evaluated the effect of F. nucleatum AI-2 and QSIs on biofilm formation of Streptococcus gordonii and Streptococcus oralis, which are initial colonizers in dental biofilm. F. nucleatum AI-2 significantly enhanced biofilm growth of S. gordonii and attachment of F. nucleatum to preformed S. gordonii biofilms. By contrast, F. nucleatum AI-2 reduced biofilm growth of S. oralis and attachment of F. nucleatum to preformed S. oralis biofilms. The QSIs, (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone and d-ribose, reversed the stimulatory and inhibitory effects of AI-2 on S. gordonii and S. oralis, respectively. In addition, co-culture using a two-compartment system showed that secreted molecules of F. nucleatum had the same effect on biofilm growth of the streptococci as AI-2. Our results demonstrate that early colonizing bacteria can influence the accretion of F. nucleatum, a secondary colonizer, which ultimately influences the binding of periodontopathogens.  相似文献   

5.
6.
7.
Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of 55 kDa, as salivary α‐amylase by time‐of‐flight mass spectrometry and immuno‐reactions. Salivary α‐amylase is present in both monomeric and dimeric forms and we found that formation of the dimer depends on copper ions. The F. nucleatum adhered to both monomeric and dimeric salivary α‐amylases, but the numbers of bacteria bound to the dimeric form were more than those bound to the monomeric form. The degree of adherence of F. nucleatum to four α‐amylases from different sources was almost the same, however its binding to β‐amylase was considerably decreased. Among four α‐amylase inhibitors tested, acarbose and type 1 and 3 inhibitors derived from wheat flour showed significant activity against the adhesion of F.nucleatum to monomeric and dimeric amylases, however voglibose had little effect. Moreover F. nucleatum cells inhibited the enzymatic activity of salivary α‐amylase in a dose‐dependent manner. These results suggest that F. nucleatum plays more important and positive role as an early colonizer for maturation of oral microbial colonization.  相似文献   

8.
Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti‐caries activity. Scanning electron microscopy showed that co‐culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network‐like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real‐time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co‐cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co‐culture. A transwell‐based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact‐independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries.  相似文献   

9.
Periodontitis is initiated by bacteria in subgingival biofilms, which are composed mostly of Gram-negative anaerobes. Autoinducer 2 (AI-2) is a universal quorum sensing (QS) molecule that mediates intergeneric signalling in multispecies bacterial communities and may induce biofilm formation. As Fusobacterium nucleatum is the major coaggregation bridge organism that links early colonising commensals and late pathogenic colonisers in dental biofilms via the accretion of periodontopathogens, we hypothesised that AI-2 of F. nucleatum contributes to this interspecies interaction, and interruption of this signalling could result in the inhibition of biofilm formation of periodontopathogens. To test this hypothesis, we evaluated the effect of partially purified F. nucleatum AI-2 on monospecies biofilm as well as mutualistic interactions between F. nucleatum and the so-called ‘red complex’ (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia). Then we tested the effect of two QS inhibitors (QSIs), (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone (furanone compound) and d-ribose, on AI-2-induced biofilm formation and coaggregation. F. nucleatum AI-2 remarkably induced biofilm growth of single and dual species and coaggregation between F. nucleatum and each species of the ‘red complex’, all of which were inhibited by the QSIs. F. nucleatum AI-2 induced the expression of the representative adhesion molecules of the periodontopathogens, which were inhibited by the QSIs. Our results demonstrate that F. nucleatum AI-2 plays an important role in inter- and intraspecies interactions between periodontopathogens via enhanced expression of adhesion molecules and may be a target for the inhibition of pathogenic dental biofilm formation.  相似文献   

10.
Bacteria residing in oral biofilms live in a state of dynamic equilibrium with one another. The intricate synergistic or antagonistic interactions between them are crucial for determining this balance. Using the six‐species Zürich “supragingival” biofilm model, this study aimed to investigate interactions regarding growth and localization of the constituent species. As control, an inoculum containing all six strains was used, whereas in each of the further five inocula one of the bacterial species was alternately absent, and in the last, both streptococci were absent. Biofilms were grown anaerobically on hydroxyapatite disks, and after 64 h they were harvested and quantified by culture analyses. For visualization, fluorescence in situ hybridization and confocal laser scanning microscopy were used. Compared with the control, no statistically significant difference of total colony‐forming units was observed in the absence of any of the biofilm species, except for Fusobacterium nucleatum, whose absence caused a significant decrease in total bacterial numbers. Absence of Streptococcus oralis resulted in a significant decrease in Actinomyces oris, and increase in Streptococcus mutans (< .001). Absence of A. oris, Veillonella dispar or S. mutans did not cause any changes. The structure of the biofilm with regards to the localization of the species did not result in observable changes. In summary, the most striking observation of the present study was that absence of S. oralis resulted in limited growth of commensal A. oris and overgrowth of S. mutans. These data establish highlight S. oralis as commensal keeper of homeostasis in the biofilm by antagonizing S. mutans, so preventing a caries‐favoring dysbiotic state.  相似文献   

11.
Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1‐positive (HIV‐1+) patients regulate HIV‐1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV‐1+ patients has been demonstrated; however, their potential to impact HIV‐1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin‐4) challenged with periodontal pathogens, to modulate the HIV‐1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV‐1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme‐linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV‐1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV‐1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and interleukins ‐6 and ‐8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti‐GM‐CSF reduced the additive effect in periodontopathogen‐induced HIV‐1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV‐1 promoter activation in monocytes/macrophages, albeit this effect is most notable following direct stimulation of the cells with oral gram‐negative bacteria.  相似文献   

12.
Dark‐colored fruit berries are a rich source of polyphenols that could provide innovative bioactive molecules as natural weapons against dental caries. High‐quality extracts of cranberry, blueberry, and strawberry, and a combination of the three berry extracts (Orophenol), were used to treat 24‐h‐old Streptococcus mutans biofilms. The grown biofilms were treated with the berry extracts at concentrations ranging from 62.5 to 500 μg ml?1. Treated biofilms were assessed for metabolic activity, acidogenicity, biovolumes, structural organization, and bacterial viability. The biofilms treated with the cranberry and Orophenol extracts exhibited the most significant reductions in metabolic activity, acid production, and bacterial/exopolysaccharide (EPS) biovolumes, while their structural architecture appeared less compact than the control‐treated biofilms. The blueberry extract produced significant reductions in metabolic activity and acidogenicity only at the highest concentration tested, without significantly affecting bacterial/EPS biovolumes or biofilm architecture. Strawberry extracts had no significant effects on S. mutans biofilms. None of the berry extracts were bactericidal for S. mutans. The results indicate that cranberry extract was the most effective extract in disrupting S. mutans virulence properties without significantly affecting bacterial viability. This suggests a potential ecological role for cranberry phenols as non‐bactericidal agents capable of modulating pathogenicity of cariogenic biofilms.  相似文献   

13.
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence‐stimulating peptide. Eight competence‐stimulating peptide‐dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran‐dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild‐type. GbpC is known to be involved in the dextran‐dependent aggregation of S. mutans. An SMU.940gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran‐dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran‐dependent aggregation and biofilm formation.  相似文献   

14.
Streptococcus mutans is generally considered to be the principal etiological agent for dental caries. Many of the proteins necessary for its colonization of the oral cavity and pathogenesis are exported to the cell surface or the extracellular matrix, a process that requires the assistance of the export machineries. Bioinformatic analysis revealed that the S. mutans genome contains a prsA gene, whose counterparts in other gram‐positive bacteria, including Bacillus and Lactococcus, encode functions involved in protein post‐export. In this study, we constructed a PrsA‐deficient derivative of S. mutans and demonstrated that the prsA mutant displayed an altered cell wall/membrane protein profile as well as cell‐surface‐related phenotypes, including auto‐aggregation, increased surface hydrophobicity and abnormal biofilm formation. Further analysis revealed that the disruption of the prsA gene resulted in reduced insoluble glucan production by cell surface localized glucosyltransferases, and mutacin as well as cell surface‐display of a heterologous expressed GFP fusion to the cell surface protein SpaP. Our study suggested that PrsA in S. mutans encodes functions similar to those identified in Bacillus, and so is likely to be involved in protein post‐export.  相似文献   

15.
Background: The aim of the current study is to compare the prevalence of commensal bacteria, with beneficial properties, for healthy and diseased individuals and additionally to examine the inhibitory effect of some commercial dietary probiotics on periodontopathogens, comparing this inhibitory effect to that of orally derived beneficial bacteria. Methods: Subgingival plaque samples from 35 patients (healthy and periodontitis patients) were analyzed. Growth inhibition of the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans was examined using the agar overlay technique and agar well diffusion method. The quantification of the inhibitory effect was checked with the agar well diffusion method. Results: Using the agar overlay technique, the prevalence of strains antagonistic toward P. gingivalis, A. actinomycetemcomitans, and F. nucleatum was found to be higher in healthy individuals than in individuals with periodontitis, but this could not be validated by the agar well diffusion assay. Compared with the antagonistic activity of the isolated strains, the probiotic strains overall showed a stronger inhibition of the periodontal pathogens. Conclusion: It was shown that some oral bacteria can cause antagonism toward periodontopathogens, and these observations underline the therapeutic potential of applications that stimulate oral health by the application of beneficial effector strains.  相似文献   

16.
There is growing interest in the use of probiotic bifidobacteria for enhancement of the therapy, and in the prevention, of oral microbial diseases. However, the results of clinical studies assessing the effects of bifidobacteria on the oral microbiota are controversial, and the mechanisms of actions of probiotics in the oral cavity remain largely unknown. In addition, very little is known about the role of commensal bifidobacteria in oral health. Our aim was to study the integration of the probiotic Bifidobacterium animalis subsp. lactis Bb12 and of oral Bifidobacterium dentium and Bifidobacterium longum isolates in supragingival and subgingival biofilm models and their effects on other bacteria in biofilms in vitro using two different in vitro biofilms and agar‐overlay assays. All bifidobacteria integrated well into the subgingival biofilms composed of Porphyromonas gingivalis, Actinomyces naeslundii, and Fusobacterium nucleatum and decreased significantly only the number of P. gingivalis in the biofilms. The integration of bifidobacteria into the supragingival biofilms containing Streptococcus mutans and A. naeslundii was less efficient, and bifidobacteria did not affect the number of S. mutans in biofilms. Therefore, our results suggest that bifidobacteria may have a positive effect on subgingival biofilm and thereby potential in enhancing gingival health; however, their effect on supragingival biofilm may be limited.  相似文献   

17.
During dental caries, the dental biofilm modifies the composition of the hundreds of involved bacterial species. Changing environmental conditions influence competition. A pertinent model to exemplify the complex interplay of the microorganisms in the human dental biofilm is the competition between Streptococcus sanguinis and Streptococcus mutans. It has been reported that children and adults harbor greater numbers of S. sanguinis in the oral cavity, associated with caries‐free teeth. Conversely, S. mutans is predominant in individuals with a high number of carious lesions. Competition between both microorganisms stems from the production of H2O2 by S. sanguinis and mutacins, a type of bacteriocins, by S. mutans. There is limited evidence on how S. sanguinis survives its own H2O2 levels, or if it has other mechanisms that might aid in the competition against S. mutans, nonetheless. We performed a genomic and metabolic pathway comparison, coupled with a comprehensive literature review, to better understand the competition between these two species. Results indicated that S. sanguinis can outcompete S. mutans by the production of an enzyme capable of metabolizing H2O2. S. mutans, however, lacks the enzyme and is susceptible to the peroxide from S. sanguinis. In addition, S. sanguinis can generate energy through gluconeogenesis and seems to have evolved different communication mechanisms, indicating that novel proteins may be responsible for intra‐species communication.  相似文献   

18.
We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra‐oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall‐anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram‐positive bacteria. When compared with the UA159 type strain, phenotypic characterization of LAR01 revealed increased biofilm formation in the presence of either glucose or sucrose but similar abilities to withstand acid and oxidative stresses. LAR01 was unable to inhibit the growth of Strpetococcus gordonii, which is consistent with the genomic data that indicate absence of mutacins that can kill mitis streptococci. On the other hand, LAR01 effectively inhibited growth of other S. mutans strains, suggesting that it may be specialized to outcompete strains from its own species. In vitro and in vivo studies using mutational and heterologous expression approaches revealed that Cbm is a virulence factor of S. mutans by mediating binding to extracellular matrix proteins and intracellular invasion. Collectively, the whole genome sequence analysis and phenotypic characterization of LAR01 provides new insights on the virulence properties of S. mutans and grants further opportunities to understand the genomic fluidity of this important human pathogen.  相似文献   

19.
Background: Neutrophil function is critical for initiation and progression of infecto‐inflammatory diseases. Key quorum‐sensing plaque bacteria, such as Fusobacterium nucleatum, act as bridging species between early and late colonizer pathogens, such as Porphyromonas gingivalis, as the biofilm ages and periodontal inflammation increases. This study is designed to determine impact of different F. nucleatum strains on neutrophil function. Methods: Cells of human promyelocytic leukemia cell line‐60 were differentiated into neutrophil‐like cells and cultured with F. nucleatum strains of subspecies (ssp.) nucleatum ATCC 25586, ssp. polymorphum ATCC 10953, and ssp. vincentii ATCC 49256. Neutrophil phagocytosis of F. nucleatum strains and neutrophil apoptosis were analyzed by flow cytometry. Superoxide generation was measured by cytochrome C reduction in the presence and absence of N‐formyl‐L‐methionyl‐L‐leucyl‐L‐phenylalanine (fMLP) (1 μM) stimulation. Proinflammatory cytokine release was determined after 2, 6, and 24 hours of culture in the presence/absence of different F. nucleatum strains. Expression of Toll‐like receptor (TLR)2, TLR4, and nuclear factor (NF)‐kappa B mRNA levels were analyzed using real‐time quantitative polymerase chain reaction. Each experiment was repeated at least three times in triplicate. Data were analyzed using analysis of variance followed by post hoc Bonferroni correction. Results: All strains of F. nucleatum significantly increased phagocytic capacity of neutrophils. Neutrophil phagocytosis of F. nucleatum ssp. polymorphum was significantly greater than that of F. nucleatum ssp. vincentii and ssp. nucleatum (P <0.001). F. nucleatum ssp. nucleatum and ssp. polymorphum significantly blocked fMLP‐induced superoxide generation (P <0.001). Although F. nucleatum vincentii also reduced superoxide generation (25%), the impact was not as strong as that of ssp. nucleatum (83%) and ssp. polymorphum (100%). All F. nucleatum strains stimulated significant increase in neutrophil apoptosis compared with control (P <0.001) and significantly increased expression of NF‐κB mRNA in neutrophils (P <0.05). Levels of interleukin‐8 and tumor necrosis factor‐α produced by neutrophils were significantly increased in all F. nucleatum groups compared with control (P <0.001). Conclusions: These findings suggest that different strains of F. nucleatum impact neutrophil function in different ways. Two of three subspecies blocked neutrophil superoxide generation in response to a secondary stimulus, preventing oxidative killing by neutrophils. The direct role of bridging species in pathogenesis of periodontitis may be greater than previously suspected in which they create a favorable environment for pathogenic transition of the dental ecosystem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号