首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Local Lymph Node Assay (LLNA) is the gold standard regulatory toxicology test for skin sensitisation along with the guinea pig maximisation test (GPMT). Compared with the GPMT, LLNA uses fewer animals, it is quantitative, and it gives a numerical prediction of potency. However several concerns have been raised with this assay, mainly related to false positives and false negatives. Over the years, many authors, including the developers of the assay, have presented cases where there have been discrepancies between the GMPT and LLNA results. Several theories have been put forward for these discrepancies, the main one being the “over-sensitivity” of the GPMT. This paper analyses the data from a systematic study, published in three papers from 2008 to 2011, covering several classes of chemicals, in particular unsaturated fatty acids, sugar surfactants and ethoxylated alcohols, with many cases of chemicals testing positive in the LLNA being negative in the GPMT. Based on consideration of reaction chemistry and structural alerts, it is concluded that these discrepancies are not LLNA false positives, but can be rationalised in terms of the different protocols of the assays.  相似文献   

2.
Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA.  相似文献   

3.
The knowledge of the biological mechanisms leading to the induction of skin sensitisation has favoured in recent years the development of alternative non-animal methods. During the formal validation process, results from the Local Lymph Node Assay (LLNA) are generally used as reference data to assess the predictive capacity of the non-animal tests. This study reports an analysis of the variability of the LLNA for a set of chemicals for which multiple studies are available and considers three hazard classification schemes: POS/NEG, GHS/CLP and ECETOC. As the type of vehicle used in a LLNA study is known to influence to some extent the results, two analyses were performed: considering the solvent used to test the chemicals and without considering the solvent. The results show that the number of discordant classifications increases when a chemical is tested in more than one solvent. Moreover, it can be concluded that study results leading to classification in the strongest classes (1A and EXT) seem to be more reliable than those in the weakest classes. This study highlights the importance of considering the variability of the reference data when evaluating non-animal tests.  相似文献   

4.
Accurate risk assessment in allergic contact dermatitis is dependent on the successful prospective identification of chemicals which possess the ability to behave as skin sensitisers, followed by appropriate measurement of the relative ability to cause sensitisation; their potency. Tools for hazard identification have been available for many years; more recently, a novel approach to the quantitative assessment of potency--the derivation of EC3 values in the local lymph node assay (LLNA)--has been described. It must be recognised, however, that these evaluations of chemical sensitisers also may be affected by the vehicle matrix in which skin exposure occurs. In this article, our knowledge of this area is reviewed and potential mechanisms through which vehicle effects may occur are detailed. Using the LLNA as an example, it is demonstrated that the vehicle may have little impact on the accuracy of basic hazard identification; the data also therefore support the view that testing ingredients in specific product formulations is not warranted for hazard identification purposes. However, the effect on potency estimations is of greater significance. Although not all chemical allergens are affected similarly, for certain substances a greater than 10-fold vehicle-dependent change in potency is observed. Such data are vital for accurate risk assessment. Unfortunately, it does not at present appear possible to predict notionally the effect of the vehicle matrix on skin sensitising potency without recourse to direct testing, for example by estimation of LLNA EC3 data, which provides a valuable tool for this purpose.  相似文献   

5.
The human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test, is based on the augmentation of CD86 and CD54 expression in THP-1 cells following exposure to chemicals. The h-CLAT was found to be capable of determining the hazard of skin sensitization. In contrast, the local lymph node assay (LLNA), widely used as a stand-alone method in Europe and US, identifies the same hazard, but also classifies the potency by using the estimated concentration of SI = 3 (EC3). In this study, several values calculated from the h-CLAT data were evaluated for its correlation to the LLNA EC3 determination. A statistically significant correlation was observed between h-CLAT concentration providing a cell viability of 75% (CV75), h-CLAT estimated concentration of RFI = 150 for CD86 (EC150), and for CD54 (EC200) with LLNA’s EC3. From EC150 and EC200, a minimum induction threshold (MIT) was determined as the smaller of either EC150 or EC200. MIT showed a correlation with EC3 (R = 0.638). Also, MIT had an approximate 80% accuracy for sub-categories of the globally harmonized system (GHS) when a tentative threshold of 13 μg/mL was used. From these data, the h-CLAT values may be one of the useful tools to predict the allergic potency of chemicals.  相似文献   

6.
The murine local lymph node assay (LLNA) is a method for the prospective identification of skin sensitizing chemicals. Proliferative responses induced in lymph nodes draining the site of topical application of the test chemical are measured and those chemicals that induce a stimulation index of three or more compared with concurrent vehicle-treated controls are considered to have the potential to cause skin sensitization. Dose-response data from the LLNA may be used to derive an estimate of relative skin sensitizing potency, based upon derivation of the concentration of chemical required to cause a stimulation index of 3 (EC3 value) as calculated by linear interpolation. The purpose of the present investigations was to examine the stability of LLNA responses and the consistency of derived EC3 values induced by the contact allergen paraphenylenediamine (PPD). Analyses were conducted once a month over a 4-month period in each of two independent laboratories. In all assays, and in both laboratories, PPD elicited a positive response. Although some minor differences in responses between and within laboratories were observed, the derived EC3 values were generally very consistent. In Laboratory 1, EC3 values varied between 0.06 and 0.09% PPD, whereas in Laboratory 2 the range was 0.09-0.20%. These EC3 values are consistent with clinical experience of this material insofar as it is a common and relatively potent cause of allergic contact dermatitis in humans. Taken together, these data confirm the stability of LLNA responses both with time and between laboratories and provide additional support for the use of derived EC3 values in the assessment of relative skin sensitizing potency.  相似文献   

7.
目的 通过局部淋巴结试验法和局部封闭斑贴试验应用于化妆品皮肤变态反应的比较,探讨局部淋巴结试验应用于化妆品成品的可行性。方法 采用局部淋巴结试验与体内局部封闭斑贴试验对标准的阳性物以及市面上的2种染发剂进行评价。结果 局部淋巴结试验表明,2种染发剂的SI值<1.8,均为阴性,判断结果与局部封闭斑贴试验结果一致。结论 局部淋巴结试验相对局部封闭斑贴试验具有检验周期短、测试简便、评价客观等优点,是一种较好的用于评价染发类态产品过敏反应的替代方法。  相似文献   

8.
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a hazard classification and communication system for providing information on the safe handling of chemicals worldwide. In this study, we evaluated the applicability of the newly proposed GHS subcategorization criterion for murine local lymph node assay:2-bromodeoxyuridine enzyme-linked immunosorbent assay (LLNA:BrdU-ELISA), Category 1A:EC1.6 ≤6%, Category 1B:EC1.6 >6%, to data derived from LLNA:BrdU-ELISA performed in the CBA/J strain mouse. Fifteen chemicals categorized in GHS hazard Category 1 sensitizers listed in the LLNA performance standard were tested by LLNA:BrdU-ELISA in the CBA/J strain mouse and were classified according to the new criterion. The results revealed that all of the GHS 1A or 1B category chemicals classified according to the EC3 values derived from radioisotopic LLNA (LLNA-RI) could be correctly assigned into the respective 1A and 1B categories using the newly proposed GHS subclassification criterion. In addition, analysis of the correlation between the reported EC3 values and EC1.6 values derived from the LLNA:BrdU-ELISA performed in the CBA/J strain mouse confirmed the existence of a strong correlation (r = 0.9076, P < .0001). These findings suggest that the newly proposed GHS subcategorization criterion for LLNA:BrdU-ELISA is potentially applicable for practical use in GHS subcategorization.  相似文献   

9.
Effective risk assessment and management of allergic contact dermatitis require three key factors: adequate hazard identification, measurement of the relative potency of identified hazards and an understanding of the nature, extent and duration of exposure. Suitable methods for hazard identification, such as the murine local lymph node assay (LLNA) and the guinea-pig maximization test, are well established and conditions of human exposure normally can be well anticipated. Thus, the need is for a robust and quantitative method for the estimation of relative skin sensitizing potency. One possible approach is via the analysis of LLNA dose-response data. In the LLNA, contact allergens are defined currently as those chemicals that cause a threefold or greater increase in lymph node cell proliferative activity compared with concurrent vehicle-treated controls. It is possible to estimate the concentration of a sensitizer required to generate a threefold stimulation of proliferation in draining lymph nodes; such a concentration is known as the EC3 value. Using a variety of statistical approaches to derive EC3 values from LLNA dose-response data for 10 chemicals, it has been demonstrated that simple linear interpolation between the values either side of the threefold stimulation index provides a robust assessment of the EC3 value without the need for recourse to more sophisticated statistical techniques. Provided that the appropriate concentrations of test chemical have been selected, EC3 values obtained in this way are reproducible both within and between laboratories and form the basis for examination of the utility of this approach for the estimation of relative skin sensitizing potency.  相似文献   

10.
There is a strong impetus to develop nonanimal based methods to predict skin sensitization potency. An approach based on physical organic chemistry, whereby chemicals are classified into reaction mechanistic domains and quantitative models or read-across methods are derived for each domain, has been the basis of several recent publications. This article is concerned with the S(N)Ar reaction mechanistic domain. Electrophiles able to react by the S(N)Ar mechanism have long been recognized as skin sensitizers and have been used extensively in research studies on the biology of skin sensitization. Although qualitative discriminant analysis approaches have been developed for estimating the sensitization potential for S(N)Ar electrophiles on a yes/no qualitative basis, no quantitative mechanistic model (QMM) has so far been developed for this domain. Here, we derive a QMM that correlates skin sensitization potency, quantified by murine local lymph node assay (LLNA) EC3 data on a range of S(N)Ar electrophiles. It is based on the Hammett σ(-) values for the activating groups and the Taft σ* value for the leaving group. The model takes the form pEC3=2.48 Σσ(-) + 0.60 σ* - 4.51. This QMM, generated from mouse LLNA data, provides a reactivity parameter 2.48 Σσ(-) + 0.60 σ*, which was applied to a set of 20 compounds for which guinea pig test results were available in the literature and was found to successfully discriminate the sensitizers from the nonsensitizers. The reactivity parameter correctly predicted a known human sensitizer 2,4-dichloropyrimidine. New LLNA data on two further S(N)Ar electrophiles are consistent with the QMM.  相似文献   

11.
Abstract

Summary: The murine local lymph node assay (LLNA) has been developed as an alternative method for the identification of skin sensitizing chemicals. Measurement is made of the proliferation of lymphocytes within lymph nodes draining the site of exposure to the test chemical. This report describes a collaborative study in which 25 test chemicals were evaluated in each of four participating laboratories and the results compared with existing data from guinea pig predictive tests. Nineteen chemicals were predicted to be sensitizers in the guinea pig. Of these, 14 were correctly identified in the LLNA (9 by all laboratories and 5 by two or three laboratories). Five chemicals predicted to be contact allergens by guinea pig tests failed to elicit positive LLNA responses. With adoption of a 5 day rather than a 4 day exposure period to the test chemical and administration of maximum soluble test concentrations, positive reactions could be obtained with each of the chemicals initially negative in the LLNA. The LLNA and guinea pig tests were in agreement for all three chemicals predicted to be nonsensitizers in the guinea pig. Positive LLNA responses were obtained with four chemicals (including a re-evaluation of one initially negative in the LLNA) for which guinea pig results were equivocal in three cases and negative in another. These results suggest that the LLNA may provide a rapid and reliable elective prescreen for the identification of contact allergens.  相似文献   

12.
The regulatory use of the Local Lymph Node Assay (LLNA) for new chemicals registration was monitored by screening the New Chemicals Database (NCD), which was managed by the former European Chemicals Bureau (ECB) at the European Commission Joint Research Centre (JRC). The NCD centralised information for chemicals notified after 1981, where toxicological information has been generated predominantly according to approved test methods. The database was searched to extract notifications for which the information for skin sensitisation labelling was based on results derived with the LLNA. The details of these records were extracted and pooled, and evaluated with regard to the extent of use of the LLNA over time, as well as for analysing the information retrieved on critical aspects of the procedure e.g. strain and amount of animals used, lymph node processing, solvent and doses selected, stimulation indices, and for assessing their level of compliance to the OECD Test Guideline 429. In addition the accuracy of the reduced LLNA when applied to new chemicals was investigated.  相似文献   

13.
Because of regulatory constraints and ethical considerations, research on alternatives to animal testing to predict the skin sensitization potential of novel chemicals has become a high priority. Ideally, these alternatives should not only predict the hazard of novel chemicals but also rate the potency of skin sensitizers. Currently, no alternative method gives reliable potency estimations for a wide range of chemicals in differing structural classes. Performing potency estimations within specific structural classes has thus been proposed. Detailed structure-activity studies for the in vivo sensitization capacity of a series of analogues of phenyl glycidyl ether (PGE) were recently published. These studies are part of an investigation regarding the allergenic activity of epoxy-resin monomers. Here we report data on the same chemicals in the KeratinoSens in vitro assay, which is based on a stable transgenic keratinocyte cell line with a luciferase gene under the control of an antioxidant response element. A strong correlation between the EC3 values in the local lymph node assay (LLNA) and both the luciferase-inducing concentrations and the cytotoxicity in the cell-based assay was established for six analogues of PGE. This correlation allowed the potency in the LLNA of two novel structurally closely related derivatives to be predicted by read-across with errors of 1.4- and 2.6-fold. However, the LLNA EC3 values of two structurally different bifunctional monomers were overpredicted on the basis of this data set, indicating that accurate potency estimation by read-across based on in vitro data might be restricted to a relatively narrow applicability domain.  相似文献   

14.
15.
In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.  相似文献   

16.
The purpose of this study was to evaluate the utility of themurine local lymph node assay (LLNA) for contact sensitizationrisk assessment. Cellular proliferative activity in draininglymph nodes was determined for individual animals on Day 5 followingfour daily epicutaneous applications of the test chemical tothe ears. Seventeen chemicals were tested, covering a rangeof materials including preservatives, drug actives, and perfumeraw materials. The assay was found to be useful for identifyingstrong, moderate, and some weak sensitizers as defined by othertesting methods (guinea pig, human). For evaluating the antigenspec ificity of the LLNA proliferative response, an in vitroblastogenesis assay was used. Dendritic cells (DC) isolatedfrom lymph nodes of mice treated 24 hr earlier with trinitrochlorobenzene(TNCB) were capable of in vitro stimulation of lymphocytes fromTNCB-sensitized mice, but not lymphocytes from mice sensitizedto the preservative mixture of 5-chloro-2-methylisothiazolinoneplus 2-methylisothiazolinone (MCI/MI). Conversely, DC from micetreated 24 hr earlier with MCI/MI were capable of stimulatinglymphocytes from MCI/MI-sensitized mice, but were unable tostimulate lymphocytes from TNCB-sensitized mice, demonstratingthe specificity of the response. The results of these studiessupport the use of the marine LLNA for both investigative andpredictive contact sensitization testing. The LLNA offers theadvantages of requiring less time for completion, incorporatingan objective endpoint, requiring approximately half the numberof animals, and being less costly than most currently employedguinea pig test methods. In addition, we believe the murineLLNA is a useful test to incorporate into a scheme for contactsensitization risk assessment. The major advantage of this approachis that the LLNA will provide information which will allow oneto proceed directly to confirmatory human predictive testingwithout performing guinea pig testing.  相似文献   

17.
Recently UN GHS has introduced the sub-categorization of skin sensitizers for which ECt (concentration estimated to induce stimulation index above threshold) of the murine local lymph node assay (LLNA) is used as criteria. Non-radioisotopic variants of LLNA, LLNA: DA, LLNA: BrdU-ELISA, LNCC and LLNA: BrdU-FCM were developed yet their utilities for potency sub-categorization are not established. Here we assessed the agreement of LLNA variants with LLNA or human data in potency sub-categorization for 22 reference substances of OECD TG429. Concordance of sub-categorization with LLNA was highest for LLNA: BrdU-FCM(91%, κ = 0.833, weighted kappa) followed by LLNA: BrdU-ELISA (82%, κ = 0.744) and LLNA: DA (73%, κ = 0.656) whereas LNCC only showed a modest association (64%, κ = 0.441). With human data, LLNA agreed best (77%) followed by LLNA: DA and LLNA: BrdU-FCM(73%), LLNA: BrdU-ELISA (68%) and LNCC(55%). Bland-Altman plot revealed that ECt's of LLNA variants largely agreed with LLNA where most values fell within 95% limit of agreement. Correlation between ECt's of LLNA and LLNA variants were high except for LNCC(pair-wise with LLNA, LLNA: DA, r = 0.848, LLNA: BrdU-ELISA, r = 0.744, LLNA: BrdU-FCM, r=0.786, and LNCC, r = 0.561 by Pearson). Collectively, these results demonstrated that LLNA variants exhibit performance comparable to LLNA in the potency sub-categorization although additional substances shall be analyzed in the future.  相似文献   

18.
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment.  相似文献   

19.
To evaluate the reliability of the murine local lymph node assay (LLNA), a test for allergic contact dermatitis activity, the inter- and intralaboratory consistency statistics (h and k, respectively) were calculated for validation studies testing multiple chemicals. The analysis indicated the absence of excessive variability in the dose calculated to induce a threefold or greater increase in the stimulation index (SI). To assess the appropriateness of using an SI of 3 as the decision criteria for identifying a sensitizing compound, LLNA results based on SI values of 2.0, 2.5, 3.0, 3.5, and 4.0 were compared with guinea pig or human results. The results supported the use of an SI of 3 as the decision criteria. Assay performance was determined by comparing LLNA results to results obtained for guinea pigs or humans. The accuracy of the LLNA was 89% when compared with results from the guinea pig maximization test (GPMT)/Buehler assay (BA). The performance of the LLNA and the GPMT/BA was similar when each was compared to human maximization test results plus substances included as human patch test allergens. The LLNA offered advantages over the GPMT in respect to both the time required to conduct the test and the assay cost.  相似文献   

20.
Thirteen epoxy resin system components were tested in the LLNA with regard to their sensitizing potency. Lymph node stimulation was quantified not only by measuring the incorporation of [3H]-thymidine into the ear lymph nodes but also the counts of cells recovered from these organs. Equivalent figures were obtained with both endpoints used for the evaluation of lymph node cell proliferation if the reference stimulation indices were adjusted. When dissolved in acetone, all test substances showed skin-sensitizing potential, mainly on the boundary between “strong” and “moderate” according to common potency evaluation schemes. Replacing acetone with acetone/olive oil (4:1) as a vehicle for four selected test items, resulted in considerably lower estimated concentrations for sensitization induction. The challenges in comparing the results obtained by different LLNA variations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号