首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
BACKGROUND: Converging evidence has demonstrated an association between the Disrupted in Schizophrenia 1 (DISC1) gene and schizophrenia (SZ). Within the DISC1 gene, a single nucleotide polymorphism (SNP), Ser704Cys, has been associated with the structure and function of the hippocampus. Because positive symptoms in SZ have also been associated with hippocampal structure and function, we hypothesized that variation in a DISC1 haplotype containing Ser704Cys would be significantly associated with positive symptomatology in SZ. METHODS: We tested for an association between variation in a haplotype block within the DISC1 gene containing Ser704Cys and lifetime history of positive symptoms in 199 Caucasian patients with SZ. RESULTS: We detected significant associations between a DISC1 haplotype containing Ser704Cys and Ser704Cys genotype and lifetime severity of delusions in SZ. CONCLUSIONS: These data suggest that that the effect of DISC1 genetic variation might be associated with positive symptoms in patients with SZ.  相似文献   

2.
Abnormalities in oligodendrocyte (OLG) differentiation and OLG gene expression deficit have been described in schizophrenia (SZ). Recent studies revealed a critical requirement for Disrupted-in-Schizophrenia 1 (DISC1) in neural development. Transgenic mice with forebrain restricted expression of mutant human DISC1 (ΔhDISC1) are characterized by neuroanatomical and behavioral abnormalities reminiscent of some features of SZ. We sought to determine whether the expression of ΔhDISC1 may influence the development of OLGs in this mouse model. OLG- and cell cycle-associated gene and protein expression were characterized in the forebrain of ΔhDISC1 mice during different stages of neurodevelopment (E15 and P1 days) and in adulthood. The results suggest that the expression of ΔhDISC1 exerts a significant influence on oligodendrocyte differentiation and function, evidenced by premature OLG differentiation and increased proliferation of their progenitors. Additional findings showed that neuregulin 1 and its receptors may be contributing factors to the observed upregulation of OLG genes. Thus, OLG function may be perturbed by mutant hDISC1 in a model system that provides new avenues for studying aspects of the pathogenesis of SZ.  相似文献   

3.
Summary. Altered expression of Disrupted-In-Schizophrenia-1 (DISC1) and dysbindin (DTNBP1), susceptibility genes for schizophrenia, in schizophrenic brain has been reported; however, the possible effect of antipsychotics on the expression levels of these genes has not yet been studied. We measured the mRNA expression levels of these genes in frontal cortex and hippocampus of mice chronically treated with typical and atypical antipsychotics by a real-time quantitative RT-PCR method. We found that atypical antipsychotics, olanzapine and risperidone, in a clinically relevant dose increased DISC1 expression levels in frontal cortex, while a typical antipsychotic, haloperidol, did not. No significant effect on dysbindin expression levels was observed in either brain region. These data suggest that prior evidence of decreased expression of dysbindin in postmortem brain of schizophrenics is not likely to be a simple artifact of antemortem drug treatment. Our results also suggest a potential role of DISC1 in the therapeutic mechanisms of certain atypical antipsychotics.  相似文献   

4.
The etiology of schizophrenia remains unknown. However, using molecular biological techniques, some candidate genes have been identified that might be associated with the disease. One of these candidate genes, disrupted‐in‐schizophrenia 1 (DISC1), was found in a large Scottish family with multiple mental illnesses. The function of DISC1 is considered to be associated with axon elongation and neuron migration in the central nervous system, but the functional consequences of defects in this gene have not been fully clarified in brain neuronal systems. Dysfunction of the gamma‐aminobutyric acid (GABA)ergic neuronal system is also considered to contribute to the pathogenesis of schizophrenia. Thus, to clarify the neuropathological changes associated with DISC1 dysfunction, we investigated the number and distribution of GABAergic neurons in the prefrontal cortex of DISC1 knockout mice. We immunohistochemically quantified the laminar density of GABAergic neurons using anti‐parvalbumin and anti‐calbindin D28k antibodies (markers of GABAergic neuronal subpopulations). We found that the densities of both parvalbumin‐ and calbindin‐immunoreactive neurons in the anterior cingulate, medial prefrontal, and orbitofrontal cortices were markedly lower in DISC1 knockout mice than in wild‐type mice. In addition, reductions in cell density were observed in layers II and III and the deep layers of the cortex. This reduction in GABAergic neuronal density was not associated with alterations in neuronal size. These findings suggest that disrupted GABAergic neuronal network formation due to a DISC1 deficit might be involved in the pathophysiology of schizophrenia.  相似文献   

5.
Neuropeptide Y (NPY) has been found to play a critical role in various mental functions as a neurotransmitter and is involved in the development of schizophrenia, a particularly intractable psychiatric disease whose precise etiology remains unknown. Recent molecular biological investigations have identified several candidate genes which may be associated with this disease, including disrupted-in-schizophrenia 1 (DISC1). The role of DISC1 would involve neurogenesis and neuronal migration. However, the functional consequences of this gene defect have not yet been fully clarified in neuronal systems. In the present study, to clarify the neuropathological changes associated with the function of DISC1, we explored how DISC1 dysfunction can induce abnormalities in the NPY neuronal network in the central nervous system. We performed immunohistochemical analyses (including the observation of the distribution and density) of prefrontal cortex specimens from DISC1-knockout (KO) mice, which are considered to be a novel animal model of schizophrenia. We then evaluated the number and size of NPY-immunoreactive (NPY-IR) neurons and the length of NPY-IR fibers. The number of NPY-IR neurons and the length of the fibers were decreased in the prefrontal cortex of DISC1-KO mice. The decrease was particularly prominent in the superficial regions, and the distribution of NPY-IR neurons differed between wild-type and DISC1-KO mice. However, the size of the neurons in the cortices of the DISC1-KO and wild-type mice did not differ markedly. Our findings suggest that dysfunction of DISC1 may lead to the alteration of NPY neurons and neurotransmission issues in NPY-containing neuron systems, which seem to play important roles in both the mental function and neuronal development. DISC1 dysfunction may be involved in the pathogenesis of schizophrenia through the impairment of the NPY neuronal network.  相似文献   

6.
Disrupted in schizophrenia 1 (DISC1) is well established as a genetic risk factor across a spectrum of psychiatric disorders, a role supported by a growing body of biological studies, making the DISC1 protein interaction network an attractive therapeutic target. By contrast, there is a relative deficit of structural information to relate to the myriad biological functions of DISC1. Here, we critically appraise the available bioinformatics and biochemical analyses on DISC1 and key interacting proteins, and integrate this with the genetic and biological data. We review, analyze, and make predictions regarding the secondary structure and propensity for disordered regions within DISC1, its protein-interaction domains, subcellular localization motifs, and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We discuss signaling pathways of high pharmacological potential wherein DISC1 participates, including those involving phosphodiesterase 4 (PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and priority areas can inform future research in the translational and potentially guide the therapeutic processes.  相似文献   

7.
Attentional dysfunction in schizophrenia (SZ) is a core deficit that contributes to multiple cognitive deficits and the resulting functional disability. However, developing procognitive therapeutics for neuropsychiatric disorders have been limited by a ‘translational gap''—a lack of cognitive paradigms having cross-species translational validity and relevance. The present study was designed to perform an initial validation of the cross-species homology of the 5-choice Continuous Performance Test (5C-CPT) in healthy nonpsychiatric comparison subjects (NCS), SZ patients and mice under pharmacologic challenge. The 5C-CPT performance in SZ patients (n=20) was compared with age-matched NCS (n=23). The effects of the general muscarinic receptor antagonist scopolamine on mice (n=21) performing the 5C-CPT were also assessed. SZ subjects exhibited significantly impaired attention in the 5C-CPT, driven by reduced target detection over time and nonsignificantly increased impulsive responding. Similarly, scopolamine significantly impaired attention in mice, driven by reduced target detection and nonsignificantly increased impulsive responding. Scopolamine also negatively affected accuracy and speed of responding in mice, although these measures failed to differentiate SZ vs NCS. Thus, mice treated with scopolamine exhibited similar impairments in vigilance as seen in SZ, although the differences between the behavioral profiles warrant further study. The availability of rodent and human versions of this paradigm provides an opportunity to: (1) investigate the neuroanatomic, neurochemical and genomic architecture of abnormalities in attention observed in clinical populations such as SZ; (2) develop and refine animal models of cognitive impairments; and (3) improve cross-species translational testing for the development of treatments for these impairments.  相似文献   

8.
Disrupted-in-schizophrenia 1 (DISC1), a known genetic risk factor for schizophrenia (SZ) and major depressive disorder (MDD), interacts with several proteins and some of them are reported to be genetically associated with SZ. Pericentrin (PCNT) also interacts with DISC1 and recently single-nucleotide polymorphisms (SNPs) within the PCNT gene have been found to show significant associations with SZ and MDD. In this study, case-controlled association analysis was performed to determine if the PCNT gene is implicated in SZ. Nine SNPs were analyzed in 1,477 individuals (726 patients with SZ and 751 healthy controls). No significant difference was observed between the controls and the patients in allelic frequencies or genotypic distributions of eight SNPs. Although allelic distribution of rs11702684 was different between the two groups (P = 0.042), the difference did not reach statistical significance after permutation correction for multiple comparisons. In the haplotypic analysis, we could not find any significant association in our subjects, either. This gene may not play a major role independently in the etiology of SZ in the Japanese population.  相似文献   

9.
Considerable advances have been made in identifying specific genetic components of bipolar manic depressive illness (BP) and schizophrenia (SZ), despite their complex inheritance. Meta-analysis of all published whole-genome linkage scans reveals overall support for illness genes in several chromosomal regions. In two of these regions, on the lonq arm of chromosome 13 and on the long arm of chromosome 22, the combined studies of BP and SZ are consistent with a common susceptibility locus for the two disorders. This lends some plausibility to the hypothesis of some shared genetic predispositions for BP and SZ. Other linkages are supported by multiple studies of specific chromosomal regions, most notably two regions on chromosome 6 in SZ. The velocardiofacial syndrome is associated with deletions very close to the linkage region on chromosome 22, and with psychiatric manifestations of both BP and SZ. Endophenotypes of SZ, previously demonstrated to be heritable, have been found to have chromosomal linkage in at least one study. These include eye-tracking abnormalities linked to the short arm of chromosome 6, and abnormality of the P50 cortical evoked potential linked to chromosome 15. Variants in specific genes have been associated with susceptibility to illness, and other genes have been associated with susceptibility to side effects of pharmacological treatment. These genetic findings may eventually be part of an integrated genetic, environmental, and interactive-factor epidemiology of the major mental illnesses.  相似文献   

10.
The phosphodiesterase 4B (PDE4B) gene is located at 1p31, a susceptibility region for schizophrenia (SZ). Moreover, PDE4B interacts with DISC1, which is a known genetic risk factor for SZ. Recently, it was reported that the PDE4B gene is associated with SZ in Caucasian and African American populations. In this study, case-controlled association analyses were performed in the Japanese population to determine if the PDE4B gene is implicated in SZ. Thirteen single nucleotide polymorphisms (SNPs) were analyzed in 444 schizophrenic patients and 452 control subjects. Three SNPs (rs2180335, rs910694 and rs472952) were significantly associated with SZ after applying multiple test correction (p = 0.039, 0.004 and 0.028). In addition, a significant association was found between specific haplotypes (rs2180335 and rs910694) and SZ (permutation p = 0.001). Our result suggests that variations at the PDE4B locus may play a significant role in the etiology of SZ in the Japanese population.  相似文献   

11.
Redox-dysregulation represents a common pathogenic mechanism in schizophrenia (SZ) and bipolar disorder (BP). It may in part arise from a genetically compromised synthesis of glutathione (GSH), the major cellular antioxidant and redox-regulator. Allelic variants of the genes coding for the rate-limiting GSH synthesizing enzyme glutamate-cysteine-ligase modifier (GCLM) and/or catalytic (GCLC) subunit have been associated with SZ and BP. Using mice knockout (KO) for GCLM we have previously shown that impaired GSH synthesis is associated with morphological, functional and neurochemical anomalies similar to those in patients. Here we asked whether GSH deficit is also associated with SZ- and BP-relevant behavioral and cognitive anomalies. Accordingly, we subjected young adult GCLM-wildtype (WT), heterozygous and KO males to a battery of standard tests. Compared to WT, GCLM-KO mice displayed hyperlocomotion in the open field and forced swim test but normal activity in the home cage, suggesting that hyperlocomotion was selective to environmental novelty and mildly stressful situations. While spatial working memory and latent inhibition remained unaffected, KO mice showed a potentiated hyperlocomotor response to an acute amphetamine injection, impaired sensorymotor gating in the form of prepulse inhibition and altered social behavior compared to WT. These anomalies resemble important aspects of both SZ and the manic component of BP. As such our data support the notion that redox-dysregulation due to GSH deficit is implicated in both disorders. Moreover, our data propose the GCLM-KO mouse as a valuable model to study the behavioral and cognitive consequences of redox dysregulation in the context of psychiatric disease.  相似文献   

12.
The disrupted in schizophrenia 1 (DISC1) gene has been linked to schizophrenia and other serious mental illnesses in multiple pedigrees. This article will review the neurobiology of DISC1 in normal developing and adult brain and the putative role of the mutant form in major mental illness, particularly schizophrenia. The initial genetic finding of an association between DISC1 and schizophrenia in a Scottish population has now been replicated in Finnish, American, Japanese, and Taiwanese populations. DISC1 is present throughout the brain of a variety of species during development and adulthood, including many of the brain regions known to be abnormal in schizophrenia, such as the prefrontal cortex, hippocampus, and thalamus. The functions of DISC1 in the developing brain include neuronal migration, neurite outgrowth, and neurite extension. In the adult, DISC1 has been identified in multiple populations of neurons and in structures associated with synaptic function, suggesting that one of its adult functions may be synaptic plasticity. DISC1 is associated with numerous cognitive functions that are abnormal in schizophrenia. Converging evidence from cell culture, mice mutants, postmortem brain, and genetics implicates mutant DISC1 in the pathophysiology of schizophrenia and other mental illnesses.  相似文献   

13.
A strong animal survival instinct is to approach objects and situations that are of benefit and to avoid risk. In humans, a large proportion of mental disorders are accompanied by impairments in risk avoidance. One of the most important genes involved in mental disorders is disrupted-in-schizophrenia-1 (DISC1), and animal models in which this gene has some level of dysfunction show emotion-related impairments. However, it is not known whether DISC1 mouse models have an impairment in avoiding potential risks. In the present study, we used DISC1-N terminal truncation (DISC1-NTM) mice to investigate risk avoidance and found that these mice were impaired in risk avoidance on the elevated plus maze (EPM) and showed reduced social preference in a three-chamber social interaction test. Following EPM tests, c-Fos expression levels indicated that the nucleus accumbens (NAc) was associated with risk-avoidance behavior in DISC1-NTM mice. In addition, in vivo electrophysiological recordings following tamoxifen administration showed that the firing rates of fast-spiking neurons (FS) in the NAc were significantly lower in DISC1-NTM mice than in wild-type (WT) mice. In addition, in vitro patch clamp recording revealed that the frequency of action potentials stimulated by current injection was lower in parvalbumin (PV) neurons in the NAc of DISC1-NTM mice than in WT controls. The impairment of risk avoidance in DISC1-NTM mice was rescued using optogenetic tools that activated NAcPV neurons. Finally, inhibition of the activity of NAcPV neurons in PV-Cre mice mimicked the risk-avoidance impairment found in DISC1-NTM mice during tests on the elevated zero maze. Taken together, our findings confirm an impairment in risk avoidance in DISC1-NTM mice and suggest that reduced excitability of NAcPV neurons is responsible.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12264-021-00731-7.  相似文献   

14.
Disrupted-In-Schizophrenia 1 (DISC1) is one of two genes that straddle the chromosome 1 breakpoint of a translocation associated with an increased risk of schizophrenia. DISC1 has been identified in the brain of various mammalian species, but no previous immunocytochemical studies have been conducted in human neocortex. We examined DISC1 immunoreactivity in frontal and parietal cortex (BA 4, 9, 39, and 46) in normal human brain. At the light microscopic level, immunolabeling was prominent in the neuropil, in multiple populations of cells, and in the white matter. At the ultrastructural level, staining was prominent in structures associated with synaptic function. Immunolabeled axon terminals comprised 8% of all terminals and formed both asymmetric and symmetric synapses. Labeled axon terminals formed synapses with labeled spines and dendrites; in some, only the postsynaptic density (PSD) of the postsynaptic structure was labeled. The most common configuration, however, was an unlabeled axon terminal forming an asymmetric synapse with a spine that had immunoreactivity deposited on the PSD and throughout the spine. The presence of DISC1 in multiple types of synapses suggests the involvement of DISC1 in corticocortical as well as thalamocortical connections. Staining was also present in ribosomes, parts of the chromatin, in dendritic shafts, and on some microtubules. Labeling was absent from the Golgi apparatus and multivesicular bodies, which are associated with protein excretion. These anatomical localization data suggest that DISC1 participates in synaptic activity and microtubule function, and are consistent with the limited data on its adult function.  相似文献   

15.
Disrupted-in-Schizophrenia 1 (DISC1) is a susceptibility gene for several psychiatric illnesses. To study the pathogenesis of these disorders, we generated Disc1 mutant mice by introducing the 129S6/SvEv 25-bp deletion Disc1 variants into the C57BL/6J strain. In this study, we used heterozygous Disc1 mutant (Het) mice to evaluate the DISC1 haploinsufficiency model of schizophrenia. No changes in locomotor behaviors were observed in Het mice; however, after amphetamine injection, greater locomotor activity was observed in Het mice compared with wild-type (WT) mice. Moreover, amphetamine-induced elevations of c-Fos expression and dopamine level in the striatum were greater in Het mice than in WT controls, suggesting an altered dopaminergic regulation in the striatum of Het mice. Compared with those in WTs, the striatal protein levels of dopamine transporter and D2 dopamine receptor were increased in Het mice, while D1 dopamine receptor level was decreased. DISC1 interacting proteins, GSK3α and GSK3β, were downregulated in Het mice, whereas the levels of PDE4B and CREB were not altered. Morphologically, the complexities of striatal median spiny neurons (MSNs), parvalbumin-positive interneurons and Iba1-positive microglia were all decreased in Het mice. The density and head diameter of dendritic spines in the MSNs of Het mice were also reduced. Our results indicate that mice lacking one WT Disc1 allele are more sensitive to psychostimulant amphetamine challenge, which might be attributed to the altered structure and function of the striatal dopaminergic system. Here, we demonstrated striatal phenotypes in heterozygous Disc1 mutant mice, which could be a promising model of DISC1 haploinsufficiency.  相似文献   

16.
Schizophrenia and related disorders have a major genetic component. Several large-scale studies have uncovered a number of possible candidate genes, but these have yet to be consistently replicated and their underlying biological function remains elusive. One exception is 'Disrupted in schizophrenia 1' (DISC1), a gene locus originally identified in a large Scottish family, showing a heavy burden of major mental illnesses associated with a balanced t(1;11)(q42.1;q14.3) chromosome translocation. Substantial genetic and biological research on DISC1 has been reported in the intervening 10 years: DISC1 is now recognized as a genetic risk factor for a spectrum of psychiatric disorders and DISC1 impacts on many aspects of central nervous system (CNS) function, including neurodevelopment, neurosignaling, and synaptic functioning. Evidence has emerged from genetic studies showing a relationship between DISC1 and quantitative traits, including working memory, cognitive aging, gray matter volume in the prefrontal cortex, and abnormalities in hippocampal structures and function. DISC1 interacts with numerous proteins also involved in neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction, some of which have been reported as independent genetic susceptibility factors for psychiatric morbidity. Here, we focus on the growing literature relating genetic variation in the DISC1 pathway to functional and structural studies of the brain in humans and in the mouse.  相似文献   

17.
The phosphodiesterase 4B (PDE4B) gene is located at 1p31, a susceptibility region for schizophrenia (SZ). Moreover, PDE4B interacts with DISC1, which is a known genetic risk factor for SZ. Recently, it was reported that the PDE4B gene is associated with SZ in Caucasian and African American populations. In this study, case-controlled association analyses were performed in the Japanese population to determine if the PDE4B gene is implicated in SZ. Thirteen single nucleotide polymorphisms (SNPs) were analyzed in 444 schizophrenic patients and 452 control subjects. Three SNPs (rs2180335, rs910694 and rs472952) were significantly associated with SZ after applying multiple test correction (p = 0.039, 0.004 and 0.028). In addition, a significant association was found between specific haplotypes (rs2180335 and rs910694) and SZ (permutation p = 0.001). Our result suggests that variations at the PDE4B locus may play a significant role in the etiology of SZ in the Japanese population.  相似文献   

18.
In the developing field of biological psychiatry, DISC1 stands out by virtue of there being credible evidence, both genetic and biological, for a role in determining susceptibility to schizophrenia and related disorders. We highlight the methodologic paradigm that led to identification of DISC1 and review the supporting genetic and biological evidence. The original finding of DISC1 as a gene disrupted by a balanced translocation on chromosome 1q42 that segregates with schizophrenia, bipolar disorder, and recurrent major depression has sparked a number of confirmatory linkage and association studies. These indicate that DISC1 is a generalizable genetic risk factor for psychiatric illness that also influences cognition in healthy subjects. DISC1 has also been shown to interact with a number of proteins with neurobiological pedigrees, including Ndel1 (NUDEL), a key regulator of neuronal migration with endo-oligopeptidase activity, and PDE4B, a phosphodiesterase that is critical for cyclic adenosine monophosphate signaling and that is directly linked to learning, memory, and mood. Both are potential "drug" targets. DISC1 has thus emerged as a key molecular player in the etiology of major mental illness and in normal brain processes.  相似文献   

19.
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a novel gene disrupted by a (1;11)(q42.1;q14.3) translocation that segregated with schizophrenia in a Scottish family. Predicted DISC1 product has no significant homology to other known proteins. Here, we demonstrated the existence of DISC1 protein and identified fasciculation and elongation protein zeta-1 (FEZ1) as an interacting partner of DISC1 by a yeast two-hybrid study. FEZ1 and its nematode homolog are reported to represent a new protein family involved in axonal outgrowth and fasciculation. In cultured hippocampal neurons, DISC1 and FEZ1 colocalized in growth cones. Interactions of these proteins were associated with F-actin. In the course of neuronal differentiation of PC12 cells, upregulation of DISC1/FEZ1 interaction was observed as along with enhanced extension of neurites by overexpression of DISC1. The present study shows that DISC1 participates in neurite outgrowth through its interaction with FEZ1. Recent studies have provided reliable evidence that schizophrenia is a neurodevelopmental disorder. As there is a high level of DISC1 expression in developing rat brain, dysfunction of DISC1 may confer susceptibility to psychiatric illnesses through abnormal development of the nervous system.  相似文献   

20.
Disrupted-in-schizophrenia-1 (DISC1), located on chromosome 1q42.1, is linked to rare familial schizophrenia in a large Scottish family. The chromosomal translocation that segregates with the disease results in a truncated protein that impairs neurite outgrowth and proper development of the cerebral cortex, suggesting that lost DISC1 function may underlie neurodevelopmental dysfunction in schizophrenia. DISC1 has been associated with schizophrenia in multiple populations, but there is little evidence of convergence across populations. In the present case-control study three Scandinavian samples of 837 individuals affected with schizophrenia and 1473 controls, were used in an attempt to replicate previously reported associations between single nucleotide polymorphisms (SNPs) in DISC1 and schizophrenia. No SNP with allele frequency above 10% was significantly associated with the disease after correction for multiple testing. However, the minor allele of rs3737597 (frequency 2%) in the 3'-untranslated region (UTR), previously identified as a risk allele in Finnish families, was significantly and consistently associated with the disorder across the three samples, (p-value corrected for multiple testing was 0.002). Our results suggest that a relatively uncommon DISC1 mutation, which increases the susceptibility for schizophrenia may be segregating in the Scandinavian population, and support the view that common DISC1 SNP alleles are unlikely to account for a substantial proportion of the genetic risk of the disease across populations of European descent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号