首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In case-control studies of unrelated subjects, gene-based hypothesis tests consider whether any tested feature in a candidate gene--single nucleotide polymorphisms (SNPs), haplotypes, or both--are associated with disease. Standard statistical tests are available that control the false-positive rate at the nominal level over all polymorphisms considered. However, more powerful tests can be constructed that use permutation resampling to account for correlations between polymorphisms and test statistics. A key question is whether the gain in power is large enough to justify the computational burden. We compared the computationally simple Simes Global Test to the min P test, which considers the permutation distribution of the minimum p-value from marginal tests of each SNP. In simulation studies incorporating empirical haplotype structures in 15 genes, the min P test controlled the type I error, and was modestly more powerful than the Simes test, by 2.1 percentage points on average. When disease susceptibility was conferred by a haplotype, the min P test sometimes, but not always, under-performed haplotype analysis. A resampling-based omnibus test combining the min P and haplotype frequency test controlled the type I error, and closely tracked the more powerful of the two component tests. This test achieved consistent gains in power (5.7 percentage points on average), compared to a simple Bonferroni test of Simes and haplotype analysis. Using data from the Shanghai Biliary Tract Cancer Study, the advantages of the newly proposed omnibus test were apparent in a population-based study of bile duct cancer and polymorphisms in the prostaglandin-endoperoxide synthase 2 (PTGS2) gene.  相似文献   

2.
We investigated the effect of multiple susceptibility alleles at a single disease locus on the statistical power of a likelihood ratio test to detect association between alleles at a marker locus and a disease phenotype in a case-control design. Using simplifying assumptions to obtain the joint frequency distribution of marker and disease locus alleles, we present numerical results that illustrate the impact of historical variation of initial associations between marker alleles and susceptibility alleles on the power of a likelihood ratio test for association. Our results show that an increase in the number of susceptibility alleles produces a decrease in power of the likelihood ratio test. The decrease in power in the presence of multiple susceptibility alleles, however, is less for markers with multiple alleles than for markers with two alleles. We investigate the implications of this observation for tests of association based on haplotypes made up of tightly linked single-nucleotide polymorphisms (SNPs). Our results suggest that an analysis based on haplotypes can be advantageous over an analysis based on individual SNPs in the presence of multiple susceptibility alleles, particularly when linkage disequilibria between SNPs is weak. The results provide motivation for further development of statistical methods based on haplotypes for assessing the potential for association methods to identify and locate complex disease genes.  相似文献   

3.
The completion of the HapMap Project and the development of high-throughput single nucleotide polymorphism genotyping technologies have greatly enhanced the prospects of identifying and characterizing the genetic variants that influence complex traits. In principle, association analysis of haplotypes rather than single nucleotide polymorphisms may better capture an underlying causal variant, but the multiple haplotypes can lead to reduced statistical power due to the testing of (and need to correct for) a large number of haplotypes. This paper presents a novel method based on clustering similar haplotypes to address this issue. The method, implemented in the CLUMPHAP program, is an extension of the CLUMP program designed for the analysis of multi-allelic markers (Sham and Curtis [1995] Ann. Hum. Genet. 59(Pt1):97-105). CLUMPHAP performs a hierarchical clustering of the haplotypes and then computes the chi(2) statistic between each haplotype cluster and disease; the statistical significance of the largest of the chi(2) statistics is obtained by permutation testing. A significant result suggests that the presence of a disease-causing variant in the haplotype cluster is over-represented in cases. Using simulation studies, we have compared CLUMPHAP and more widely used approaches in terms of their statistical power to identify an untyped susceptibility locus. Our results show that CLUMPHAP tends to have greater power than the omnibus haplotype test and is comparable in power to multiple regression locus-coding approaches.  相似文献   

4.
Genome‐wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family‐based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment‐mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP‐only method for testing genetic associations. We conduct a family‐based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP‐only analyses survives with the same cut‐off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful.  相似文献   

5.
For a dense set of genetic markers such as single nucleotide polymorphisms (SNPs) on high linkage disequilibrium within a small candidate region, a haplotype-based approach for testing association between a disease phenotype and the set of markers is attractive in reducing the data complexity and increasing the statistical power. However, due to unknown status of the underlying disease variant, a comprehensive association test may require consideration of various combinations of the SNPs, which often leads to severe multiple testing problems. In this paper, we propose a latent variable approach to test for association of multiple tightly linked SNPs in case-control studies. First, we introduce a latent variable into the penetrance model to characterize a putative disease susceptible locus (DSL) that may consist of a marker allele, a haplotype from a subset of the markers, or an allele at a putative locus between the markers. Next, through using of a retrospective likelihood to adjust for the case-control sampling ascertainment and appropriately handle the Hardy-Weinberg equilibrium constraint, we develop an expectation-maximization (EM)-based algorithm to fit the penetrance model and estimate the joint haplotype frequencies of the DSL and markers simultaneously. With the latent variable to describe a flexible role of the DSL, the likelihood ratio statistic can then provide a joint association test for the set of markers without requiring an adjustment for testing of multiple haplotypes. Our simulation results also reveal that the latent variable approach may have improved power under certain scenarios comparing with classical haplotype association methods.  相似文献   

6.
In the KORA surveys, numerous candidate genes in the context of type 2 diabetes, myocardial infarction, atherosclerosis or obesity are under investigation. Current focus is on genotyping single nucleotide polymorphism (SNPs). Haplotypes are also of increasing interest: haplotypes are combinations of alleles within a certain section of one chromosome. Analysing haplotypes in genetic association studies is often more efficient than studying the SNPs separately. A statistical problem in this context is the reconstruction of the phase: genotyping the SNPs determines the alleles of an individual at one particular locus of the DNA, but does not reveal which allele is located on which one of the two chromosomes. This information is required when talking about haplotypes. There are statistical approaches to identify the most likely two haplotypes of an individual given the genotypes. However, a certain error in prognosis is unavoidable. There are also errors in the genotypes. These errors are assumed to be small for one SNP but can accumulate over the SNPs involved in one haplotype and thus can induce further uncertainty in the haplotype. It is therefore the aim of our project to quantify the uncertainties in the haplotypes particularly for genes investigated in the KORA surveys. We conduct computer simulations based on the haplotypes and their frequencies observed in the KORA individuals and compare the results with simulations based on mathematical modelling of the evolutionary process ("coalescent models"). The uncertainties in the haplotypes have an impact on the search for association between genes and disease: an association may not be detected as the haplotype uncertainty obscures the haplotype frequency differences between cases and controls. It is a further aim of our project to elucidate the extent of this problem and to develop strategies for reducing it.  相似文献   

7.
Hao K  Xu X  Laird N  Wang X  Xu X 《Genetic epidemiology》2004,26(1):22-30
At the current stage, a large number of single nucleotide polymorphisms (SNPs) have been deployed in searching for genes underlying complex diseases. A powerful method is desirable for efficient analysis of SNP data. Recently, a novel method for multiple SNP association test using a combination of allelic association (AA) and Hardy-Weinberg disequilibrium (HWD) has been proposed. However, the power of this test has not been systematically examined. In this study, we conducted a simulation study to further evaluate the statistical power of the new procedure, as well as of the influence of the HWD on its performance. The simulation examined the scenarios of multiple disease SNPs among a candidate pool, assuming different parameters including allele frequencies and risk ratios, dominant, additive, and recessive genetic models, and the existence of gene-gene interactions and linkage disequilibrium (LD). We also evaluated the performance of this test in capturing real disease associated SNPs, when a significant global P value is detected. Our results suggest that this new procedure is more powerful than conventional single-point analyses with correction of multiple testing. However, inclusion of HWD reduces the power under most circumstances. We applied the novel association test procedure to a case-control study of preterm delivery (PTD), examining the effects of 96 candidate gene SNPs concurrently, and detected a global P value of 0.0250 by using Cochran-Armitage chi(2)s as "starting" statistics in the procedure. In the following single point analysis, SNPs on IL1RN, IL1R2, ESR1, Factor 5, and OPRM1 genes were identified as possible risk factors in PTD.  相似文献   

8.
With the increasing availability of genetic data, several SNPs in a candidate gene can be combined into haplotypes to test for association with a quantitative trait. When the number of SNPs increases, the number of haplotypes can become very large and there is a need to group them together. The use of the phylogenetic relationships between haplotypes provides a natural and efficient way of grouping. Moreover, it allows us to identify disease or quantitative trait‐related loci. In this article, we describe ALTree‐q , a phylogeny‐based approach to test for association between quantitative traits and haplotypes and to identify putative quantitative trait nucleotides (QTN). This study focuses on ALTree‐q association test which is based on one‐way analyses of variance (ANOVA) performed at the different levels of the tree. The statistical properties (type‐one error and power rates) were estimated through simulations under different genetic models and were compared to another phylogeny‐based test, TreeScan, (Templeton, 2005) and to a haplotypic omnibus test consisting in a one‐way ANOVA between all haplotypes. For dominant and additive models ALTree‐q is usually the most powerful test whereas TreeScan performs better under a recessive model. However, power depends strongly on the recurrence rate of the QTN, on the QTN allele frequency, and on the linkage disequilibrium between the QTN and other markers. An application of the method on Thrombin Activatable Fibronolysis Inhibitor Antigen levels in European and African samples confirms a possible association with polymorphisms of the CPB2 gene and identifies several QTNs. Genet. Epidemiol. 33:729–739, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
We describe a novel method for assessing the strength of disease association with single nucleotide polymorphisms (SNPs) in a candidate gene or small candidate region, and for estimating the corresponding haplotype relative risks of disease, using unphased genotype data directly. We begin by estimating the relative frequencies of haplotypes consistent with observed SNP genotypes. Under the Bayesian partition model, we specify cluster centres from this set of consistent SNP haplotypes. The remaining haplotypes are then assigned to the cluster with the "nearest" centre, where distance is defined in terms of SNP allele matches. Within a logistic regression modelling framework, each haplotype within a cluster is assigned the same disease risk, reducing the number of parameters required. Uncertainty in phase assignment is addressed by considering all possible haplotype configurations consistent with each unphased genotype, weighted in the logistic regression likelihood by their probabilities, calculated according to the estimated relative haplotype frequencies. We develop a Markov chain Monte Carlo algorithm to sample over the space of haplotype clusters and corresponding disease risks, allowing for covariates that might include environmental risk factors or polygenic effects. Application of the algorithm to SNP genotype data in an 890-kb region flanking the CYP2D6 gene illustrates that we can identify clusters of haplotypes with similar risk of poor drug metaboliser (PDM) phenotype, and can distinguish PDM cases carrying different high-risk variants. Further, the results of a detailed simulation study suggest that we can identify positive evidence of association for moderate relative disease risks with a sample of 1,000 cases and 1,000 controls.  相似文献   

10.
Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests.We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs.  相似文献   

11.
Genomewide association studies (GWAS) sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple single‐nucleotide polymorphisms (SNPs) simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow‐up studies. Current multi‐SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA‐dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights. It estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing an SNP prioritization that best identifies underlying true signals, we show the following: our method easily outperforms a single‐marker analysis; when additive‐only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive‐only effects; and when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation.  相似文献   

12.
For most complex diseases, the fraction of heritability that can be explained by the variants discovered from genome‐wide association studies is minor. Although the so‐called “rare variants” (minor allele frequency [MAF] < 1%) have attracted increasing attention, they are unlikely to account for much of the “missing heritability” because very few people may carry these rare variants. The genetic variants that are likely to fill in the “missing heritability” include uncommon causal variants (MAF < 5%), which are generally untyped in association studies using tagging single‐nucleotide polymorphisms (SNPs) or commercial SNP arrays. Developing powerful statistical methods can help to identify chromosomal regions harboring uncommon causal variants, while bypassing the genome‐wide or exome‐wide next‐generation sequencing. In this work, we propose a haplotype kernel association test (HKAT) that is equivalent to testing the variance component of random effects for distinct haplotypes. With an appropriate weighting scheme given to haplotypes, we can further enhance the ability of HKAT to detect uncommon causal variants. With scenarios simulated according to the population genetics theory, HKAT is shown to be a powerful method for detecting chromosomal regions harboring uncommon causal variants.  相似文献   

13.
Haplotype‐based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases. Data comparisons within families offer the additional advantage of dealing naturally with complex sources of noise, confounding and population stratification. Two problems encountered when investigating associations between haplotypes and a continuous trait using data from sibships are (i) the need to define within‐sibship comparisons for sibships of size greater than two and (ii) the difficulty of resolving the joint distribution of haplotype pairs within sibships in the absence of parental genotypes. We therefore propose first a method of orthogonal transformation of both outcomes and exposures that allow the decomposition of between‐ and within‐sibship regression effects when sibship size is greater than two. We conducted a simulation study, which confirmed analysis using all members of a sibship is statistically more powerful than methods based on cross‐sectional analysis or using subsets of sib‐pairs. Second, we propose a simple permutation approach to avoid errors of inference due to the within‐sibship correlation of any errors in haplotype assignment. These methods were applied to investigate the association between mammographic density (MD), a continuously distributed and heritable risk factor for breast cancer, and single nucleotide polymorphisms (SNPs) and haplotypes from the VDR gene using data from a study of 430 twins and sisters. We found evidence of association between MD and a 4‐SNP VDR haplotype. In conclusion, our proposed method retains the benefits of the between‐ and within‐pair analysis for pairs of siblings and can be implemented in standard software. Genet. Epidemiol. 34: 309–318, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A topical question in genetic association studies is the optimal use of the information provided by genotyped single-nucleotide polymorphisms (SNPs) in order to detect the role of a candidate gene in a multifactorial disease. We propose a strategy called "combination test" that tests the association between a quantitative trait and all possible phased combinations of various numbers of SNPs. We compare this strategy to two alternative strategies: the association test that considers each SNP separately, and a multilocus genotype-based test that considers the phased combination of all SNPs together. To compare these three tests, a quantitative trait was simulated under different models of correspondence between phenotype and genotype, including the extreme case when two SNPs interact with no marginal effects of each SNP. The genotypes were taken from a sample of 290 independent individuals genotyped for three genes with various number of SNPs (from 5-8 SNPs). The results show that the "combination test" is the only one able to detect the association when the two SNPs involved in disease susceptibility interact with no marginal effects. Interestingly, even in the case of a single etiological SNP, the "combination test" performed well. We apply the three tests to Genetic Analysis Workshop 12 (Almasy et al. [2001] Genet. Epidemiol. 21:332-338) simulated data, and show that although there was no interactions between the etiological SNPs, the "combination test" was preferable to the two other compared methods to detect the role of the candidate gene.  相似文献   

15.
Candidate gene association studies often utilize one single nucleotide polymorphism (SNP) for analysis, with an initial report typically not being replicated by subsequent studies. The failure to replicate may result from incomplete or poor identification of disease-related variants or haplotypes, possibly due to naive SNP selection. A method for identification of linkage disequilibrium (LD) groups and selection of SNPs that capture sufficient intra-genic genetic diversity is described. We assume all SNPs with minor allele frequency above a pre-determined frequency have been identified. Principal component analysis (PCA) is applied to evaluate multivariate SNP correlations to infer groups of SNPs in LD (LD-groups) and to establish an optimal set of group-tagging SNPs (gtSNPs) that provide the most comprehensive coverage of intra-genic diversity while minimizing the resources necessary to perform an informative association analysis. This PCA method differs from haplotype block (HB) and haplotype-tagging SNP (htSNP) methods, in that an LD-group of SNPs need not be a contiguous DNA fragment. Results of the PCA method compared well with existing htSNP methods while also providing advantages over those methods, including an indication of the optimal number of SNPs needed. Further, evaluation of the method over multiple replicates of simulated data indicated PCA to be a robust method for SNP selection. Our findings suggest that PCA may be a powerful tool for establishing an optimal SNP set that maximizes the amount of genetic variation captured for a candidate gene using a minimal number of SNPs.  相似文献   

16.
Genetically complex diseases are caused by interacting environmental factors and genes. As a consequence, statistical methods that consider multiple unlinked genomic regions simultaneously are desirable. Such consideration, however, may lead to a vast number of different high-dimensional tests whose appropriate analysis pose a problem. Here, we present a method to analyze case-control studies with multiple SNP data without phase information that considers gene-gene interaction effects while correcting appropriately for multiple testing. In particular, we allow for interactions of haplotypes that belong to different unlinked regions, as haplotype analysis often proves to be more powerful than single marker analysis. In addition, we consider different marker combinations at each unlinked region. The multiple testing issue is settled via the minP approach; the P value of the "best" marker/region configuration is corrected via Monte-Carlo simulations. Thus, we do not explicitly test for a specific pre-defined interaction model, but test for the global hypothesis that none of the considered haplotype interactions shows association with the disease. We carry out a simulation study for case-control data that confirms the validity of our approach. When simulating two-locus disease models, our test proves to be more powerful than association methods that analyze each linked region separately. In addition, when one of the tested regions is not involved in the etiology of the disease, only a small amount of power is lost with interaction analysis as compared to analysis without interaction. We successfully applied our method to a real case-control data set with markers from two genes controlling a common pathway. While classical analysis failed to reach significance, we obtained a significant result even after correction for multiple testing with our proposed haplotype interaction analysis. The method described here has been implemented in FAMHAP.  相似文献   

17.
Haplotype sharing analysis was used to investigate the association of affection status with single nucleotide polymorphism (SNP) haplotypes within candidate gene 1 in one sample each from the isolated and the general population of Genetic Analysis Workshop (GAW) 12 simulated data. Gene 1 has direct influence on affection and harbors more than 70 SNPs. Haplotype sharing analysis depends heavily on previous haplotype estimation. Using GENEHUNTER haplotypes, strong evidence was found for most SNPs in the isolated population sample, thus providing evidence for an involvement of this gene, but the maximum -log(10)(p) values for the haplotype sharing statistics (HSS) test statistic did not correspond to the location of the true variant in either population. In comparison, transmission disequilibrium test (TDT) analysis showed the strongest results at the disease-causing variant in both populations, and these were outstanding in the general population. In this example, TDT analysis appears to perform better than HSS in identifying the disease-causing variant, using SNPs within a candidate gene in an outbred population. Simulations showed that the performance of HSS is hampered by closely spaced SNPs in strong linkage disequilibrium with the functional variant and by ambiguous haplotypes.  相似文献   

18.
The increasing availability of maps of dense polymorphic markers makes use of haplotype data in family-based association analyses an attractive alternative to single marker association tests. We describe a novel class of statistics designed to test for an association between marker haplotypes and a qualitative trait using the parent-parent-affected-offspring trio design. Our haplotype runs test (HRT) is based on consecutive allele-sharing between pairs of haplotypes. We assign weights according to the relative frequencies of the alleles for which the two haplotypes match. Herein, we compare the HRT to the maximum-identity-length-contrast (MILC) statistic, the single-locus transmission/disequilibrium test (TDT), and the generalized test of transmission disequilibrium for haplotype data, as implemented in the software TRANSMIT, using both simulated data and published haplotype data from the recessive disorder ataxia-telangiectasia. Our simulation results suggest that the HRT outperforms the MILC and that the HRT provides comparable power to the TDT and TRANSMIT when the number of distinct founder haplotypes with a disease susceptibility allele is small but substantially outperforms the TDT and TRANSMIT when the number of distinct founder haplotypes with a disease susceptibility allele is even of modest size.  相似文献   

19.
It is increasingly recognized that pathway analyses—a joint test of association between the outcome and a group of single nucleotide polymorphisms (SNPs) within a biological pathway—could potentially complement single‐SNP analysis and provide additional insights for the genetic architecture of complex diseases. Building upon existing P‐value combining methods, we propose a class of highly flexible pathway analysis approaches based on an adaptive rank truncated product statistic that can effectively combine evidence of associations over different SNPs and genes within a pathway. The statistical significance of the pathway‐level test statistics is evaluated using a highly efficient permutation algorithm that remains computationally feasible irrespective of the size of the pathway and complexity of the underlying test statistics for summarizing SNP‐ and gene‐level associations. We demonstrate through simulation studies that a gene‐based analysis that treats the underlying genes, as opposed to the underlying SNPs, as the basic units for hypothesis testing, is a very robust and powerful approach to pathway‐based association testing. We also illustrate the advantage of the proposed methods using a study of the association between the nicotinic receptor pathway and cigarette smoking behaviors. Genet. Epidemiol. 33:700–709, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

20.
In this article, we develop a powerful test for identifying single nucleotide polymorphism (SNP)-sets that are predictive of survival with data from genome-wide association studies. We first group typed SNPs into SNP-sets based on genomic features and then apply a score test to assess the overall effect of each SNP-set on the survival outcome through a kernel machine Cox regression framework. This approach uses genetic information from all SNPs in the SNP-set simultaneously and accounts for linkage disequilibrium (LD), leading to a powerful test with reduced degrees of freedom when the typed SNPs are in LD with each other. This type of test also has the advantage of capturing the potentially nonlinear effects of the SNPs, SNP-SNP interactions (epistasis), and the joint effects of multiple causal variants. By simulating SNP data based on the LD structure of real genes from the HapMap project, we demonstrate that our proposed test is more powerful than the standard single SNP minimum P-value-based test for association studies with censored survival outcomes. We illustrate the proposed test with a real data application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号