首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate the influence of formulation excipients on physical characteristics of inhalation dry powders prepared by spray-drying. The excipients used were a series of amino acids (glycine, alanine, leucine, isoleucine), trehalose and dipalmitoylphosphatidylcholine (DPPC). The particle diameter and the powder density were assessed by laser diffraction and tap density measurements, respectively. The aerosol behaviour of the powders was studied in a Multi-Stage Liquid Impinger. The nature and the relative proportion of the excipients affected the aerosol performance of the powders, mainly by altering powder tap density and degree of particle aggregation. The alanine/trehalose/DPPC (30/10/60 w/w/w) formulation showed optimal aerodynamic behaviour with a mass median aerodynamic diameter of 4.7 μm, an emitted dose of 94% and a fine particle fraction of 54% at an airflow rate of 100 L/min using a Spinhaler inhaler device. The powder had a tap density of 0.10 g/cm3. The particles were spherical with a granular surface and had a 4 μm volume median diameter. In conclusion, optimization of the aerosolization properties of inhalation dry powders could be achieved by appropriately selecting the composition of the particles.  相似文献   

2.
The aim of this work was to prepare and characterize inhalation dry powders of human parathyroid hormone (PTH), as well as to assess their efficacy for systemic delivery of the peptide and safety in rats. The powders were prepared by spray-drying using PTH, sugars, dipalmitoylphosphatidylcholine, and/or albumin. They presented an average primary particle diameter of 4.5 microm and tap density of 0.06 g/cm(3), a mass median aerodynamic diameter between 3.9 and 5.9 microm, and reached up to 98% emitted dose and up to 61% fine particle fraction in the multi-stage liquid impinger using a Spinhaler inhaler device. Varying the airflow rate from 30 to 100 L/min had limited influence on the aerodynamic behavior of the aerosols. The absolute PTH bioavailability was 21% after intratracheal administration of the powder formed of PTH/albumin/lactose/dipalmitoylphosphatidylcholine and 18% after subcutaneous injection in rats. Equilibrium dialysis revealed a 78% binding of PTH to albumin and the withdrawal of albumin from the powder increased absolute bioavailability after inhalation from 21 to 34%. No acute inflammation appeared in the lung up to 48 h after a single inhalation. The increased bioavailability of the optimized powder aerosol of PTH makes it a promising alternative to subcutaneous injection.  相似文献   

3.
We have designed a novel formulation of pyrazinamide (PZA), an antitubercular drug within large porous particles intended for deep lung delivery. By simply spray-drying PZA, we have obtained crystalline particles of the δ polymorph of PZA that were unstable and not adapted for lung administration. Several excipients were added to the formulation to obtain stable large porous particles with a median size above 5 μm and a low tap density. Although a combination of leucine and ammonium bicarbonate (AB) allowed to reduce tap density and to increase particle size, these excipients were not sufficient to prevent crystallization and promote stability. The addition of hyaluronic acid (HA) in combination with dipalmitoylphosphatidylcholine (DPPC) allowed to obtain stable partially crystalline spherical particles adapted for deep lung delivery. The optimized formulation obtained by spray-drying 0.9 g/L PZA, 0.6 g/L leucine, 0.2 g/L HA, 0.3 g/L DPPC and 2 g/L AB in a mixture of ethanol–water (70/30, v/v) possesses a median size of 5.8 ± 0.1 μm and a tap density around 0.09 ± 0.01 g/cm3. The estimated aerodynamic diameter is around 1.75 μm and the powder is stable for more than 4 weeks of storage.  相似文献   

4.
Background: The aerosol performance of a powder for inhalation drug delivery is controlled by a number of physicochemical properties of the formulation, including particle size, density and morphology. Objective: The role of particle morphology in powder inhalers will be reviewed. Methods: Original research publications in the literature about the contribution of particle morphology to the aerosol performance of pharmaceutical powders have been selected, including both the lactose carriers and the drugs. Results/conclusion: Existing data showed that morphology of both the lactose carrier and drug particle can affect the aerosol performance of powders significantly, a factor which should be taken into consideration during the development of dry powder inhalation products.  相似文献   

5.
Purpose. Relatively large (>5 µm) and porous (mass density < 0.4 g/cm3) particles present advantages for the delivery of drugs to the lungs, e.g., excellent aerosolization properties. The aim of this study was, first, to formulate such particles with excipients that are either FDA-approved for inhalation or endogenous to the lungs; and second, to compare the aerodynamic size and performance of the particles with theoretical estimates based on bulk powder measurements. Methods. Dry powders were made of water-soluble excipients (e.g., lactose, albumin) combined with water-insoluble material (e.g., lung surfactant), using a standard single-step spray-drying process. Aerosolization properties were assessed with a Spinhaler TM device in vitro in both an Andersen cascade impactor and an AerosizerTM.. Results. By properly choosing excipient concentration and varying the spray drying parameters, a high degree of control was achieved over the physical properties of the dry powders. Mean geometric diameters ranged between 3 and 15 µm, and tap densities between 0.04 and 0.6 g/cm3. Theoretical estimates of mass mean aerodynamic diameter (MMAD) were rationalized and calculated in terms of geometric particle diameters and bulk tap densities. Experimental values of MMAD obtained from the AerosizerTM most closely approximated the theoretical estimates, as compared to those obtained from the Andersen cascade impactor. Particles possessing high porosity and large size, with theoretical estimates of MMAD between 1–3 µm, exhibited emitted doses as high as 96% and respirable fractions ranging up to 49% or 92%, depending on measurement technique. Conclusions. Dry powders engineered as large and light particles, and prepared with combinations of GRAS (generally recognized as safe) excipients, may be broadly applicable to inhalation therapy.  相似文献   

6.

Purpose

Novel itraconazole (ITZ)-based dry powders for inhalation (DPI) were optimized for aerodynamic and dissolution properties and contained excipients that are acceptable for inhalation.

Methods

The DPI were produced by spray drying solutions. The drug content, crystallinity state, and morphological evaluation of the dry powders were determined by high performance liquid chromatography, powder X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy, respectively. A particle size analysis was conducted using laser light scattering. The aerodynamic behaviors of the powders were characterized by impaction tests. ITZ dissolution rates were evaluated using a dissolution method adapted to inhaled products.

Results

The DPI presented very high fine particle fractions that ranged from 46.9% to 67.0% of the nominal dose. The formulations showed very fast dissolution rates compared to unformulated crystalline ITZ with the possibility of modulating the dissolution rate by varying the quantity of phospholipids (PL) incorporated. ITZ remained amorphous while the mannitol was crystalline. The α, β and δ-mannitol polymorph ratios varied depending on the formulation compositions.

Conclusion

This formulation strategy could be an attractive alternative for treating invasive pulmonary aspergillosis. The ITZ and PL content are key characteristics because of their influence on the dissolution rate and aerosol performance.  相似文献   

7.
Mechanistic models of the spray drying and particle formation processes were used to conduct a formulation study with minimal use of material and time. A model microparticle vehicle suitable for respiratory delivery of biological pharmaceutical actives was designed. L-leucine was chosen as one of the excipients, because of its ability to enhance aerosol dispersibility. Trehalose was the second excipient. The spray drying process parameters used to manufacture the particles were calculated a priori. The kinetics of the particle formation process were assessed using a constant evaporation rate model. The experimental work was focused on the effect of increasing L-leucine mass fraction in the formulation, specifically its effect on leucine crystallinity in the microparticles, on powder density, and on powder dispersibility. Particle, powder and aerosol properties were assessed using analytical methods with minimal sample requirement, namely linear Raman spectroscopy, scanning electron microscopy, time-of-flight aerodynamic diameter measurements, and a new technique to determine compressed bulk density of the powder. The crystallinity of leucine in the microparticles was found to be correlated with a change in particle morphology, reduction in powder density, and improvement in dispersibility. It was demonstrated that the use of mechanistic models in combination with selected analytical techniques allows rapid formulation of microparticles for respiratory drug delivery using batch sizes of less than 80 mg.  相似文献   

8.
Protein Inhalation Powders: Spray Drying vs Spray Freeze Drying   总被引:3,自引:0,他引:3  
Purpose. To develop a new technique, spray freeze drying, for preparing protein aerosol powders. Also, to compare the spray freeze-dried powders with spray-dried powders in terms of physical properties and aerosol performance. Methods. Protein powders were characterized using particle size analysis, thermogravimetric analysis, scanning electron microscopy, X-ray powder diffractometry, and specific surface area measurement. Aerosol performance of the powders was evaluated after blending with lactose carriers using a multi-stage liquid impinger or an Anderson cascade impactor. Two recombinant therapeutic proteins currently used for treating respiratory tract-related diseases, deoxyribonuclase (rhDNase) and anti-IgE monoclonal antibody (anti-IgE MAb), were employed and formulated with different carbohydrate excipients. Results. Through the same atomization but the different drying process, spray drying (SD) produced small (3 m), dense particles, but SFD resulted in large (8–10 m), porous particles. The fine particle fraction (FPF) of the spray freeze-dried powder was significantly better than that of the spray-dried powder, attributed to better aerodynamic properties. Powders collected from different stages of the cascade impactor were characterized, which confirmed the concept of aerodynamic particle size. Protein formulation played a major role in affecting the powder's aerosol performance, especially for the carbohydrate excipient of a high crystallization tendency. Conclusions. Spray freeze drying, as opposed to spray drying, produced protein particles with light and porous characteristics, which offered powders with superior aerosol performance due to favorable aerodynamic properties.  相似文献   

9.
Pharmaceutical aerosol delivery is undergoing dramatic changes in both inhaler device and formulation aspects. There is a rapid move from the traditional propellant-driven metered dose inhalers to the high performance liquid atomizers and dry powder inhalers (DPIs). DPIs involving the dispersion of powders into aerosols by an inhaler device are particularly attractive as dry powders generally have greater chemical stability than liquids used in atomizers. Delivery of therapeutic proteins as dry powder aerosols is of high commerical interest. However, production and formulation of dry powders for inhalation can be difficult and challenging due to the potential physical instability of the powder. Dry powders consisting of micro- or nano-sized particles are inherently adhesive and cohesive, leading to highly variable dose accuracy and poor aerosol performance. Particle engineering via the use of appropriate pharmaceutical excipients and processing parameters can produce particles of optimal morphologies and surface properties which would enhance aerosol generation. Some of the key determinants for successful dispersion of pharmaceutical powders suitable for inhalation are reviewed with an emphasis on the practical significance.  相似文献   

10.
Wet milling was previously demonstrated as a simple process for producing agglomerates of budesonide nanoparticles (also known as NanoClusters) for use in dry powder aerosol formulation. The resulting budesonide NanoCluster powders exhibited a large emitted fraction and a high fine particle fraction (FPF) from a Monodose? dry powder inhaler. In this work, excipients were added premilling or postmilling and the performance of budesonide NanoCluster dry powders was investigated. Sodium chloride, Pluronic?, or ethanol was added prior to milling due to their ability to modify surface tension or ionic strength and thereby affect the attrition/agglomeration process. Lactose or l-leucine was added after milling because these are known to modify powder flow and dispersion. The chemical stability of budesonide was maintained in all cases, but the physical aerosol properties changed substantially with the addition of excipients. In all cases, the addition of excipients led to an increase in the size of the budesonide NanoClusters and tended to reduce the emitted fraction and FPF. Titrating excipients may provide a means to discretely modify the aerosol properties of budesonide NanoClusters but did not match the performance of excipient-free NanoCluster powder.  相似文献   

11.
The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1–5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs).  相似文献   

12.
The aim of the study was to optimize and characterize high therapeutic payload large respirable powders prepared by spray-drying technique for maximum fine particle fraction with minimum quantities of excipients. Influence of formulation components was optimized by a three-factor, five-level central composite design having different proportions of L-leucine (X1), tobramycin sulfate (X2), and poloxamer-188 (X3) as the independent variables and fine particle fraction as a response variable (Y). Large respirable powders were characterized for particle size, size distribution, moisture, crystallinity, and morphology. In vitro aerosol performance of powders was determined by an eight-stage Andersen cascade impactor using the Rotahaler. Mathematical model elucidated for Y was Y = 56.2068 + 5.7481 X1 - 3.0531 X2 + 0.8468 X3 + 1.1737 X1 X2 - 0.5012 X1 X3 - 0.7412 X2 X3 - 0.7149 X1(2) - 1.9212 X2(2) - 1.6187X3(2). The component of greatest influence on product performance (response variable) was found to be L-leucine. Lack of fit was not significant (p = 0.08), and regression equation predicted response for Y was in reasonably good agreement with experimental values (p = 0.01; R2 = 0.92). The optimal model predicted with a fine particle fraction of 62.8 +/- 2.6% with X1, X2, X3 levels of 20, 45.71, and 5.51 respectively. Large respirable powders with TB load of 45.7% w/w were prepared; they had smooth surface texture, dimpled spherical shape, roundness value close to 1(1.048 +/- 0.032) and were found to possess bulk tap densities of 0.04 g/cc, geometric particle sizes of 6-7 micro m, and emitted dose of 92%. The results of the studies suggest that in vitro aerosol performance was affected significantly by small and deliberate change of specific formulation components and its proportions. It may be concluded that appropriate type and proportion of excipients is necessary to obtain maximum fine particle fraction of large respirable powders containing high therapeutic payloads.  相似文献   

13.
The effect of different amino acids (AAs) on the aerosol performance of N spray-dried powders was studied. Morphology, size distribution, density, dissolution rate were evaluated and correlated to process parameters. The aerosol performance was analyzed by both Single Stage Glass Impinger and Andersen Cascade Impactor. Results indicated that powders containing 5% (w/w) of leucine, proline or histidine and dried from 3:7 ethanol/water feeds showed very satisfying aerodynamic properties with fine particle fraction>60%. Both neat N (raw and spray-dried) and N-leu1 dry-powder showing good aerodynamic properties were tested in cystic fibrosis (CF) and normal bronchial epithelial cells. Cell proliferation and expression levels of the key enzymes of the NF-κB and MAPK/ERK pathways, overactivated in CF cell lines, were evaluated. N-leu1 was able to significantly inhibit the expression levels of IKKα, IKKβ, as well as of the direct NF-κB inhibitor, IκBα. In addition N-Leu1 inhibited phosphorylation of ERK1/2 kinase and did not reduce cell proliferation as observed for the neat raw drug. Leucine co-spray-dried with the drug improved both aerodynamic properties and in vitro pharmacological activity of Naringin. The optimized N-Leu formulation as dry powder is potentially able to reduce hyperinflammatory status associated to CF.  相似文献   

14.
The objective of this study was to investigate the influence of formulation excipients on the physical characteristics and aerosolization performance of insulin dry powders for inhalation. Insulin dry powders were prepared by a spray drying technique using excipients such as sugars (trehalose, lactose and dextran), mannitol and amino acids (L-leucine, glycine and threonine). High performance liquid chromatography and the mouse blood glucose method were used for determination of the insulin content. The powder properties were determined and compared by scanning electron microscopy, thermo-gravimetric analysis and size distribution analysis by a time-of-flight technique. The in-vitro aerosolization behaviour of the powders was assessed with an Aerolizer inhaler using a twin-stage impinger. Powder yield and moisture absorption were also determined. Results showed that there was no noticeable change in insulin content in any of the formulations by both assay methods. All powders were highly wrinkled, with median aerodynamic diameters of 2-4 microm, and consequently suitable for pulmonary administration. The tapped density was reduced dramatically when glycine was added. The powders containing mannitol, with or without L-leucine, were less sensitive to moisture. The highest respirable fraction of 67.3 +/- 1.3% was obtained with the formulation containing L-leucine, in contrast to formulations containing glycine and threonine, which had a respirable fraction of 11.2 +/- 3.9% and 23.5 +/- 2.5%, respectively. In addition, powders with good physical properties were achieved by the combination of insulin and trehalose. This study suggests that L-leucine could be used to enhance the aerosolization behaviour of the insulin dry powders for inhalation, and trehalose could potentially be used as an excipient in the formulations.  相似文献   

15.
The dry powder inhalation of antibiotics for the treatment of lung infections has attracted drastically increasing attention as it offers rapid local therapy at lower doses and minimal side effects. In this study, aztreonam (AZT) was used as the model antibiotic and spray-dried to prepare powders for inhalation. Amino acids of glycine (GLY), histidine (HIS) and leucine (LEU) were used as excipients to modify the spray-dried particles. It was demonstrated that the GLY-AZT spray-dried powders formed huge agglomerates with the size of 144.51 µm, which made it very difficult to be delivered to the lungs (FPF: 0.29% w/w only). In comparison with the AZT spray-dried powders, HIS-modified spray-dried powders showed increased compressibility, indicating larger distance and less cohesion between particles; while the LEU-modified spray-dried particles showed a hollow structure with significantly decreased densities. The fine particle fraction for HIS- and LEU-modified powders was 51.4% w/w and 61.7% w/w, respectively, and both were significantly increased (one-way ANOVA, Duncan's test, P <0.05) compared to that of AZT spray-dried powders (45.4% w/w), showing a great potential to be applied in clinic.  相似文献   

16.
Inhalation of estradiol for sustained systemic delivery.   总被引:4,自引:0,他引:4  
Large porous estradiol particles were formulated by spray drying estradiol in combination with various U.S. Food and Drug Administration (FDA)-approved or endogenous excipients. The powders were characterized in terms of their geometrical size, mass density, and aerosolization properties. Small nonporous particles were also prepared using the same excipients and were physically characterized to insure that they possessed a similar mean aerodynamic size as the large porous particles. The two powders were aerosolized into the lungs of rats via an endotracheal tube or subcutaneously injected as a control to assess relative bioavailability. Two different large porous particle formulations were found to produce elevated systemic estradiol concentrations upon inhalation for approximately 5 days, with relative bioavailabilities of 59.7% and 86.0%. Systemic estradiol concentrations following inhalation of two different small nonporous particle powders remained elevated for only approximately 1 day, with relative bioavailabilities of 18.3% and 38.7%. Bronchoalveolar lavage was performed up to 96 hours after inhalation of porous and nonporous estradiol powders. Small changes in neutrophil and macrophage populations were observed following inhalation of both the porous and nonporous powders.  相似文献   

17.
The particle engineering process, thin film freezing (TFF), was used to produce particulate voriconazole (VRC) formulations with enhanced properties. The effect of various processing parameters on the solid state properties and aerodynamic performance of the TFF-processed powders was investigated in order to evaluate the suitability of these formulations for dry powder inhalation and to optimize the aerodynamic properties. Thin film freezing of VRC solution without stabilizing excipients resulted in microstructured, crystalline low density aggregate particles with specific surface areas of approximately 10m(2)/g. Thin film freezing of VRC-PVP solutions produced nanostructured, amorphous low density aggregate particles with specific surface areas ranging from 15 to 180m(2)/g, depending on the solvent system composition, polymer grade, and drug to polymer ratio utilized. VRC formulations manufactured with 1,4-dioxane, with and without PVP K12, resulted in the lowest specific surface areas but displayed the best aerodynamic properties. Using a Handihaler(?) dry powder inhaler (DPI), microstructured crystalline TFF-VRC and nanostructured amorphous TFF-VRC-PVP K12 (1:2) displayed total emitted fractions of 80.6% and 96.5%, fine particle fractions of 43.1% and 42.4%, and mass median aerodynamic diameters of 3.5 and 4.5μm, respectively.  相似文献   

18.
Purpose  To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology. Materials and Methods  Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure. Results  Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 μm which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 ± 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 ± 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here. Conclusions  When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.  相似文献   

19.
The relationship between physicochemical properties of drug/carrier blends and aerosol drug powder delivery was evaluated. Four pulmonary drugs each representing the major pulmonary therapeutic classes and with a different pharmacological action were employed. Specifically, the four pulmonary drugs were albuterol sulfate, ipratropium bromide monohydrate, disodium cromoglycate, and fluticasone propionate. The two carrier sugars, each representing a different sugar class, were D-mannitol and trehalose dihydrate. Dry powder aerosols (2%, w/w, drug in carrier) delivered using standardized entrainment tubes (SETs) were characterized by twin-stage liquid impinger. The fine particle fraction (FPF) was correlated with SET shear stress, τs, and the maximum fine particle fraction (FPFmax) was correlated with a deaggregation constant, kd, by using a powder aerosol deaggregation equation (PADE) by nonlinear and linear regression analyses applied to pharmaceutical inhalation aerosol systems in the solid state. For the four pulmonary drugs representing the major pulmonary therapeutic classes and two chemically distinct pulmonary sugar carriers (non-lactose types) aerosolized with SETs having well-defined shear stress values, excellent correlation and predictive relationships were demonstrated for the novel and rigorous application of PADE for dry powder inhalation aerosol dispersion within a well-defined shear stress range, in the context of pulmonary drug/sugar carrier physicochemical and interfacial properties.  相似文献   

20.
Purpose. To study the effect of trehalose, lactose, and mannitol on the biochemical stability and aerosol performance of spray-dried powders of an anti-IgE humanized monoclonal antibody. Methods. Protein aggregation of spray-dried powders stored at various temperature and relative humidity conditions was assayed by size exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein glycation was determined by isoelectric focusing and affinity chromatography. Crystallization was examined by X-ray powder diffraction. Aerosol performance was assessed as the fine particle fraction (FPF) of the powders blended with coarse carrier lactose, and was determined using a multiple stage liquid impinger. Results. Soluble protein aggregation consisting of non-covalent and disulfide-linked covalent dimers and trimers occurred during storage. Aggregate was minimized by formulation with trehalose at or above a molar ratio in the range of 300:1 to 500:1 (excipient:protein). However, the powders were excessively cohesive and unsuitable for aerosol administration. Lactose had a similar stabilizing effect, and the powders exhibited acceptable aerosol performance, but protein glycation was observed during storage. The addition of mannitol also reduced aggregation, while maintaining the FPF, but only up to a molar ratio of 200:1. Further increased mannitol resulted in crystallization, which had a detrimental effect on protein stability and aerosol performance. Conclusions. Protein stability was improved by formulation with carbohydrate. However, a balance must be achieved between the addition of enough stabilizer to improve protein biochemical stability without compromising blended powder aerosol performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号