首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Functionalized poly N,N-dimethylaniline film was prepared by adsorption of ferrocyanide onto the polymer forming at the surface of carbon paste electrode (CPE) in aqueous solution. The electrocatalytic ability of poly N,N-dimethylaniline/ferrocyanide film modified carbon paste electrode (PDMA/FMCPE) was demonstrated by oxidation of l-cysteine. Cyclic voltammetry and chronoamperometry techniques were used to investigate this ability. In the optimum pH (6.00), the electrocatalytic ability about 480 mV and the catalytic reaction rate constant, (kh), can be seen 3.08 × 103 M−1 s−1. The catalytic oxidation peak current determined by cyclic voltammetry method was linearly dependent on the l-cysteine concentration and the linearity range obtained was 8.00 × 10−5 –2.25 × 10−3 M. Detection limit of this method was determined as 6.17 × 10−5 M (2σ). At a fixed potential under hydrodynamic conditions (stirred solution), the calibration plot was linear over the l-cysteine concentration range 7.40 × 10−6 M–1.38 × 10−4 M. The detection limit of the method was 6.38 × 10−6 M (2σ).  相似文献   

2.
With ordered mesoporous carbon (OMC) as the modifier, a voltammetric sensor for folic acid (FA) was constructed on a glassy carbon electrode (GCE). Due to the good characteristics of OMC, FA exhibited an enhanced electrochemical response and lower reduction potential in the neutral solution. In addition, the experimental parameters such as pH values, accumulation time and potential were optimized. Using the differential pulse voltammetry (DPV) measurement, the peak current was found to be linear with FA concentration in the range from 5.0 × 10−10 to 1.0 × 10−7 M with a lower detection limit of 6.0 × 10−11 M (S/N = 3). Also, in real samples analysis, the as-prepared sensor successfully gives satisfying results.  相似文献   

3.
A stable modified glassy carbon electrode based on the poly 3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CDDA) film was prepared by electrochemical polymerization technique to investigate its electrochemical behavior by cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and their stability were examined. The homogeneous rate constant, ks, for the electron transfer between CDDA and glassy carbon electrode was calculated as 5.25(±0.20) × 102 cm s−1. The modified electrode showed electrocatalytic activity toward ascorbic acid (AA), dopamine (DA), and uric acid (UA) oxidation in a buffer solution (pH 4.0) with a diminution of their overpotential of about 0.12, 0.35, and 0.50 V for AA, DA, and UA, respectively. An increase could also be observed in their peak currents. The modified glassy carbon electrode was applied to the electrocatalytic oxidation of DA, AA, and UA, which resolved the overlapping of the anodic peaks of DA, AA, and UA into three well-defined voltammetric peaks in differential pulse voltammetry (DPV). This modified electrode was quite effective not only for detecting DA, AA, and UA, but also for simultaneous determination of these species in a mixture. The separation of the oxidation peak potentials for ascorbic acid–dopamine and dopamine–uric acid were about 0.16 V and 0.17 V, respectively. The final DPV peaks potential of AA, DA and UA were 0.28, 0.44, and 0.61 V, respectively. The calibration curves for DA, AA, and UA were linear for a wide range of concentrations of each species including 5.0–240 μmol L−1 AA, 5.0–280 μmol L−1 DA, and 0.1–18.0 μmol L−1 UA. Detection limits of 1.43 μmol L−1 AA, 0.29 μmol L−1 DA and 0.016 μmol L−1 UA were observed at pH 4. Interference studies showed that the modified electrode exhibits excellent selectivity toward AA, DA, and UA.  相似文献   

4.
A novel modified carbon-paste electrode was employed for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) with good selectivity and high sensitivity. Silver nanoparticle and carbon nanotube modified carbon-paste electrode (Ag/CNT–CPE) displayed excellent electrochemical catalytic activities towards dopamine (DA) and ascorbic acid (AA). The oxidation overpotentials of DA and AA were decreased significantly compared with those obtained at the bare CPE. Differential pulse voltammetry was used for the simultaneous determination of DA and AA. The peak separation between DA and AA was 67 mV. The calibration curves for DA and AA were obtained in the range of 8.0 × 10−7–6.4 × 10−5 M and 3.0 × 10−5–2.0 × 10−3 M, respectively. The lowest detection limits (S/N = 3) were 3.0 × 10−7 M and 1.2 × 10−5 M for DA and AA, respectively. Method was applied to the determination of DA and AA in real samples.  相似文献   

5.
A sensitive and selective method for determination of dopamine (DA) using multi-wall carbon nanotube (MWCNT)-poly(3,5-dihydroxy benzoic acid) [poly(DBA)] modified electrode is developed. The modified electrode shows excellent electrocatalytic activity toward the oxidation of dopamine in phosphate buffer solutions at pH 7.4. Using cyclic voltammetry, the linear range of 1 × 10−7–7.0 × 10−5 M in the interference of 500 μM ascorbic acid (AA) and the detection limit of 1.0 × 10−8 M were estimated for the measurement of DA in pH 7.4 phosphate buffer solutions. The value of DA current retained 98.36% of the initial response current after the modified electrode exposed to the air for one week. The interference studies showed that the modified electrode excludes effectively large excess of AA. The kinetic characteristics of the transfer of DA demonstrated that the electron propagation between DA and electrode was accelerated at MWCNT-poly(DBA) modified electrode. The work provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment.  相似文献   

6.
Voltammetric and electrochemical impedance spectroscopic (EIS) studies of generation one poly(propylene imine) (G1 PPI) dendrimer as an electroactive and catalytic nanomaterials both in solution and as an electrode modifier based on a simple one step electrodeposition method is presented. The G1 PPI exhibited a reversible one electron redox behaviour at E0′ ca 210 mV in phosphate buffer pH 7.2 with diffusion coefficient and Warburg coefficient of 7.5 × 10−10 cm2 s−1 and 8.87 × 10−4 Ω s−1/2 respectively. Cyclic voltammetric electrodeposition of a monolayer of G1 PPI on glassy carbon electrode was carried out between −100 mV and 1100 mV for 10 cycles. The nanoelectrode was electroactive in PBS at E0′ ca 220 mV. Kinetic profiles such as time constant (4.64 × 10−5 s rad−1), exchange current (1.55 × 10−4 A) and heterogeneous rate constant (4.52 × 10−3 cm s−1) obtained from EIS showed that the dendrimer layer catalysed the redox reaction of Fe2+/3+ in [Fe(CN)6]3−/4− redox probe.  相似文献   

7.
A novel electrochemical sol–gel imprinted sensor for sensitive and convenient determination of thymidine was developed. Thin film of molecularly imprinted sol–gel polymers with specific binding sites for thymidine was cast on carbon electrode by electrochemical deposition. Multi-walled carbon nanotubes (MWCNTs) were introduced for the enhancement of electronic transmission and sensitivity. The morphology and performance of the imprinted film was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV) and amperometric measurements (it) in detail. The results showed that the imprinted film exhibited high selectivity toward thymidine. The linear range is over the range from 2 to 22 μmol L−1, and the linear regression equation for thymidine is I = 0.867C + 0.232 with the detection limit of 1.6 × 10−9 mol L−1(S/N = 3). The imprinted sensor was successfully employed to detect thymidine in some zidovudine-tablet samples.  相似文献   

8.
This research in finding a cheap and efficient catalyst for electrooxidation of formaldehyde give us an attempt to make and examine the behavior of poly(N-methylaniline)/nickel modified carbon paste electrode (Ni/P(NMA)/MCPE) in absence and presence of formaldehyde. This involves in situ electropolymerization of N-methylaniline at carbon paste electrode, which is following to the incorporation of Ni(II) to polymeric layer by immersion of modified electrode in 1.0 M nickel sulphate solution. The electrocatalytic oxidation of formaldehyde was studied by cyclic voltammetry and chronoamperometry methods. The effects of scan rate and formaldehyde concentration on the electrocatalytic oxidation of formaldehyde were also investigated at the surface of Ni/P(NMA)/MCPE. The diffusion coefficient (D = 14.1 × 10−5 cm2 s−1), and some kinetic parameters such as the transfer coefficient (α = 0.45) and also second-order rate constant (k = 8.96 × 10−4 cm3 mol−1 s−1) of formaldehyde were calculated.  相似文献   

9.
The electrochemical behaviors of magnolol have been studied at glassy carbon electrode using cyclic voltammetry, linear sweep voltammetry and chronocoulometry. Moreover, its interaction with DNA was investigated in solution by electrochemical methods and ultraviolet–visible spectroscopy. The experiment results indicated that the electrochemical oxidation of magnolol was an irreversible process with one proton and one electron transfer. The electron transfer coefficient (α) was calculated to be 0.441 ± 0.001. At the scan rate from 100 mV/s to 450 mV/s, the electrode process was controlled by the adsorption step and at the range of 600–950 mV/s the electrochemical oxidation was diffusion controlled process. The corresponding electrochemical rate constant (ks) was 0.0760 ± 0.0001 s−1. Through chronocoulometry experiment, the diffusion coefficient (D) and the surface concentration (Γ) were obtained as (3.76 ± 0.01) × 10−7 cm2/s and (2.98 ± 0.01) × 10−10 mol/cm2. In addition, the interaction of magnolol and DNA was ascribed to be electrostatic interaction and the calculated association constant (β) and Hill coefficient (m) were 1.14 × 105 M−1 and 0.973. At last a sensitive and convenient electrochemical method was proposed for the determination of magnolol.  相似文献   

10.
Manganese oxides nanoparticles were chemically deposited on a high area (ca. 300 m2 g−1) carbon black substrate to act as electrocatalysts for oxygen reduction. The morphology and chemistry of the carbon-supported MnOx nanoparticles was characterised by Transmission Electron Microscopy), X-ray Diffraction, and chemical analysis. The oxygen reduction reaction (ORR) catalytic activity was studied in the 7–10 pH range using a rotating disk electrode (RDE). High activity towards oxygen reduction and very good stability in neutral and slightly basic solution were obtained. At low current densities, at 25 °C, MnOx/C displayed a reaction order with respect to OH ions of −0.5 and Tafel slopes of −0.153 and −0.167 V dec−1 at pH 7 and 10 respectively; showing that the ORR mechanism on MnOx/C is unchanged in the 7–10 pH range. From the data, we propose that the first electrochemical step of the 4-electron ORR mechanism, in the 7–10 pH range, is the quasi equilibrium proton insertion process in MnO2 yielding MnOOH (insoluble in neutral or slightly basic solution). The ORR activity of the MnOx/C materials increased with increasing temperatures from 5 to 40 °C. The 2-electron pathway of oxygen reduction, yielding hydrogen peroxides as intermediates, may however be favoured over the 4-electron O2 reduction at higher temperatures.  相似文献   

11.
The functionalized carbon nanotube electrode was fabricated by electrodeposition of 1,2-naphthoquinone-4-sulfonic acid sodium (Nq) on single-wall carbon nanotube (SWNT) modified glassy carbon electrode (GCE). This electrode was characterized by scanning electron microscopy (SEM) and the results showed that Nq can rapidly and effectively be deposited on the surface of SWNT film with high stability. The electrochemical properties of functionalized SWNT/GCE with Nq (SWNT–Nq/GCE) were studied using cyclic voltammetry, double step potential chronoamperometry and differential pulse voltammetry methods. The results indicated that SWNT could improve the electrochemical behavior of Nq and greatly enhances its redox peak currents. The SWNT–Nq/GCE exhibited a pair of well-defined redox peaks. The experimental results also demonstrated that the Nq deposited species on SWNT could catalyze cysteamine oxidation and SWNT–Nq exhibited a high performance with lowering the overpotential by more than 710 mV. The effect of pH value, number of scans and Nq concentration were investigated on the electrochemical behavior of cysteamine. The selectivity of the reaction has been assessed with no interference from tyrosine, lysine, methionine, tryptophan, alanine and glutathione. The presented method has highly selectivity for voltammetric detection of cysteamine in the dynamic range from 5.0 × 10−6 M to 2.7 × 10−4 M and with a detection of limit (3σ) 3.0 × 10−6 M.  相似文献   

12.
In this paper, a multiwall carbon nanotube/Nafion composite modified glassy carbon electrode (MWNT/Nafion/GCE) was used as a voltammetric sensor to determine 8-hydroxyquinoline (8-HQ) in cosmetic. This voltammetric sensor exhibited strong catalytic effect toward the oxidation of 8-HQ and caused an anodic peak at 0.97 V in HAc-NaAc buffer solution (0.2 M, pH 3.6). Under the optimized condition, the anodic peak current was linear with the concentration of 8-HQ in the range of 2 × 10−8 M–1.0 × 10−5 M. The detection limit was 9 × 10−9 M. The practical application of MWNT/Nafion/GCE was carried out for determining 8-HQ in cosmetic sample with satisfactory results. The electrode reaction mechanism was studied by cyclic voltammetry and UV–vis spectra.  相似文献   

13.
A sensitive and simplified voltammetric method is developed for the determination of trace amounts of vanadium(V) by adsorptive anodic stripping voltammetry using an acetylene black (AB) paste electrode. The method is based on the preconcentration of the V(V)–alizarin violet (AV) complex at open circuit while stirring the solution for 90 s in 0.15 mol dm−3 hexamethylenetetraamine–hydrochloric acid buffer (pH 4.4), the adsorbed complex is then oxidized, producing a response with a peak potential of 564 mV when scanning linearly from 0 to 1000 mV. For voltammetric determination of V(V), the parameters influencing the peak current have been optimized. Under the selected conditions, the peak current and concentration of V(V) accorded with linear relationship in the range of 8.0 × 10−10 mol dm−3–1.0 × 10−7 mol dm−3 (cAV = 2.0 × 10−6 mol dm−3) and 1.0 × 10−7 mol dm−3–8.0 × 10−6 mol dm−3 (cAV = 2.0 × 10−5 mol dm−3), the detection limit (three times signal to noise) was estimated to be 6.0 × 10−10 mol dm−3 for 90 s accumulation. The relative standard deviation (RSD) is 1.9% and 2.3% for V(V) concentrations of 1.0 × 10−7 mol dm−3 and 1.0 × 10−8 mol dm−3 respectively. Finally, this proposed method was successfully applied to the determination of V(V) in natural water samples.  相似文献   

14.
A functionalized carbon nanotubes paste electrode modified with cross-linked chitosan for the determination of trace amounts of cadmium(II) and mercury(II) by linear anodic stripping voltammetry is described. Under optimal experimental conditions, the peak current was linear in the Cd(II) concentration range from 5.9 × 10−8 to 1.5 × 10−6 mol L−1 with a detection limit of 9.8 × 10−9 mol L−1 and, for Hg(II) from 6.7 × 10−9 to 8.3 × 10−8 mol L−1with a detection limit of 2.4 × 10−9 mol L−1. The proposed method was successfully applied for the determination of Hg(II) in natural and industrial wastewater samples, and Cd(II) in sediments, human urine, natural, and industrial wastewater samples.  相似文献   

15.
Potentiometric electrodes based on the incorporation of surfactant-modified zeolite Y (SMZ) particles into poly vinyl chloride (PVC) membranes were described. The electrode characteristics were evaluated regarding the response towards perchlorate ions. PVC membranes plasticized with dioctyl phthalate and without lipophilic additives (co-exchanger) are used throughout this study. The influence of membrane composition on the electrode response was studied. The electrode exhibited a Nernstian response towards perchlorate in the concentration range of 7.9 × 10−6–8.0 × 10−2 M with a slope of 59.7 ± 0.9 mV per decade of perchlorate concentration with a working pH range of 1.7–9.5 with a fast response time of ≤10 s. The lower and upper detection limits were 4.07 × 10−7 and 0.13 M, respectively. The electrode response to perchlorate remains constant in the temperature range of 20–40 °C and in the presence of 2.5 × 10−6–1 × 10−2 M NaNO3. The selectivity coefficients for perchlorate anion as test species with respect to other anions were determined. The proposed modified zeolite-PVC electrode can be used for at least 30 days without any considerable divergence in potential. It was applied as indicator electrode in water samples with satisfactory results. The results of this study and our previous work show HDTMA plays different roles according to the zeolite type and matrix, as HDTMA-zeolite Y in a carbon paste matrix showed a good Nernstian behavior towards phosphate anion.  相似文献   

16.
In the present paper, the use of a gold electrode modified by 2-(2,3-dihydroxy phenyl)-1,3-dithiane self-assembled monolayer (DPDSAM) for the determination of epinephrine (EP) and uric acid (UA) was described. Initially, cyclic voltammetry was used to investigate the redox properties of this modified electrode at various scan rates. The apparent charge transfer rate constant, ks, and transfer coefficient, α, were calculated. Next, the mediated oxidation of EP at the modified electrode was described. At the optimum pH of 8.0, the oxidation of EP occurs at a potential about 155 mV less positive than that of an unmodified gold electrode. The values of electron transfer coefficients (α = 0.356), catalytic rate constant (k = 1.624 × 104 M−1 s−1) and diffusion coefficient (D = 1.04 × 10−6 cm2 s−1) were calculated for EP, using electrochemical approaches. Based on differential pulse voltammetry, the oxidation of EP exhibited a dynamic range between 0.7 and 500.0 μM and a detection limit (3σ) of 0.51 μM. Furthermore, simultaneous determination of EP and UA at the modified electrode was described. Finally, this method was used for the determination of EP in EP ampoule.  相似文献   

17.
This work compares the electroactivity of a conventional carbon-paste electrodes and screen-printed carbon electrodes. Potentiometric sensors responsive to sildenafil citrate (SILC) drug (the active component of Viagra) are described, characterized, compared and used for drug assessment. The proposed carbon paste electrode is fully characterized in terms of plasticizer type, response time, life span, soaking time, titrant, pH and temperature. The electrodes exhibited linear response with a Nernstian slope of 58.20 ± 1 and 58.82 ± 0.5 mV decade−1 for SILC in the concentration range from 1.0 × 10−7 to 1.0 × 10−2 and 5.30 × 10−7 to 1.0 × 10−2 mol L−1 with good reproducibility for CPE and SPE, respectively. Both CPE and SPE could be used in the pH range 3.0–5.0 and the isothermal coefficient is found to be 0.98 and 0.85 mV/°C, respectively. The limit of detection was found to be 9.0 × 10−8 and 3.5 × 10−7 mol L−1 for CPE and SPE, respectively. They were applied to potentiometric determination of SILC in pure state and pharmaceutical preparation under batch conditions. The CPE and SPE sensors display good selectivity for SILC drug over large number of inorganic cations, sugars and amino acids commonly used in drug formulations. The CPE and SPE show high selectivity for the drug under investigation. The results obtained using the fabricated CPE is compared with those obtained by SPE for spiked pharmaceutical samples.  相似文献   

18.
Nafion® 211 differs from previous versions of Nafion in that the membrane is cast from a dispersion rather than being melt-extruded. As such, the water sorption properties are different, as is the rate of increase in water content with temperature. Kinetic and mass-transport parameters for dispersion-cast Nafion® 211 were determined using solid-state electrochemistry in the temperature range 30–70 °C, 100% relative humidity, and 30 psi oxygen pressure. Exchange current densities, Tafel slopes, and transfer coefficients for ORR in Nafion® 211, are similar to those observed in Nafion® 117; mass-transport parameters are not. At 30 °C and 100% RH oxygen solubility and the diffusion coefficient is determined to be 1.16 × 10−5 mol cm−3 and 1.13 × 10−6 cm2 s−1, respectively. Oxygen permeability at 30 °C (1.28 × 10−11 mol cm−1 s−1) is lower than in Nafion® 117 (5.31 × 10−11 mol cm−1 s−1) by factor of 4, while at T > 60 °C the permeability of Nafion® 211 increases significantly to values higher than Nafion® 117, and is correlated with the increase in water content and hydration number (λ) with temperature.  相似文献   

19.
A comparison of the analytical performances of several enzyme biosensor designs, based on the use of different tailored gold nanoparticle-modified composite PVC/TTF-TCNQ electrodes, is discussed. The analytical characteristics of glucose calibration plots and kinetic parameters of the enzyme reaction were compared for the biosensors tested: Aucoll + GOx, GOx + Aucoll, Mixed GOx + Aucoll and PVC/TTF-TCNQ-Aucoll. The presence of this nanomaterial enhances the analytical performance with respect to the precursor biosensor without Au. The proposed biosensor can be applied in batch (response linear up to 2.0 mM, sensitivity of 45 ± 0.5 mA M−1 with a limit of detection, s/n = 3, of 6.2 × 10−6 M) and in FIA systems (linear range between 0.1 and 8 mM, sensitivity of 3.67 ± 0.3 mA M−1 with a limit of detection, s/n = 3, of 1.9 × 10−5 M).  相似文献   

20.
A novel electrochemical sensor for the selective and sensitive detection of dopamine (DA) in presence of large excess of ascorbic acid (AA) and uric acid (UA) at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with biocompatible graphite oxide (GO). Very small quantity of GO in carbon paste matrix imparted selectivity through electrostatic interactions. The modifier was characterized using infrared spectroscopy and powder X-ray diffraction. Large peak separation, good sensitivity and stability allow this modified electrode to analyze DA individually and simultaneously along with AA and UA. Applying differential pulse technique, DA could be detected even in the presence of 1000 fold excess of AA and UA. A linear dynamic range of 0.07–70 μM with detection limit of 1.5 × 10−8 M was obtained for DA. None of the bulk modified electrodes reported in the literature have shown such a low detection limit at the physiological pH. The practical application of the modified electrode was demonstrated by spiking the human blood serum and cerebral fluid with dopamine and the results obtained were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号