首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.  相似文献   

2.
《Immunobiology》2022,227(4):152238
Natural killer (NK) cells actively participate in anti-tumor immunity and are thus regarded as a promising tool in immunotherapy against esophageal cancer (EC). However, the mechanisms regulating NK cell activation and exhaustion have not been completely elucidated. In this study, we characterized the expression and function of MLLT1 super elongation complex subunit (MLLT1) in esophageal NK cells in a mouse EC model. MLLT1 was down-regulated in esophageal NK cells, especially NK cells expressing both T cell immunoglobulin and mucin-domain containing-3 (TIM-3) and lymphocyte activation gene 3 (LAG-3). In vitro knockdown of MLLT1 in NK cells resulted in significant decreases in the expression of IFN-γ and perforin, as well as impaired NK cell cytotoxicity on tumor cells. Adoptive transfer of MLLT-deficient NK cells into EC-bearing mice showed consistent impairment of NK cell anti-tumor activity, as evidenced by decreases in IFN-γ and perforin but not granzyme B. Furthermore, EC tissue cells, which were enriched from the esophagus of EC-bearing mice, induced down-regulation of MLLT1 in splenic NK cells. This down-regulation was partially restored by a TIM-3 blocking antibody. Therefore, this study indicated that TIM-3 signaling down-regulated MLLT1 in esophageal NK cells, and MLLT1 down-regulation undermined the tumoricidal function of NK cells in EC. Our study unveils a novel mechanism underlying NK cell exhaustion/dysfunction in the EC microenvironment. MLLT1 could be a potential target in future NK cell-mediated immunotherapy against EC.  相似文献   

3.
《Immunobiology》2022,227(6):152298
PLPPs (Phospholipid phosphatases) are widely expressed in different human tissues, regulate cell signal transduction, and are overexpressed in cancers such as gliomas, pancreatic adenocarcinoma, lung adenocarcinoma, and so on. As a member of the PLPP family, PLPP2 (phospholipid phosphatase 2) plays a vital role in the occurrence and development of breast cancer, but its mechanism is still unclear. Our research found that PLPP2 was overexpressed in breast cancer, and the higher expression level of PLPP2 showed a worse prognosis for breast cancer patients. Further analysis showed that overexpression of PLPP2 affected the expression of CDC34 (cell-division cycle 34), LSM7 (Like-Smith 7), and SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) through EMT (epigenetic-mesenchymal transition) related pathways to promote the occurrence and development of breast cancer. In vitro, silencing PLPP2 significantly reduced the proliferation, invasion, and migration abilities of human breast cancer cells MDA-MB-231. ER+ is a common subtype of breast cancer. Furthermore, we found that the overexpression of PLPP2 was significantly related to the poor prognosis of ER+ breast cancer. These results indicate that PLPP2 has value as a potential therapeutic target for breast cancer, especially for ER+ breast cancer.  相似文献   

4.
《Immunobiology》2023,228(2):152353
Cancer comes after cardiovascular diseases in terms of mortality rate in the world. Chemotherapy, radiotherapy and surgical interventions are the current cancer treatment. Recently, it has been observed that immunotherapeutic approaches provide a significant improvement when used along with these interventions. The mononuclear system mainly consists of macrophages that play an active role in the pathology of many diseases because of having high plasticity capacities. Previous research suggested that they can be used as an alternative to cancer treatment. Aim was to investigate the effect of apelin on macrophage polarization in the tumor microenvironment.Mouse macrophage cell line RAW264.7 cells and head and were chosen for this study. The apelin expression was knockdown in neck cell carcinoma cell line SCCL MT1 cells using shRNA technique. SCCL MT1 cells having normal or suppressed apelin expression were co-cultured with mouse macrophage RAW264.7 cells. The effect of co-culturing on the expression of inflammatory genes in RAW264.7 cells was investigated.Suppressed apelin expression in SCCL MT1 cells resulted in elevated pro-inflammatory response in co-cultured macrophages. Expression of the IL1β, IL6, and TNFα genes significantly increased, however anti-inflammatory cytokine levels were significantly decreased. However, in the control group, a downregulation was determined in pro-inflammatory genes, while an increase was observed in anti-inflammatory genes. The protein levels of these cytokines in concordance with the RT-PCR analysis.As a result of this study, apelin released from cancer cells was found to affect macrophage polarization. These results indicated that the apelin peptide may cause the intense presence of M2-type macrophages in the tumor niche, and the therapeutic approaches targeting of apelin in cancer cells may have a potential role in macrophage polarization.  相似文献   

5.
《Human immunology》2023,84(2):98-105
Acute lymphoid (ALL) and myeloid leukemia (AML) are known to be invasive and highly lethal hematological malignancies. Because current treatments are insufficient and have a variety of side effects, researchers are looking for new and more effective therapeutic methods. Interestingly, ongoing efforts to find the best approach to optimize NK cell anti-leukemia potential shed light on the successful treatment of cancer. Mature KIR+NK cells ability to remove HLA Class-I deficient cells has been exploited in cancer immunotherapy. Here, we generated KIR+NK cells from cord blood stem cells using IL-2 and IL-15 cytokines. Our finding underlined the importance of KIR expression in the cytotoxic function of NK cells. Taken together, this study presented an effective in vitro method for the expansion and differentiation of KIR+NK cells using cytokines without any feeder cells. Furthermore, the presented culture condition could be useful for the generation of mature and pure NK cells from limited numbers of CD34+ cord blood cells and might be used as a novel method to improve the current state of cancer therapy.  相似文献   

6.
《Acta histochemica》2023,125(4):152042
This study aimed to investigate the effect of hypoxia on the anti-inflammatory effect of adipose-derived mesenchymal stem cells (AMSCs) in vitro and its possible mechanism. AMSCs were cultured in vitro in a hypoxic environment with 3% O2, and a normoxic (21% O2) environment was used as the control. The cells were identified by in vitro adipogenic and osteogenic differentiation and cell surface antigen detection, and the cell viability were detected. The effect of hypoxic AMSCs on macrophage inflammation was analyzed by co-culture. The results showed that under hypoxia, AMSCs had better viability, significantly downregulated the expression of inflammatory factors, alleviated macrophage inflammation, and activated the PI3K/AKT/HIF-1α pathway.  相似文献   

7.
Age-related macular degeneration (AMD) is a complex eye disease with the retina as the target tissue and aging as per definition the most serious risk factor. However, the retina contains over 60 kinds of cells that form different structures, including the neuroretina and retinal pigment epithelium (RPE) which can age at different rates. Other established or putative AMD risk factors can differentially affect the neuroretina and RPE and can differently interplay with aging of these structures. The occurrence of β-amyloid plaques and increased levels of cholesterol in AMD retinas suggest that AMD may be a syndrome of accelerated brain aging. Therefore, the question about the real meaning of age in AMD is justified. In this review we present and update information on how aging may interplay with some aspects of AMD pathogenesis, such as oxidative stress, amyloid beta formation, circadian rhythm, metabolic aging and cellular senescence. Also, we show how this interplay can be specific for photoreceptors, microglia cells and RPE cells as well as in Bruch’s membrane and the choroid. Therefore, the process of aging may differentially affect different retinal structures. As an accurate quantification of biological aging is important for risk stratification and early intervention for age-related diseases, the determination how photoreceptors, microglial and RPE cells age in AMD may be helpful for a precise diagnosis and treatment of this largely untreatable disease.  相似文献   

8.
《Human immunology》2023,84(2):106-112
In order to develop a therapeutic target for T cells, it is necessary to amplify T cells and increase activity through antigen-presenting cells (APCs) expressing an intracellular cancer antigen. Although dendritic cells are frequently used as APCs, producing dendritic cells is costly and time-consuming. In addition, as dendritic cells are attached cells, they are not suitable for mass production for use as immune cell therapy. On the other hand, B cells are non-adherent floating cells, and thus can easily be cultured in suspension systems. As such, B cells can be considered as suitable substance cells for the development of immune cell therapeutics. B cells lack the antigen-presenting ability of dendritic cells. Therefore, to use B cells as APCs, we previously reported a technology that can be used which simply and effectively produces anti-viral T cells in vitro by activating B cells with α-galactosylceramide (α-GalCer). To apply this technology to anti-cancer treatment, Wilms tumor 1, the most representative cancer antigen expressed in various cancers, was selected. Wilms tumor 1 (WT1) was used to produce anti-cancer (anti-WT1) T cells using active B cells as APCs, and their respective activities were investigated.  相似文献   

9.
《Human immunology》2022,83(10):674-686
Since the first allogeneic hematopoietic stem cell transplantation (HCT) was performed by Dr. E. Donnall Thomas in 1957, the field has advanced with new stem cell sources, immune suppressive regimens, and transplant protocols. Stem cells may be collected from bone marrow, peripheral or cord blood from an identical twin, a sibling, or a related or unrelated donor, which can be human leukocyte antigen (HLA) matched, mismatched, or haploidentical. Although HLA matching is one of the most important criteria for successful allogeneic HCT (allo-HCT) to minimize graft vs host disease (GVHD), prevent relapse, and improve overall survival, the novel immunosuppressive protocols for GVHD prophylaxis offered improved outcomes in haploidentical HCT (haplo-HCT), expanding donor availability for the majority of HCT candidates. These immunosuppressive protocols are currently being tested with the HLA-matched and mismatched donors to improve HCT outcomes further. In addition, fine-tuning the DPB1 mismatching and discovering the B leader genotype and mismatching may offer further optimization of donor selection and transplant outcomes. While the decision about a donor type largely depends on the patient’s characteristics, disease status, and the transplant protocols utilized by an individual transplant center, there are general approaches to donor selection dictated by donor-recipient histocompatibility and the urgency for HCT. This review highlights recent advances in understanding critical factors in donor selection strategies for allo-HCT. It uses clinical vignettes to demonstrate the importance of making timely decisions for HCT candidates.  相似文献   

10.
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens (“immunopeptidomics”) combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.  相似文献   

11.
《Human immunology》2022,83(11):768-777
Cancer is a disease having global consequences. Though several new strategies and treatments have been developed so far, they often come with malicious side effects and this paved ways for demand of naturally extracted/driven product as potent anti-cancer agent owing to their reduced toxicity and side effects. One such common Indian household plant Neem (Azadirachta Indica) and its extract have variegated immunomodulatory effects as anti-cancer agent. Neem Leaf Glycoprotein (NLGP) modifies immune cells present in the tumor surroundings as well as in the peripheral system, rather than directly attacking the cancer cells. NLGP acts as a natural immunomodulator showing several functions like sustained tumor growth regulation by stimulating central and effector memory cells as a vaccination adjuvant, normalization of angiogenic activities, controls hypoxia, improves immune evasion techniques as well as suppresses the activity of several immunological cells (Tregs, myeloid-derived suppressor cells, and tumor-associated macrophages) which promote tumor growth and metastasis in the tumor microenvironment (TME). NLGP prioritises type1 immune-microenvironment which consists of T-bet+IFN-γ-producing group 1 innate lymphoid cell (ILC) (ILC1 and natural killer cells), CD8+ cytotoxic T cells (TC1), and CD4+ T helper1 (Th1) cells. In this review we aim to summarize detailed activity of NLGP in cancer immunoregulation.  相似文献   

12.
With the emergence and success of checkpoint blockade immunotherapy, immuno-oncology has primarily focused on CD8 T cells, whose cytotoxic programs directly target tumor cells. However, the limited response rate of current immunotherapy regimens has prompted investigation into other types of tumor-infiltrating immune cells, such as CD4 T cells and B cells, and how they interact with CD8 T cells in a coordinated network. Recent studies have demonstrated the potential therapeutic benefits of CD4 T follicular helper (TFH) cells and B cells in cancer, highlighting the important role of their crosstalk and interactions with other immune cell components in the tumor microenvironment. These interactions also occur in tumor-associated tertiary lymphoid structures (TLS), which resemble secondary lymphoid organs (SLOs) with orchestrated vascular, chemokine, and cellular infrastructures that support the developmental pathways of functional immune cells. In this review, we discuss recent breakthroughs on TFH biology and T cell-B cell interactions in tumor immunology, and their potential as novel therapeutic targets to advance cancer treatment.  相似文献   

13.
《Autoimmunity reviews》2022,21(8):103134
Lupus nephritis (LN) is a complicated autoimmune disease marked by out-of-balance of immunological reactivity and immune tolerance. With the advance of immunotherapy in human disease, regulatory T (Treg) cells serve a crucial function in immune tolerance regulation and are characterized with suppression function as one of the most important research hotspots for autoimmunity diseases. In recent years, Treg cells have shown the robust potential for treatment to autoimmunity diseases like type I diabetic mellitus and rheumatoid arthritis. However, Treg cell therapy is poorly understood for LN patients. This review aims to summarize new insights for Treg-targeting techniques in LN patients. The current data regarding the biology features of Treg cells in LN patients is discussed. The propotion of Treg cells in LN patients have contradictory results regarding the use of different molecular markers. Forkhead box protein 3 (FOXP3) are hallmarks for control function of Treg cells. Treg cells can directly or indirectly target T cells and B cells by playing supressive role. The molecular targets for Treg cells in LN patients includes gene variants, miRNAs, and inflammatory related factors. Based on the current knowledge of Treg cell biology, several therapeutic strategies could be used to treat LN: cell transplantation, low dose IL-2 treatment, drugs target the balance of Treg and type 17 T helper (Th17) cells, and Chinese medicine.  相似文献   

14.
《Human immunology》2022,83(5):399-408
The success of cancer treatment relies on the composition of the tumour microenvironment which is comprised of tumour cells, blood vessels, stromal cells, immune cells, and extracellular matrix components. Barriers to effective cancer treatment need to be overcome, and the acidic microenvironment of the tumour provides a key target for treatment. This review intends to provide an overview of the effects that low extracellular pH has on components of the tumour microenvironment and how they contribute to immune escape. Further, potential therapeutic targets will be discussed.  相似文献   

15.
Frailty is a clinical geriatric syndrome characterized by decreased multisystem function and increased vulnerability to adverse outcomes. Although numerous studies have been conducted on frailty, the underlying mechanisms and management strategies remain unclear. As rodents share homology with humans, they are used extensively as animal models to study human diseases. Rodent frailty models can be classified broadly into the genetic modification and non-genetic modification models, the latter of which include frailty assessment models (based on the Fried frailty phenotype and frailty index methods) and induced frailty models. Such models were developed for use in investigating frailty-related physiological changes at the gene, cellular, molecular, and system levels, including the organ system level. Furthermore, exercise, diet, and medication interventions, in addition to their combinations, could improve frailty status in rodents. Rodent frailty models provide novel and effective tools for frailty research. In the present paper, we review research progress in rodent frailty models, mechanisms, and management, which could facilitate and guide further clinical research on frailty in older adults.  相似文献   

16.
《Human immunology》2022,83(1):86-98
The global outbreak of coronavirus-2019 (COVID-19) still claims more lives daily around the world due to the lack of a definitive treatment and the rapid tendency of virus to mutate, which even jeopardizes vaccination efficacy. At the forefront battle against SARS-CoV-2, an effective innate response to the infection has a pivotal role in the initial control and treatment of disease. However, SARS-CoV-2 subtly interrupts the equations of immune responses, disrupting the cytolytic antiviral effects of NK cells, while seriously activating infected macrophages and other immune cells to induce an unleashed “cytokine storm”, a dangerous and uncontrollable inflammatory response causing life-threatening symptoms in patients. Notably, the NK cell exhaustion with ineffective cytolytic function against the sources of exaggerated cytokine release, acts as an Achilles’ heel which exacerbates the severity of COVID-19. Given this, approaches that improve NK cell cytotoxicity may benefit treatment protocols. As a suggestion, adoptive transfer of NK or CAR-NK cells with proper cytotolytic potentials and the lowest capacity of cytokine-release (for example CD56dim NK cells brightly express activating receptors), to severe COVID-19 patients may provide an effective cure especially in cases suffering from cytokine storms. More intriguingly, the ongoing evidence for persistent clonal expansion of NK memory cells characterized by an activating phenotype in response to viral infections, can benefit the future studies on vaccine development and adoptive NK cell therapy in COVID-19. Whether vaccinated volunteers or recovered patients can also be considered as suitable candidates for cell donation could be the subject of future research.  相似文献   

17.
Aging-related diseases such as cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases are often accompanied by fibrosis. The NLRP3 inflammasome triggers the inflammatory response and subsequently promotes fibrosis through pathogen-associated molecular patterns (PAMPs). In this review, we first introduce the general background and specific mechanism of NLRP3 in fibrosis. Second, we investigate the role of NLRP3 in fibrosis in different organs/tissues. Third, we discuss the relationship between NLRP3 and fibrosis during aging. In summary, this review describes the latest progress on the roles of NLRP3 in fibrosis and aging and reveals the possibility of NLRP3 as an antifibrotic and anti-aging treatment target.  相似文献   

18.
Amyloid beta (Aβ) is a peptide and a hallmark of Alzheimer’s disease (AD). Emerging evidence suggests that Aβ levels could be influenced by diet. However, the evidence is sparse and for some nutrients, controversial. The aim of this narrative review is to gather the findings of observational and clinical trials involving human participants on the relationships between nutrients and brain Aβ status. Some dietary patterns are associated to reduced levels of Aβ in the brain, such as the Mediterranean diet, ketogenic diet as well as low intake of saturated fat, high-glycemic-index food, sodium, and junk/fast food. Low Aβ status in the brain was also associated with higher density lipoproteins (HDL) cholesterol and polyunsaturated fatty acids consumption. Data on alcohol intake is not conclusive. On the contrary, high Aβ levels in the brain were related to a higher intake of total cholesterol, triglycerides, low-density lipoproteins (LDL) cholesterol, saturated fat, sucrose, and fructose. Folic acid, cobalamin, vitamin E, and vitamin D were not associated to Aβ status, while high blood concentrations of Calcium, Aluminum, Zinc, Copper, and Manganese were associated with decreased Aβ blood levels but were not associated with Aβ cerebral spinal fluid (CSF) concentrations. In conclusion, certain dietary patterns and nutrients are associated to brain Aβ status. Further research on the association between nutrients and brain Aβ status is needed in order to pave the way to use nutritional interventions as efficacious strategies to prevent Aβ disturbance and potentially AD.  相似文献   

19.
《Explore (New York, N.Y.)》2023,19(2):170-175
A literature review of reincarnation cases with identified previous persons found 36 cases in which the “intermission” between lives was less than 9 months. In 9 cases, it was 7 days or fewer. In 32 cases, subjects had birthmarks or birth defects matching the previous person's wounds or other scars in location and appearance. Multiple anomalies appeared in 20 (62.5%) of the 32 cases with physical anomalies. There were 9 natural-death cases and 27 violent-death cases. In 15 (55.5%) of the violent-death cases, there was written documentation of wounds to the previous person. The most extreme birth defects occurred in cases with intermissions of 7 months or more. Interpretations of the data alternative to reincarnation are considered but found inadequate as explanatory models. If examples of reincarnation, these cases raise issues related to when exactly reincarnation occurs and the nature of the process that are important considerations for biology and medicine, as well as for philosophy. One purpose of this paper is to alert the research community to these findings in the hopes of encouraging additional research in this area.  相似文献   

20.
《Immunobiology》2022,227(4):152219
BackgroundSepsis causes severe acute lung injury (ALI). Circular RNA is involved in the regulation of sepsis-related ALI progression. The regulation mechanism of circEXOC5 in sepsis-induced ALI is still unclear. Whether circEXOC5 is involved in the regulation of ferroptosis remains to be explored.MethodsWe constructed a mouse model of sepsis through cecal ligation and puncture (CLP). LPS induced mouse lung microvascular endothelial cells (MPVECs) to construct a sepsis cell model. The expression of circEXOC5 in the sepsis model was detected by qPCR. The extent of lung injury in mice was analyzed by HE staining. The contents of GSH/GSSG, iron, MDA and 4HNE in mice lung tissues and cells were detected by the kit. And further the ROS content was detected in the cells. Finally, the binding relationship between circEXOC5 and PTBP1 was detected by RIP and RNA pulldown.ResultsOur results showed that the circEXOC5 expression was significantly increased in the in vivo and in vitro models of sepsis. And after inhibiting circEXOC5, it improved the lung injury of septic mice. It was confirmed in cell models that ROS levels and ferroptosis in cells were reduced after knocking down circEXOC5. In addition, the expressions of ACSL4 and Gpx4 proteins were regulated by the level of circEXOC5. Finally, we also found that circEXOC5 had a direct binding relationship with PTBP1.ConclusionOur study found that the expression of cell ferroptosis and circEXOC5 increased in ALI induced by sepsis, and circEXOC5 aggravated ferroptosis in septic cells by regulating the PTBP1/ACSL4 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号