首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
ObjectiveThis study examines the differences in osteogenic activity and antibacterial property among polyetheretherketone (PEEK) treated by three types of cold plasma.MethodsStandard PEEK specimens were randomly assigned to four groups, which were named according to the treatment: PEEK-C (untreated), PEEK-A (Ar cold plasma treatment), PEEK-N (N2 cold plasma treatment), and PEEK-AN (90% Ar and 10% N2 mixed cold plasma treatment). Physical and chemical properties of the specimen surfaces were determined by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and drop shape analyzer (DSA). MC3T3 osteoblasts were used in vitro to determine the osteogenic activity by cell adhesion morphology observation, cell counting-kit 8 (CCK-8) assay, and alkaline phosphatase (ALP) activity assay. Streptococcus mutans and Staphylococcus aureus were used in vitro to determine the antibacterial property by a plate colony-counting method and bacterial adhesion morphology observation.ResultsSEM and AFM analysis showed that the PEEK-C surface was smooth, whereas matrix-arranged nanoprotrusions appeared on the surface of the experimental groups: scaly nano-protrusions appeared on the PEEK-A and PEEK-AN surfaces, while dendritic nanoprotrusions appeared on the PEEK-N surface. Among the experimental groups, PEEK-AN had the finest surface nanoprotrusions. The roughness of the experimental groups increased compared with the PEEK-C group: the PEEK-N group was the roughest with a Ra of 192.60 ± 5.89 nm and PEEK-A was the smoothest with a Ra of 99.60 ± 5.43 nm. The hydrophilicity of the experimental groups was significantly enhanced compared with the PEEK-C group, among which, PEEK-N was the strongest and PEEK-A the weakest. The osteogenic activity and antibacterial property of the experimental groups displayed a remarkable increase compared with the PEEK-C group. Among the experimental groups, PEEK-N displayed the best osteogenic activity while PEEK-AN possessed the strongest antibacterial property. The osteogenic activity and antibacterial performance of PEEK-A were the weakest. Among these treatments, the N2 cold plasma treatment was the most suitable modification method for PEEK application in dental implant.SignificanceCold plasma treatment is a promising method to improve PEEK osteogenic activity and antibacterial properties. This study provides a theoretical basis for future research on PEEK cold plasma treatment.  相似文献   

2.
ObjectivePlasma treatment can be used as surface treatment of PEEK (poly-ether-ether-ketone) to increase the bonding strength between veneering composite and dental prosthetic frameworks of PEEK or enhance biocompatibility of PEEK implants. These improvements are probably based on chemical changes of the PEEK surface. However, the aim of the study was to evaluate the impact of different low-pressure plasma treatments on surface properties of PEEK, such as roughness, hydrophilicity, micro-hardness, crystallinity and biological activity of PEEK.MethodsDue to different plasma treatments, 143 disc-shaped specimens of pure implantable PEEK were divided into 4 groups: PEEK (no plasma treatment, n = 29), H-PEEK (hydrogen plasma treatment, n = 38), O-PEEK (oxygen plasma treatment, n = 38), H/O-PEEK (hydrogen/oxygen plasma treatment with a gas mix ratio of 2:1, n = 38). Subsequently, surface roughness, surface contact angle, surface crystallinity, surface micro-hardness and human osteoblast cell coverage area of each group were examined.ResultsThe hydrophilicity, crystallinity and micro-hardness of the plasma-treated groups increased significantly compared to the untreated group, whereas significant differences in the results of the micro-hardness tests could be shown between all groups up to a test force of 0.02N. Cell density was significantly higher on treated vs. untreated PEEK surfaces. Oxygen and H/O plasma treatments revealed to be most effective, whereas H/O plasma worked ten times faster to achieve the same effects.SignificanceThe hydrogen-oxygen, 2/1-mixed plasma treatment combines the effect of hydrogen and oxygen plasma which strongly improve the surface properties of PEEK implant material, such as hydrophilicity, crystallinity, surface micro-hardness and HOB cell adhesion.  相似文献   

3.
ObjectiveModifications to implant surface properties, including topography, chemistry, and wettability, alter immune response, osteoblast differentiation of bone marrow stromal cells (MSCs), and implant integration in vivo. Dielectric barrier discharge (DBD) plasma treatment has been used to sterilize surfaces and remove adsorbed carbon, improving wettability. However, unless it is used immediately prior to placement, ambient atmospheric hydrocarbons rapidly adhere to the surface, thereby reducing its hydrophilicity. Moreover, this method is not practical in many clinical settings. The aim of this study was to evaluate the effectiveness of an on-site benchtop modification technique for implants at time of placement, consisting of a DBD plasma that is used to sterilize implants that are pre-packaged in a vacuum. Effects of the plasma-treatment on implant surface properties and cellular response of MSCs and osteoblasts were assessed in vitro.MethodsTitanium-aluminum-vanadium implant surfaces were grit-blasted (GB) or grit-blasted and acid-etched (AE), and packaged under vacuum. AE surfaces were also plasma-treated using the benchtop device (GB + AE) and then removed from the vacuum. GB surface morphology was altered with AE but AE microroughness was not changed with the plasma-treatment. Plasma-treatment increased the surface wettability, but did not alter surface atomic concentrations of titanium, oxygen, or carbon.ResultsMSCs and osteoblast-like cells (MG63 s) produced increased concentrations of osteocalcin, osteopontin, and osteoprotegerin after plasma-treatment of AE surfaces compared to non-plasma-treated AE surfaces; production of IL6 was reduced and IL10 was. Aging GB + AE surfaces for 7 days after plasma-treatment but still in the vacuum environment reduced the effectiveness of plasma on cellular response.SignificanceOverall, these data suggest that application of benchtop plasma at the time of implant placement can alter the surface free energy of an implant surface without modifying surface chemical composition and enhance the differentiation and activity of MSCs and osteoblasts that are in contact with these implant surfaces.  相似文献   

4.
《Dental materials》2020,36(7):905-913
ObjectivesDifferent approaches are currently undertaken to structure the endosseous part of zirconia implants. The purpose of the present study was to evaluate how surface roughness and monoclinic to tetragonal phase ratio of zirconia affect cell behavior of human osteoblasts.MethodsZirconia discs with five different surface structures were produced: machined; machined heat-treated; polished; polished heat-treated; sandblasted, etched and heat-treated (cer.face 14, vitaclinical). The specimen surfaces were then characterized in terms of monoclinic to tetragonal phase ratio, wettability, roughness and visualized using scanning electron microscopy. To determine the reaction of the human osteoblastic cells (MG-63) to the surface roughness and monoclinic to tetragonal phase ratio of zirconia, cell spreading, morphology, actin cytoskeleton, viability and gene expression of alkaline phosphatase (ALP), collagen type I (COL) and osteocalcin (OCN) were assessed.ResultsHeat-treatment of the specimens significantly improved the surface wettability. With increased surface roughness Ra of the specimens, cell spreading was reduced. Cell viability after 24 h correlated linearly with the tetragonal phase ratio of the specimens. Gene expression after 24 h and 3 d was comparable on all specimens irrespective their surface roughness or monoclinic to tetragonal phase ratio.SignificanceSmooth zirconia surfaces with a high tetragonal phase ratio revealed best surface conditions for MG-63 osteoblastic cells and may be considered to design the endosseous part of zirconia implants.  相似文献   

5.

Objective

The aim of this study was to evaluate the impact of oxygen and argon/oxygen low-pressure plasma on the shear bond strength (SBS) between dental PEEK compounds and veneering composites as a function of plasma process time.

Methods

Of an unfilled PEEK (“Juvora”) and two pigment powder filled PEEK compounds (“DC4420”, “DC4450”), 273 rectangular plates were prepared and polished up to 1200 grit. Afterwards the samples were sandblasted and randomly assigned to five different surface pre-treatment groups (1. No plasma (control); 2. O2 plasma for 3 min; 3. O2 plasma for 35 min; 4. Ar/O2 plasma for 3 min; 5. Ar/O2 plasma for 35 min). Surface roughness and water contact angles were recorded using three samples of each PEEK compound for each of the plasma treatment groups. An adhesive (visio.link, Bredent GmbH & Co KG, Senden, Germany) was applied onto the specimen surfaces and light cured. A mold was used to shape three different veneering composites (a) Vita VM LC, “Vita” (Vita Zahnfabrik, Bad Säckingen, Germany); (b) GC GRADIA, “Gradia” (GC Europe, Leuven, Belgium); (c) GC GRADIA DIRECT Flo, “Gradia Flo” (GC Europe, Leuven, Belgium)) into a cylindrical form on the sample surface before light curing. SBS was measured using a universal testing machine after 24 h of incubation in distilled water at 37 °C.

Results

The two pigment filled PEEK compounds treated with O2 plasma and veneered with Gradia Flo showed the highest SBS values (34.92 ± 6.55 MPa and 34.2 ± 1.87 MPa) followed by the combination of the unfilled PEEK material with Gradia Flo (29.57 ± 3.71 MPa). The SBS values of the samples veneered with Gradia were lower, but not significantly so. The SBS values of the specimens with Vita were for the most part associated with significantly lower results.

Significance

A low-pressure plasma process using oxygen plasma for a duration of 35 min, preceded by sandblasting, seems to be the most effective in increasing shear bond strength between veneering composites and PEEK materials.  相似文献   

6.
Statement of problemSoft-tissue attachment to different surfaces may play a pivotal role in the long-term success of dental implants. However, studies on the issue, especially on newer materials, are sparse.PurposeThe purpose of this in vitro study was to evaluate the viability and adhesion of human gingival fibroblasts (HGFs) on different implant abutment materials with specific surface modifications.Material and methodsOne hundred and fifty specimens in 6 experimental groups were evaluated: smooth-machined titanium alloy (Ti), laser-modified titanium (TiL), smooth-machined polyetheretherketone (PEEK) (P), laser-modified PEEK (PL), plasma-treated PEEK (PP), laser- and plasma-treated PEEK (PLP). Machined Ti was considered as the control group. Surface roughness (Sa), water contact angle (WCA), and X-ray photoelectron spectroscopy (XPS) were measured. HGF attachment and proliferation were observed at 1, 3, and 7 days after cell seeding. Comparison of the means among the groups was performed with 1-way analysis of variance (ANOVA) with post hoc comparison using the Tukey test (α=.05).ResultsSa values of the laser modified groups were significantly higher than those of the nonmodified (smooth-machined) groups (P<.001). WCAs were significantly different among PEEK groups, and plasma-sprayed groups had the lowest WCAs. XPS analysis of both Ti and PEEK groups showed laser treatment did not have any significant effect on the surface composition of the PEEK as the same bonds with similar ratio/fraction were detected in the spectrum of the modified specimens. Scanning electron microscopy (SEM) revealed more functionally oriented HGF cells on the laser-grooved surfaces. On the first, third, and seventh day of proliferation, the titanium groups showed no significant differences (P>.05). On the first and third days of proliferation, the plasma sprayed groups (PP, PLP) showed significantly greater proliferation than all experimental groups (P<.001). On the seventh day of proliferation, statistically significant differences were observed between all PEEK groups and between all PEEK groups and the Ti group (P<.001), with the exception of the PL and P groups and the PLP and Ti groups (P>.05).ConclusionsLaser-modified titanium and PEEK surfaces led to guided gingival fibroblast attachment. Plasma treatment of PEEK surfaces increased the wettability of this polymer and improved proliferation of HGF.  相似文献   

7.
《Dental materials》2022,38(4):632-645
ObjectivesIncreased wettability of titanium and titanium alloy surfaces due to processing and storage methods increases osteoprogenitor cell differentiation and osseointegration compared to microroughness alone. Implants that are exposed to air have a hydrophobic surface due to adsorption of atmospheric hydrocarbons, which can limit overall implant success. Dielectric barrier discharge plasma (DBD) is one method to increase surface hydrophilicity. Although current DBD methods yield a hydrophilic surface, adsorbed hydrocarbons rapidly restore hydrophobicity. We demonstrated that application of DBD to implants previously packaged in a vacuum, generates a hydrophilic surface that supports osteoblastic differentiation in vitro and this can be done immediately prior to use. In the present study, we tested the hypothesis that DBD treatment to alter surface wettability at the time of implant placement will improve osseointegration in vivo.Materials and methodsTwenty male and sixteen female rabbits were used in a preclinical trans-axial femur model of osseointegration. Control and DBD treatment implants were inserted randomized per hind limb in each rabbit (1 implant/hind-limb). At 6 weeks post-surgery, bone-to-implant contact, adjacent bone volume, and torque to failure were assessed by micro-CT, calcified histology, and mechanical testing.ResultsDBD plasma treatment of vacuum-sealed implants increased surface wettability and did not change surface chemistry or roughness. Peak torque and torsional energy, and bone-to-implant contact increased with DBD treatment in males. In contrast, female rabbits showed increased osseointegration equal to DBD treated male implants regardless of DBD plasma treatment.ConclusionDBD treatment is an effective method to enhance osseointegration by increasing surface wettability; however, this response is sex dependent. In healthy female patients, DBD treatment may not be necessary but in older patients or patients with compromised bone, this treatment could be an effective measure to ensure implant success.  相似文献   

8.
《Dental materials》2020,36(10):1289-1302
ObjectivesTo investigate the influence of surface microstructure and chemistry after modification on surface bioactivity and biosafety of carbon fibers reinforced PEEK (CF/PEEK) composites as implants.MethodsCF/PEEK composites with different CF contents (0 wt%, 25 wt% and 40 wt%) were prepared by injection molding and treated by concentrated sulfuric acid. A porous network was produced on the surface by etching action. Subsequently, the sulfonated CF/PEEK composites were immersed in GO solution. Thus, GO wrinkles with abundant functional groups were wrapped outside the porous nanostructures on CF/PEEK composites. The cell responses in vitro (proliferation, alkaline phosphatase activity and cell mineralization), osseointegration in vivo (fluorochrome labeling, H&E staining and X-ray analysis) and biosafety were investigated.ResultsThe pore size of porous layer on the surface of CF/PEEK composites was improved with the increase of CF content. Subsequently, a silk-like GO wrinkles on the surface were formed by GO modification. And the more CF content, the greater the degree of GO wrinkles. The results revealed that GO functional wrinkle up-regulated surface hydrophilicity. In vitro cell experiments showed that porous nanostructures and GO wrinkles dramatically promoted initial cell behaviors. Significantly, GO modified composites exhibited enhanced bioactivity and osseointegration in vivo. Fortunately, the GO wrapped porous CF/PEEK composites displayed biosafety.SignificanceThe surface modification is effective and the modified composites showed great bioactivity. The GO wrapped porous CF/PEEK composites would hold great potential for implants.  相似文献   

9.
《Dental materials》2023,39(4):410-417
ObjectivesTo evaluate the influence of printing orientation on color and translucency of 3D printing restorative resins.MethodsFour 3D printing resin systems in the available shades (DFT-Detax Freeprint Temp- A1, A2,A3; FP-Formlabs Permanent Crown- A2,A3,B1,C2; FT- Formlabs Temporary CB- A2,A3,B1,C2; GCT-GC Temporary- Light, Medium) were evaluated. Three samples (10×10×1.2 mm) from each material were printed at two different printing orientations (0° and 90°) and polished to 1.00 ± 0,01 mm of thickness. Spectral reflectance was measured against black background using a calibrated spectroradiometer, CIE D65 standard illuminant and the 45°/0°geometry. Color and translucency differences were evaluated using CIEDE2000 metric (ΔE00) and 50:50% perceptibility (PT00 and TPT00) and acceptability (AT00 and TAT00) thresholds.ResultsIn general, color changes due to printing orientation at (0° and 90°) were mainly produced by ΔL* or ΔC* . ΔE00 were above PT00 for all DFT shades, FP-B1, FP-C2, FT-A2 and FT-B1. Only for DFT-1, ΔE00 was above AT00. ΔRTP00 values were above TPT00 for DFT-A1, DFT-A3, FP-B1 and FT-B1, but lower than TAT00. The direction of the changes in translucency (ΔRTP00) depends on the material and shade.SignificanceThe selection of building orientation (0° and 90°) for the 3D printed resins influence the visual color and translucency and therefore their esthetic appearance. These aspects should be considered when printing dental restorations using the evaluated materials.  相似文献   

10.
《Dental materials》2020,36(7):865-883
ObjectiveThe aim of this study was to develop bioactive and osseointegrable polyetheretherketone (PEEK)-based composite filaments melt-blended with novel amorphous magnesium phosphate (AMP) particles for 3D printing of dental and orthopedic implants.Materials and methodsA series of materials and biological analyses of AMP-PEEK were performed. Thermal stability, thermogravimetric and differential scanning calorimetry curves of as-synthesized AMP were measured. Complex viscosity, elastic modulus and viscous modulus were determined using a rotational rheometer. In vitro bioactivity was analyzed using SBF immersion method. SEM, EDS and XRD were used to study the apatite-forming ability of the AMP-PEEK filaments. Mouse pre-osteoblasts (MC3T3-E1) were cultured and analyzed for cell viability, proliferation and gene expression. For in vivo analyses, bare PEEK was used as the control and 15AMP-PEEK was chosen based on its in vitro cell-related results. After 4 or 12 weeks, animals were euthanized, and the femurs were collected for micro-computed tomography (μ-CT) and histology.ResultsThe collected findings confirmed the homogeneous dispersion of AMP particles within the PEEK matrix with no phase degradation. Rheological studies demonstrated that AMP-PEEK composites are good candidates for 3D printing by exhibiting high zero-shear and low infinite-shear viscosities. In vitro results revealed enhanced bioactivity and superior pre-osteoblast cell function in the case of AMP-PEEK composites as compared to bare PEEK. In vivo analyses further corroborated the enhanced osseointegration capacity for AMP-PEEK implants.SignificanceCollectively, the present investigation demonstrated that AMP-PEEK composite filaments can serve as feedstock for 3D printing of orthopedic and dental implants due to enhanced bioactivity and osseointegration capacity.  相似文献   

11.
《Saudi Dental Journal》2023,35(3):220-232
Background and objectivesIn spite of bone’s healing capacity, critical-size bone defect regeneration and peri-implant osseointegration are challenging. Tissue engineering provides better outcomes, but requires expensive adjuncts like stem cells, growth factors and bone morphogenic proteins. Vitamin D (Vit.D) regulates calcium and phosphorus metabolism, and helps maintain bone health. Vit.D supplements in deficient patients, accentuates bone healing and regeneration. Therefore the aim of this systematic review was to evaluate the role of adjunctive Vit.D on bone defect regeneration.MethodsComprehensive database search of indexed literature, published between January 1990 and June 2022, was carried out. English language articles fulfilling inclusion criteria (clinical/in vivo studies evaluating bone regeneration including osseointegration and in vitro studies assessing osteogenic differentiation, with adjunct Vit.D) were identified and screened.ResultsDatabase search identified 384 titles. After sequential title, abstract and full-text screening, 23 studies (in vitro – 9/in vivo – 14) were selected for review. Vit.D as an adjunct with stem cells and osteoblasts resulted in enhanced osteogenic differentiation and upregulation of genes coding for bone matrix proteins and alkaline phosphatase. When used in vivo, Vit.D resulted in early and increased new bone formation and mineralization within osseous defects, and better bone implant contact and osseointegration, around implants. Adjunct Vit.D in animals with induced systemic illnesses resulted in bone defect regeneration and osseointegration comparable to healthy animals. While systemic and local administration of Vit.D resulted in enhanced bone defect healing, outcomes were superior with systemic route.ConclusionsBased on this review, adjunct Vit.D enhances bone defect regeneration and osseointegration. In vitro application of Vit.D to stem cells and osteoblasts enhances osteogenic differentiation. Vit.D is a potentially non-invasive and inexpensive adjunct for clinical bone regeneration and osseointegration. Long term clinical trials are recommended to establish protocols relating to type, dosage, frequency, duration and route of administration.  相似文献   

12.
Polyether ether ketone (PEEK) is a biocompatible material that lacks antimicrobial activity and bioactivity; therefore, is not appropriate for use as a dental implant. To overcome these deficiencies, a novel composite coating of bioactive glass and graphene oxide was prepared. PEEK discs were polished, cleaned, and the surface treated with sulfuric acid for 15 min. The composite coating consisted of bioactive glass produced by the sol-gel route and doped with 0.75 wt% graphene oxide. X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy analyses were employed to characterize the composite coating, and the coating adhesion strength quantified using a pull-off test. Cytotoxicity was assessed using osteoblast-like cells and gingival fibroblasts. The wettability of the coated and non-coated samples was determined by optical contact angle assessment, and bioactivity was assessed by immersion in simulated body fluid. The results revealed that the bioactive glass/graphene oxide composite coating, approximately 7 μm thick, was transparent, homogenous with few microcracks and microporosities, but adhered strongly and was not cytotoxic to either osteoblast-like cells or gingival fibroblasts. The wettability of the PEEK sample was increased to <20° after coating with the composite, and apatite formation was detectable after 14 days of immersion in simulated body fluid.  相似文献   

13.
Purpose : The dense nonretentive surface of zirconia implants was modified into a nanoporous surface using selective infiltration etching surface treatment. The aim of this study was to investigate the influence of such a nanoporous modified zirconia surface on the attachment of human osteoblasts. Materials and Methods : Human osteoblasts were cultured for 21 days on (i) selective infiltration etched zirconia (nanoporous surface), (ii) polished zirconia, (iii) polished titanium, or (iv) airborne particle abraded acid etched (SLA) titanium disks. After the culture period the following parameters were assessed: number of cells, the morphology of the cells, the attachment of the cells, alkaline phosphatase activity, and the level of total protein (α= 0.05). Results : Statistical analysis revealed a significantly higher cell count on the third (F = 17.4, p < 0.001) and eighth day (F = 163, p < 0.001) for nanoporous zirconia and SLA titanium surfaces compared to polished specimens. The number of cells (nanoporous zirconia 160 ± 20/mm2, SLA titanium 133 ± 15/mm2) and cell size (nanoporous zirconia 50.7 ± 3 μm, SLA titanium 42.5 ± 4 μm) were significantly higher than polished specimens. Nanoporous zirconia specimens demonstrated comparable alkaline phosphatase activity (0.0036 ± 0.0035 ng/μl) and intracellular protein content (72.7 ± 0.9 ng/μl) compared to other tested groups. Scanning electron microscopy revealed that cells attached on the polished surface using finger‐like processes, whereas on the nanoporous surface, finger‐like processes were not observed, as the cell membrane appeared to be in close proximity to the underlying surface. Conclusion : The findings of this study suggest that a nanoporous zirconia surface favors cell growth and attachment compared to a polished surface. It was proposed that a nanoporous zirconia surface may improve clinical performance of zirconia implants.  相似文献   

14.
PurposeThe aim of this study was to evaluate polyetheretherketone (PEEK) as a patient-specific implant (PSI) material in maxillofacial reconstructive surgery.Materials and methodsThe retrospective study included a cohort of 24 patients who underwent maxillofacial surgery using PEEK PSIs. Each patient underwent preoperative multislice computed tomography (CT) with 0° tilt of gantry. Based on the CT scan, the PEEK PSIs were planned and manufactured using three-dimensional (3D) modeling and computer-aided design/computer-aided manufacturing (CAD/CAM) techniques. All procedures were performed under general anesthesia. Implants were placed intraorally, extraorally or through subciliary, transconjuctival or coronal incisions.ResultsIn 22 of 24 cases, the PEEK PSI fit well without adjustments. Although the fit to the surrounding bone was perfect in almost all of the cases, the outer contour of the PSI was modified in nine cases before fixation. However, intraoperative implant modification did not affect the infection rate. In two cases, postoperative wound dehiscence and infection needed additional treatment and healed without removal of the implants.ConclusionThe follow-up data in this study showed good outcomes with reliable results for PSI made of PEEK in the maxillofacial region.  相似文献   

15.
ObjectiveThe objective of this study was to evaluate the combined effect of the sulfuric acid etching and an acidic adhesive conditioning on the shear bond strength of PEEK to a resin-matrix composite.Materials and methodsForty PEEK specimens were assigned randomly to 4 groups for H2SO4 etching followed by universal adhesive (pH at 2.5) conditioning for 0, 1, 3, and 5 min. Thirty PEEK specimens were divided into 3 groups for only acidic adhesive conditioning for 0, 1, 3, and 5 min. After the light-curing of the adhesive, a nanohybrid resin composite was applied onto the surfaces and then light-cured following the manufacturer`s guidelines. All specimens were stored in distilled water at 37 °C for 24 h mechanical testing. Shear bond strength tests were performed using a universal testing machine. Surfaces were analyzed by SEM, light interferometry, FTIR, and liquid contact angle measurement. Statistical analysis was performed by one-way ANOVA and Tukey’s post hoc tests (p < 0.05).ResultsNo adhesion was achieved between untreated PEEK a resin-matrix composite, regardless of the adhesive conditioning time points. Shear bond strength of H2SO4-etched PEEK to resin-matrix composite increased with time (0 mmin. 4.95 ± 2.86 MPa < 1 min: 9.35 ± 2.26 MPa < 3 min: 17.84 ± 2.82 MPa < 5 min: 21.43 ± 5.00 MPa). SEM images revealed a significant modification of PEEK surface topography after the H2SO4 etching.SignificanceThe acidic adhesive was unable to modify the untreated PEEK surface to establish an effective adhesion although a synergistic effect was noticed when the universal (acidic) adhesive was applied over a H2SO4-etched PEEK surface, thus improving the PEEK to resin-matrix composite adhesion.  相似文献   

16.
《Dental materials》2023,39(6):616-623
ObjectivesTo evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation.MethodsDoxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast-like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were conducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05).ResultsNo differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-expression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold increase with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces.SignificanceDoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative procedures around titanium dental implants.  相似文献   

17.
《Dental materials》2022,38(5):874-885
ObjectiveImplant-supported frameworks constructed from high-performance polymer CAD/CAM composites are exposed to liquids from the oral environment and routine care maintenance. Therefore, this study investigated the effect of food-simulating liquids (FSLs) on surface properties of three CAD/CAM polymer composite blocks.MethodsThe composites investigated were (i) a carbon fibre-reinforced composite (CarboCAD 3D dream frame; CC), (ii) a glass fibre-reinforced composite (TRINIA; TR), and (iii) a reinforced PEEK (DentoKeep; PK). The filler contents were determined by thermo-gravimetry. The surface properties were roughness, Vickers hardness (HV), properties measured by Martens force/depth indentation, namely: hardness (HM), modulus (EIT) and creep (CIT). Property measurements were made at baseline on polished specimens and then, where possible, after 1- and 7-days storage at 37 ℃ in three different media: water, 70% ethanol/water and MEK (methyl ethyl ketone). Specimens were selected for light and scanning electron microscopy. Statistical analysis was performed by two-way repeated measures ANOVA, one-way ANOVA, and multiple comparison tests (α = 0.05).ResultsThe baseline roughness and hardness (HV, HM) and modulus (EIT) correlated approximately with filler content (wt%), with the fibre-reinforced composites being rougher, harder and stiffer than PK. At baseline, roughness (Sa) ranged from 0.202 to 0.268 µm; HV from 23.1 to 36.9; HM from 224.5 to 330.6 N/mm2; EIT: from 6 to 9.8 GPa. After ageing in 70% ethanol and MEK, more pronounced roughness and hardness changes were observed than in water. MEK caused greater deterioration for the FRC than 70% ethanol, while PK specimens showed slight changes in 70% ethanol.SignificanceStorage media adversely affected the surface and mechanical properties of each CAD/CAM composite. However, during ageing, the reinforced PEEK showed greater relative stability in these properties. Nevertheless, the deterioration may indicate the need for full protection by a veneer material on each surface of an implant-supported framework.  相似文献   

18.
Objectives: Connective tissue in contact to transgingival/‐dermal implants presents itself as tight scar formation. Although rough surfaces support the attachment they increase bacterial colonisation as well. In contrast to surface roughness, little is known about the influence of surface wettability on soft‐tissue healing in vivo. We therefore investigated the influence of different surface wettabilities on connective tissue healing at polished implant surfaces in vivo. Material and methods: Three polished experimental groups (titanium, titanium coated with hydrophobic nano‐crystalline diamond (H‐NCD) and titanium coated with hydrophilic nano‐crystalline diamond (O‐NCD) were inserted into the subcutaneous connective tissue of the abdominal wall of 24 rats. Animals were sacrificed after 1 and 4 weeks resulting in eight specimen per group per time point. Specimen were subjected to histological evaluation (van Giesson's staining) and immunohistochemistry staining for proliferating cell nuclear antigen (PCNA), fibronectin and tumour necrosis factor‐alpha (TNF‐α). Results: Histological evaluation revealed dense scar formation at the titanium and H‐NCD surfaces. In contrast, the connective tissue was loose at the O‐NCD surface with a significantly higher number of cells after 4 weeks. O‐NCD demonstrated a strong expression of PCNA and fibronectin but a weak expression of TNF‐α. In contrast, the PCNA and fibronectin expression was low at the titanium and H‐NCD, with a strong signal of TNF‐α at the H‐NCD surface. Conclusions: Hydrophilicity influences the connective tissue healing at polished implant surfaces in vivo positively. The attachment of connective tissue and the number of cells in contact to the surface were increased. Moreover, the inflammatory response is decreased at the hydrophilic surface. To cite this article:
Kloss FR, Steinmüller‐Nethl D, Stigler RG, Ennemoser T, Rasse M, Hächl O. In vivo investigation on connective tissue healing to polished surfaces with different surface wettability.
Clin. Oral Impl. Res. 22 , 2011; 699–705
doi: 10.1111/j.1600‐0501.2010.02038.x  相似文献   

19.
《Dental materials》2022,38(11):e275-e283
ObjectivesThis study evaluated the effect of TiO2 nanoparticles + dense hydroxyapatite (HA) on human osteoblast cells (SAOS-2).MethodsParticulate bovine HA powder with or without the addition of either 5 or 8 % TiO2 (HA, HA/TiO2Np5 % or HA/TiO2Np8 %) were pressed into disks (Ø = 12.5 mm; thickness = 1.3 mm) uniaxially (100 MPa) and isostatically (200 MPa/1 min) and sintered at 1300 °C. Y-TZP disks were used as control. The following tests were performed: Scanning Electron Microscopy and Dispersive Energy Spectroscopy (SEM/EDS), Atomic Force Microscopy (AFM), cell viability assay (Alamar Blue-AB) and mineralized matrix deposition (Alizarin Red-AR). AB and AR data were submitted to 2-way ANOVA/Tukey tests and ANOVA/Tukey tests, respectively.ResultsSEM revealed that the surface of HA/TiO2Np5% resembles DPBHA surface, but also contains smaller granules. HA/TiO2Np8% characteristics resembles HA/TiO2Np5% surface, but with irregular topography. Y-TZP showed a typical oxide ceramic surface pattern. EDS revealed Ca, O, and P in all samples. C, O, and Zr appeared in Y-TZP samples. AFM data corroborates SEM analysis. AB test revealed excellent cellular viability for HA/TiO2Np5% group. AR test showed that all groups containing TiO2np had more mineralized matrix deposition than all other groups, with statistically differences between HA/TiO2Np8% and HA cultivated in non-osteogenic medium. Culture in osteogenic medium exhibited much more mineralized matrix deposition by TiO2np groups.SignificanceIn conclusion, the addition of TiO2np showed chemical, superficial, and biological changes in the reinforced materials. HA/TiO2Np5% showed the best results for cell viability and HA/TiO2Np8% for mineralized matrix deposition.  相似文献   

20.
Objectives

To determine the ultrastructural changes of titanium surfaces of dental implants induced by the tip of periodontal probes.

Materials and methods

A total of 40 samples of smooth and rough surfaces of titanium implants were randomly assigned for the treatment with metal or plastic periodontal probes under application angles of 20° and 60°. Titanium surfaces have been evaluated with CLSM prior and following to experimental probing determining various standardized 2D and 3D roughness parameters.

Results

The average profile and surface roughness (Ra and Sa) showed no significant difference between treated and untreated samples on smooth and rough surface areas irrespective of the probe material. On smooth surfaces several amplitude roughness parameters were increased with metal probes but reached significance only for Rp (p = 0.007). Rough surface parts showed a slight but not significant reduction of roughness following to the contact with metal probes. The surface roughness remained almost unchanged on smooth and rough implant surfaces using plastic probes. The surface roughness on implant surfaces was not dependent on the application angle irrespective of the probe material.

Conclusion

Probing of titanium implants with metal probes and even less with plastic probes causes only minor changes of the surface roughness. The clinical significance of these changes remains to be elucidated.

Clinical relevance

Using plastic probes for the clinical evaluation of the peri-implant sulcus might avoid ultrastructural changes to titanium implant surfaces.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号