首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4+ T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8+ T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4+ T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models.  相似文献   

2.
We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant iNOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age and sex showed no such changes. Our data support the hypothesis that NO is a pathogenic factor in MS, and that NOS IR is strongly expressed in brain regions appearing normal by MRI.  相似文献   

3.
Production and functions of IL-17 in microglia   总被引:1,自引:0,他引:1  
Interleukin (IL)-17-producing helper T cells may play a pivotal role in the pathogenesis of multiple sclerosis. Here, we examined the effects of IL-17 on microglia, which are known to be critically involved in multiple sclerosis. Treatment with IL-17 upregulated the microglial production of IL-6, macrophage inflammatory protein-2, nitric oxide, adhesion molecules, and neurotrophic factors. We also found that IL-17 was produced by microglia in response to IL-23 or IL-1beta. Because microglia produce IL-1beta and IL-23, these cytokines may act in an autocrine manner to induce IL-17 expression in microglia, and thereby contribute to autoimmune diseases, such as MS, in the central nervous system.  相似文献   

4.
Multiple sclerosis occurs more commonly in females than males. However, the mechanisms resulting in gender differences in multiple sclerosis are unknown. Activated microglia are believed to contribute to multiple sclerosis pathology, perhaps in part due to production of nitric oxide (NO) and TNF-alpha, molecules which can be toxic to cells including oligodendrocytes. The current study demonstrates that the female sex steroids estriol, beta-estradiol and progesterone inhibit lipopolysaccharide (LPS) induction of nitric oxide (NO) production by primary rat microglia and by the mouse N9 microglial cell line. These hormones act by inhibiting the production of inducible nitric oxide synthase (iNOS) which catalyses the synthesis of NO. Estriol likely inhibits iNOS gene expression since the hormone blocks LPS induction of iNOS RNA levels. The pro-inflammatory cytokines IFN-gamma and TNF-alpha are believed to be important modulators of multiple sclerosis. Here, we demonstrate that estrogens and progesterone also inhibit NO production by microglial cells activated in response to these cytokines. Activated microglia elicit TNF-alpha in addition to NO and we further demonstrate that estrogens and progesterone repress TNF-alpha production by these cells. Finally, estriol and progesterone, at concentrations consistent with late pregnancy, inhibit NO and TNF-alpha production by activated microglia, suggesting that hormone inhibition of microglial cell activation may contribute to the decreased severity of multiple sclerosis symptoms commonly associated with pregnancy.  相似文献   

5.
Microglial cells are central nervous system (CNS) resident cells that are thought to become activated and contribute to the inflammation that occurs in the human autoimmune disease multiple sclerosis (MS). This has never been proven, however, because microglial cells cannot be phenotypically distinguished from peripheral macrophages that accumulate in MS inflammatory lesions. To study the kinetics and nature of microglial cell activation in the CNS, we used the animal model of MS, experimental autoimmune encephalomyelitis (EAE), and induced EAE in bone marrow (BM) chimera mice generated using major histocompatibility complex (MHC)-mismatched donor BM, allowing the separation of microglial cells and peripheral monocytes/macrophages. We found that microglial cell activation was evident before onset of disease symptoms and infiltration of peripheral myeloid cells into the CNS. Activated microglial cells underwent proliferation and upregulated the expression of CD45, MHC class II, CD40, CD86, and the dendritic cell marker CD11c. At the peak of EAE disease, activated microglial cells comprised 37% of the total macrophage and dendritic cell populations and colocalized with infiltrating leukocytes in inflammatory lesions. Our findings thus definitively demonstrate that during EAE, microglial cells become activated early in EAE disease and then differentiate into both macrophages and dendritic-like cells, suggesting they play an active role in the pathogenesis of EAE and MS.  相似文献   

6.
Possel H  Noack H  Putzke J  Wolf G  Sies H 《Glia》2000,32(1):51-59
A role for free radicals has been proposed in infectious brain disease, where resident microglia cells upregulate the inducible nitric oxide synthase isoform (iNOS), and thus are capable of producing nitric oxide at enhanced rates. Using the constitutively expressed NADPH oxidase, microglial cells can generate superoxide, which reacts with nitric oxide to form the powerful oxidant peroxynitrite. In a mixed cell culture system of astrocytes and microglial cells, nitrite levels, used as an indicator of nitric oxide production, were elevated after the addition of lipopolysaccharide (LPS) and cytokines. Immunohistochemistry and the NADPH diaphorase technique demonstrated selective localization of the iNOS protein in microglial cells, whereas no iNOS protein or NADPH diaphorase activity was detected in astrocytes. A similar cellular distribution was observed in vivo following injection of LPS and cytokines into the rat striatum. By contrast, LPS and interferon-gamma led to translocation of NF-kappaB in microglia and in astrocytes, demonstrating that both cell types are responsive to the stimulus. Therefore, downstream control in iNOS expression is cell type-specific.  相似文献   

7.
Inducible nitric oxide synthase (iNOS) is involved in the generation of nitric oxide, a molecule with multiple biological activities. Although iNOS expression may be part of antimicrobial armamentarium, inappropriate expression of iNOS can potentially lead to damage to the host. In this report, we determined the expression of iNOS by immunocytochemistry in the hippocampus of the Alzheimer brains (AD) as well as in young and old normal brains. The results showed localization of iNOS immunoreactivity to Hirano bodies of the AD hippocampus. In addition, small granular iNOS immunoreactive profiles were detected associated with senile plaques and extracellular neurofibrillary tangles. In the hippocampus of control brains, morphologically similar profiles were immunoreactive for iNOS, but in far fewer numbers than in AD hippocampus. The results suggest that iNOS is expressed in a subset of pyramidal neurons in the AD hippocampus, and that iNOS may be involved in the pathogenesis of neuronal degeneration in AD.  相似文献   

8.
Tissue microarrays assembled from control and multiple sclerosis (MS) brain tissue have been used to assess the expression patterns and cellular distribution of two antigens, the proinflammatory cytokine osteopontin and the inducible heat shock protein alphaBeta-crystallin, which have previously been implicated in MS pathogenesis. Tissue cores were taken from paraffin-embedded donor blocks containing chronic active or chronic inactive plaques and normal-appearing white matter (NAWM) in seven MS cases, and white matter (WM) in five control cases. Expression patterns of both proteins were assessed against myelin density and microglial activation in the different tissue categories. Both proteins showed increased expression in all categories of MS tissue compared with control WM. The results indicate progressive up-regulation of expression of osteopontin with increased plaque activity, while elevation of alphaBeta-crystallin expression in MS tissue was independent of demyelination. In MS NAWM a significant correlation was observed between high levels of expression of osteopontin and alphaBeta-crystallin. Osteopontin expression was predominantly confined to astrocytes throughout MS tissues. alphaBeta-crystallin was expressed on astrocytes, oligodendrocytes and occasionally on demyelinated axons. Taken together, these data indicate a wider distribution of osteopontin and alphaBeta-crystallin in MS tissues than previously described and support their proposed role in MS pathogenesis.  相似文献   

9.
Protein co-expression with axonal injury in multiple sclerosis plaques   总被引:3,自引:0,他引:3  
Damage to axons in acute multiple sclerosis (MS) lesions is now well established but the mechanisms of this damage remain obscure. Here we have applied a panel of antibodies that identify cell populations and proteins contained in them with a view to detecting those cells and proteins that are localised particularly closely to damaged axons in acute, sub-acute and border-active MS plaques. Results are expressed semi-quantitatively and graphs produced that show that many of the markers show enhanced expression at sites of axon damage. However, the sharpest increase in expression in relation to axon damage was seen for Calpain I (μ-calpain), inducible nitric oxide synthase and MMP-2, suggesting that these proteins may form part of a group of proteins responsible for the initiation of myelin and/or axon damage seen in MS lesions.  相似文献   

10.
BACKGROUND: Optic neuritis (ON) is a demyelinating inflammation of the optic nerve that may occur as an isolated disease or related to multiple sclerosis (MS). There is little evidence of whether the immunohistochemistry of ON resembles that of typical cerebral MS lesions. METHODS: Pathologic optic nerves were obtained from a patient who died of causes unrelated to ON after clinical recovery from clinically isolated ON. Normal control optic nerves were obtained from an eye bank. Normal and pathologic tissues were probed with antibodies to pathologic proteins including myelin basic protein (MBP) fragment, the inducible form of nitric oxide synthase (iNOS), macrophage markers CD14 and CD64, nitrotyrosine, and cyclooxygenase (COX-2). We also examined MBP, the oligodendrocyte marker cyclic nucleotide phosphodiesterase (CNPase), and glial fibrillary acidic protein. RESULTS: In the affected pathologic nerve, iNOS-positive macrophages/microglia, iNOS-positive astrocytes, COX-2, and nitrotyrosine were observed. iNOS and COX-2 were occasionally observed in the unaffected nerve.Decreased expression of MBP and CNPase was seen in the pathologic optic nerves, along with evidence of gliosis and ongoing myelin degradation indicated by the presence of MBP fragment. CONCLUSIONS: The immunohistochemistry of clinically isolated optic neuritis, as judged by this single case, resembles that of cerebral lesions of MS in showing abnormally high levels of iNOS and nitrotyrosine as well as other mediators of immune damage.  相似文献   

11.
Shie FS  Montine KS  Breyer RM  Montine TJ 《Glia》2005,52(1):70-77
Prostaglandin (PG) E(2) acts via four functionally antagonistic E-prostanoid (EP) receptors that are expressed on multiple cell types in the nervous system; these are designated EP1-4. We showed previously that EP2 null mice are protected from CD14-dependent neuronal damage in vivo following intracerebroventricular (ICV) injection of lipopolysaccharide (LPS). Clear interpretation of this neuroprotective outcome is limited because EP2 is expressed on glia and neurons. We tested the hypothesis that microglial EP2 is required for paracrine neurotoxicity following activation of innate immunity, using primary murine microglia and neuron co-cultures. We demonstrated that microglial EP2 was necessary for lipopolysaccharide (LPS)-activated microglia-mediated neurotoxicity, as well as induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Genetic deletion of microglial iNOS, pharmacological suppression of COX-2 activity, or addition of exogenous superoxide dismutase (SOD) and catalase in the presence of EP2 also abolished neurotoxicity. This loss of paracrine neurotoxicity by EP2(-/-) microglia occurred in the absence of reduced cytokine levels. We conclude that microglial EP2 is critical to innate immunity-mediated paracrine damage to neurons involving COX-2 and iNOS. EP2 should be considered as a therapeutic target for suppression of microglial innate immunity-mediated damage in neurodegenerative diseases.  相似文献   

12.
Jack C  Antel J  Brück W  Kuhlmann T 《Glia》2007,55(9):926-934
Nitric oxide (NO) and peroxynitrite (ONOO(-)) are potential mediators of the injury and cytotoxicity occurring over time to oligodendrocytes in multiple sclerosis (MS) lesions. Our in vitro results indicate that human adult CNS-derived oligodendrocytes are relatively resistant to NO-mediated damage. In contrast, human oligodendrocytes are highly susceptible to peroxynitrite-mediated injury. In situ, we found that inducible nitric oxide synthase (iNOS) was expressed in astrocytes and macrophages in all active demyelinating and remyelinating MS lesions examined, yet no correlation was found between numbers of glial cells expressing iNOS and the extent of oligodendrocyte cell death. Nitrotyrosine groups, indicative of the presence of peroxynitrite in vivo, could be detected on astrocytes, macrophages, and oligodendrocytes in MS lesions. High numbers of nitrotyrosine-positive oligodendrocytes were found in one MS case that featured extensive oligodendrocyte cell death. Our results indicate that NO alone is unlikely to induce oligodendrocyte injury, whereas its more potent byproduct peroxynitrite is a potential mediator of injury to oligodendrocytes in MS.  相似文献   

13.
The Marmarou’s acceleration traumatic brain injury (TBI) model, in situ hybridization and immunocytochemistry were utilized to study the temporal expression of the inducible form of nitric oxide synthase (iNOS) mRNA and protein in different cellular compartments of the rat brain. Four hours following TBI, expression of iNOS was observed in the endothelial cells of cerebral blood vessels, macrophages and many cortical and hippocampal neurons. In the cortex labeled neuronal and non-neuronal cells were primarily found in the superficial layers. In the hippocampus the strongest neuronal labeling was observed in the CA1 and CA3 (lateral part) regions. By 24 h post TBI endothelial cells no longer expressed iNOS mRNA, and the macrophage and neuronal iNOS expression was reduced by 30–50%. The reduction was assessed by automated quantitation of the silver grains that occupy individual cellular profiles using an image analysis system. Immunocytochemistry revealed de novo iNOS synthesis in non-neuronal cells at the different time points, thus paralleling the changes in iNOS mRNA expression. In contrast, iNOS immunoreactivity in neurons was not observed before 24 h post TBI, suggesting failure of iNOS protein translation at 4 h after trauma. The results demonstrate complex spatial and temporal patterns of iNOS expression in discrete cellular populations, indicating different times of nitric oxide synthesis (and release) following TBI. Uncoupling of iNOS mRNA and protein synthesis in neurons suggests differential synthesis of nitric oxide in these cells as compared to non-neuronal cellular populations after trauma. Received: 27 July 1999 / Revised: 4 October 1999 / Accepted: 3 November 1999  相似文献   

14.
Nitric oxide generated from the inducible nitric oxide synthase (iNOS) has been implicated in the pathogenesis of multiple sclerosis. Because significant species- and cell-specific differences exist in the expression of iNOS, we used primary human glial cell cultures to screen for an inhibitor of iNOS expression. Remarkably, among numerous soluble factors tested, interferon-β (IFN-β) alone showed a selective and potent inhibition of interleukin-1β/interferon-γ (IL-1β/IFN-)–induced iNOS expression in astrocytes. Inhibition of iNOS may provide a mechanism by which IFN-β can ameliorate inflammation and cytotoxicity in the central nervous system of patients with multiple sclerosis.  相似文献   

15.
CD97 is a recently identified seven-span transmembrane (7-TM) protein that is expressed by leukocytes early after activation. CD97 binds to its cellular ligand CD55 (decay accelerating factor), which protects several cell types from complement-mediated damage. The functional consequences of CD97-CD55 binding are largely unknown, but previous data imply that CD97-CD55 interactions play a role in cellular activation, migration, and adhesion under inflammatory conditions.Here we examined the expression of CD97 and CD55 by immunohistochemistry in multiple sclerosis (MS). On the basis of established criteria for inflammation and demyelination, different lesion stages were distinguished in MS post-mortem brain tissue. In normal white matter, CD97 expression was not found, but CD55 was expressed with weak staining intensity on endothelial cells. In pre-active lesions, defined by abnormalities of the white matter, many infiltrating T cells, macrophages (MPhi) and microglia expressed CD97. CD55 was highly expressed by endothelial cells. In active lesions with myelin degradation, MPhi and microglia expressed both CD55 and CD97. Furthermore, a sandwich ELISA showed significantly (p<0.05) elevated levels of soluble CD97 in serum but not in cerebrospinal fluid of MS patients (37%) compared to healthy controls (8%).Collectively, these data suggest that CD97-CD55 interactions are involved in the inflammatory processes in MS. CD55, which is expressed in lesions by vessels to protect against complement-mediated damage, might bind to CD97 on infiltrating leukocytes. This interaction may facilitate cell activation and migration through the blood-brain barrier. In addition, CD97-CD55 interactions in the parenchyma of the brain may contribute to the inflammation.  相似文献   

16.
Immunotherapy improves experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), while excessive production of nitric oxide (NO) has been implicated in the pathogenesis of this disease. Here, we show that disease progression in SJL/J mice with EAE is improved after treatment with either a subtherapeutic dose of cyclosporine A (CsA) or NOX-100, a nitric oxide scavenger. Importantly, the impact of subtherapeutic doses of CsA in combination with NOX-100 on disease progression in EAE was greater than that attained with either agent alone and led to near total protection. CNS inflammation and gene expression of proinflammatory cytokines and iNOS were also significantly reduced after treatment. These observations point to the potential therapeutic utility of NOX-100 as a dose-reducing agent for CsA in the treatment of MS.  相似文献   

17.
Murugan M  Sivakumar V  Lu J  Ling EA  Kaur C 《Glia》2011,59(4):521-539
The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia.  相似文献   

18.
In bacterial-induced peripheral nervous system (PNS) inflammation, Schwann cells (SCs) are activated, producing inducible nitric oxide synthase (iNOS), contributed to the pathogenesis of demyelinating disease, such as multiple sclerosis. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) has been shown to play a protective role in cellular inflammatory responses. Here we showed that LPS-induced iNOS biosynthesis was in a concentration and time-dependent manner. In LPS-treated primary SCs, retreatment with PPAR-γ agonist remitted the increase of iNOS, p38 phosphorylation and TLR4, MyD88, augmented the expression of PPAR-γ and localization in nuclear. Coadministration of GW 9662 reversed the effect of PPAR-γ agonists. These results suggest that PPAR-γ agonists, 15d-PGJ2 and pioglitazone, had the anti-inflammatory effects.  相似文献   

19.
It is well known that microglial cells perform a key role in mediating inflammatory processes, which are associated with neurodegenerative diseases such as multiple sclerosis (MS). In this study, we report that CD40 expression on microglia is greatly enhanced by a low dose (10 U/ml) of IFN-gamma. We also find that ligation of microglial CD40 by CD40L triggers a significant production of TNF-alpha. Activation of microglia by ligation of CD40 in the presence of IFN-gamma results in cultured cortical neuronal injury, which is markedly attenuated by blockade of the CD40 pathway or neutralization of TNF-alpha. Finally, we find significant levels of IFN-gamma and TNF-alpha in the medium of co-cultured activated CD4+ T cells and microglial cells, showing that microglia can supply the CD40 receptor to activated CD4+ T cells and suggesting that this cellular interaction is a key event in MS pathophysiology.  相似文献   

20.
The CD44 antigen is a proteoglycan recently implicated in several adhesion events including that of lymphocytes to endothelium. The CD44 antigen, reactive with monoclonal antibody (MAb) 44D10, has been shown previously to be expressed in normal human white matter homogenates and to be found at higher concentrations in brain homogenates of victims of multiple sclerosis (MS). The cellular localization of CD44 in human brain of normal individuals and in those afflicted with MS has now been determined. Monoclonal antibody 44D10 reacted with astrocyte-like cells in 40 microns thick paraformaldehyde-fixed sections but not in thin (6 microns) fixed sections. A double labeling experiment performed on a frozen brain section with MAb 44D10 and rabbit anti-glial fibrillary acidic protein (GFAP), a cytoplasmic marker of astrocytes, confirmed the co-localization of these two antigens. The reactivity with brain tissue sections of a rabbit antiserum produced against lymphocyte-CD44 could be absorbed by a preparation of the CD44 glycoprotein, purified 2,100-fold from a white matter homogenate. The antiserum was shown by Western blot analysis to be specific for p80 glycoprotein in brain extracts derived from a normal and MS patients. This antibody reacted with fibrous astrocytes predominantly in white matter; staining was also noted in subependymal and subpial regions. Inhibition studies using a cellular radioimmunoassay indicated that the highest concentrations of CD44 in three MS victims were found in plaques, followed by periplaques and non-involved areas of white matter which were higher than normal white matter. Reactive astrocytes, identified in active lesions, expressed high levels of CD44 on their surfaces. Thus, CD44 is associated with astrocytes in human brain and the increased expression observed in MS brain may reflect activation and/or proliferation of astrocytes implicated in the pathogenesis of this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号