首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 544 毫秒
1.
2.
3.
A variety of '-omic' technologies are being increasingly applied in preclinical safety assessments. Such approaches, however, have not been implemented in neurotoxicity safety evaluations. Current regulatory guidelines for assessing neurotoxicity emphasise reliance on traditional histopathological stains and behavioural testing batteries. Although these methods may be sufficient to detect some neurotoxic effects, they lack both the sensitivity and specificity required for broad-scale neurotoxicity screening. The glial reaction to nervous system damage, often termed gliosis, represents a hallmark of all types of nervous system injury. As such, the development and implementation of gliosis biomarkers represents a broadly applicable approach for neurotoxicity safety assessment. Using a panel of known neurotoxic agents, the authors have shown that the astroglial protein, glial fibrillary acidic protein (GFAP), can serve as one such biomarker of neurotoxicity. Qualitative and quantitative analysis of GFAP has shown this biomarker to be a sensitive and specific indicator of the neurotoxic condition. The implementation of GFAP and related glial biomarkers in neurotoxicity screens may serve as the basis for further development of molecular signatures predictive of adverse effects on the nervous system.  相似文献   

4.
Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.  相似文献   

5.
2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD‐mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence‐associated β‐galactosidase (SA‐β‐Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/β‐catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose‐ and time‐dependent manners. Further, TCDD led to cell‐cycle arrest, F‐actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N‐acetylcysteine (NAC) markedly attenuated TCDD‐induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/β‐catenin signaling pathway, ameliorated the effect of TCDD on cellular β‐catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/β‐catenin and ROS‐dependent mechanisms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In evaluating mechanisms of trimethyltin (TMT)-initiated neuronal damage, the present study focused on involvement of reactive oxygen species, protein kinase C (PKC), and glutamate receptors. Exposure of cerebellar granule cells to TMT (0.01-0.1 microM) produced primarily apoptosis, but higher concentrations were associated with cellular lactate dehydrogenase efflux and necrosis. TMT increased generation of cellular reactive oxygen species, which was inhibited by either L-NAME (inhibitor of nitric oxide synthase, NOS) or catalase, indicating that both NO and H(2)O(2) are formed on TMT exposure. Since chelerythrine (selective PKC inhibitor) also inhibited oxidative species generation, PKC appears to play a significant role in TMT-induced oxidative stress. The metabotropic glutamate receptor antagonist, MCPG, (but not MK-801) prevented oxidative species generation, indicating significant involvement of metabotropic receptors (but not NMDA receptors) in TMT-induced oxidative stress. NOS involvement in the action of TMT was confirmed through measurement of nitrite, which increased concentration dependently. Nitrite accumulation was blocked by L-NAME, chelerythrine, or MCPG, showing that NO is generated by TMT and that associated changes in NOS are regulated by a PKC-mediated mechanism. Oxidative damage by TMT was demonstrated by detection of elevated malondialdehyde levels. It was concluded that low concentrations of TMT (0.01-0.1 microM) cause apoptotic cell death in which oxidative signaling is an important event. Higher concentrations of TMT initiate necrotic death, which involves both an oxidative and a non-oxidative component. TMT-induced necrosis but not apoptosis in granule cells is mediated by glutamate receptors.  相似文献   

7.
A variety of ‘-omic’ technologies are being increasingly applied in preclinical safety assessments. Such approaches, however, have not been implemented in neurotoxicity safety evaluations. Current regulatory guidelines for assessing neurotoxicity emphasise reliance on traditional histopathological stains and behavioural testing batteries. Although these methods may be sufficient to detect some neurotoxic effects, they lack both the sensitivity and specificity required for broad-scale neurotoxicity screening. The glial reaction to nervous system damage, often termed gliosis, represents a hallmark of all types of nervous system injury. As such, the development and implementation of gliosis biomarkers represents a broadly applicable approach for neurotoxicity safety assessment. Using a panel of known neurotoxic agents, the authors have shown that the astroglial protein, glial fibrillary acidic protein (GFAP), can serve as one such biomarker of neurotoxicity. Qualitative and quantitative analysis of GFAP has shown this biomarker to be a sensitive and specific indicator of the neurotoxic condition. The implementation of GFAP and related glial biomarkers in neurotoxicity screens may serve as the basis for further development of molecular signatures predictive of adverse effects on the nervous system  相似文献   

8.
Methylmercury (MeHg) is an environmental neurotoxicant which induces neuropathological changes in both the central nervous and peripheral sensory nervous systems. Our recent study demonstrated that down-regulation of Ras-related C3 botulinum toxin substrate 1 (Rac1), which is known to promote neuritic extension, preceded MeHg-induced damage in cultured cortical neurons, suggesting that MeHg-mediated axonal degeneration is due to the disturbance of neuritic extension. Therefore we hypothesized that MeHg-induced axonal degeneration might be caused by neuritic extension/retraction incoordination. This idea brought our attention to the Ras homolog gene (Rho)/Rho-associated coiled coil-forming protein kinase (ROCK) pathway because it has been known to be associated with the development of axon and apoptotic neuronal cell death. Here we show that inhibition of the Rho/ROCK pathway prevents MeHg-intoxication both in vitro and in vivo. A Rho inhibitor, C3 toxin, and 2 ROCK inhibitors, Fasudil and Y-27632, significantly protected against MeHg-induced axonal degeneration and apoptotic neuronal cell death in cultured cortical neuronal cells exposed to 100 nM MeHg for 3 days. Furthermore, Fasudil partially prevented the loss of large pale neurons in dorsal root ganglia, axonal degeneration in dorsal spinal root nerves, and vacuolar degeneration in the dorsal columns of the spinal cord in MeHg-intoxicated model rats (20 ppm MeHg in drinking water for 28 days). Hind limb crossing sign, a characteristic MeHg-intoxicated sign, was significantly suppressed in this model. The results suggest that inhibition of the Rho/ROCK pathway rescues MeHg-mediated neuritic extension/retraction incoordination and is effective for the prevention of MeHg-induced axonal degeneration and apoptotic neuronal cell death.  相似文献   

9.
The organotin trimethyltin (TMT) is known to cause neuronal degeneration in the central nervous system. A systemic injection of TMT produced neuronal damage in the cerebral frontal cortex of mice. To elucidate the mechanism(s) underlying the toxicity of TMT toward neurons, we prepared primary cultures of neurons from the cerebral cortex of mouse embryos for use in this study. Microscopic observations revealed that a continuous exposure to TMT produced neuronal damage with nuclear condensation in an incubation time–dependent manner up to 48 h. The neuronal damage induced by TMT was not blocked by N-methyl-D-aspartate receptor channel–blocker MK-801. The exposure to TMT produced an elevation of the phosphorylation level of c-Jun N-terminal kinase (JNK)p46, but not JNKp54, prior to neuronal death. Under the same conditions, a significant elevation was seen in the phosphorylation level of stress-activated protein kinase 1, which activates JNKs. Furthermore, TMT enhanced the expression and phosphorylation of c-Jun during a continuous exposure. The JNK inhibitor SP600125 was effective in significantly but only partially attenuating the TMT-induced nuclear condensation and accumulation of lactate dehydrogenase in the culture medium. Taken together, our data suggest that the neuronal damage induced by TMT was independent of excitotoxicity but that at least some of it was dependent on the JNK cascades in primary cultures of cortical neurons.  相似文献   

10.
Biomarkers of adult and developmental neurotoxicity   总被引:3,自引:0,他引:3  
Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessary for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s), (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.  相似文献   

11.
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F2-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration.  相似文献   

12.
Trimethyltin (TMT), is a hippocampal neurotoxicant characterized by neuronal degeneration, astrogliosis, and microglia reactivity with an associated elevation in proinflammatory cytokine mRNA levels. To examine the role of proinflammatory cytokines in the TMT-induced glia response, mixed cortical glia cultures were exposed to TMT and morphological and cytokine responses were examined. Morphological changes in the glia monolayer, enlarged, rounded cell bodies and retraction of the monolayer into distinct GFAP+ dense processes, displayed a dose (1, 5, and 10 microM TMT) and temporal response (6-48 h), accompanied by clustering of OX-42+ microglia. Tumor necrosis factor-alpha (TNF), interleukin (IL)-1alpha, and IL-6 mRNA levels were elevated by 3 and 6 h of TMT (10 microM) and proteins by 24 h. Recombinant proteins for IL-1alpha (100 pg/ml) and IL-6 (10 ng/ml) exacerbated the morphological response to TMT while those for TNFalpha (150 pg/ml) did not. Neutralizing antibodies (1:100) to IL-1alpha and IL-6 showed a slight decrease in the severity of the morphological response to TMT while, at 24 h, TNFalpha antibodies (1:100) and an antibody cocktail offered a significant level of protection. At 6 h, the neutralizing antibodies to TNFalpha or IL-1alpha did not elevate basal cytokine mRNA levels, however, IL-6 and the cocktail of antibodies significantly elevated IL-1alpha, IL-1beta, and IL-6 mRNA levels. The specific elevation in IL-1alpha and IL-6 mRNA levels induced by TMT remained evident only in cells coexposed to anti-TNFalpha. Similar responses in cytokine mRNA levels were seen in cocultures of hippocampal neurons and glia exposed to TMT. These data suggest a relationship between microglia activation, proinflammatory cytokine release, and glia morphological responses, the significance of which remains to be determined, as well as, the impact on neuronal degeneration.  相似文献   

13.
Chronic inorganic manganese exposure causes selective toxicity to the nigrostriatal dopaminergic system, resulting in a Parkinsonian-like neurological condition known as Manganism. Apoptosis has been shown to occur in manganese-induced neurotoxicity; however, the down-stream cellular target of caspase-3 that contributes to DNA fragmentation is not established. Herein, we demonstrate that proteolytic activation of protein kinase Cdelta (PKCdelta) by caspase-3 plays a critical role in manganese-induced apoptotic cell death. Treatment of PC12 cells with manganese caused a sequential activation of mitochondrial-dependent pro-apoptotic events, including mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, and DNA fragmentation. Overexpression of Bcl-2 in PC12 cells remarkably attenuated each of these events, indicating that the mitochondrial-dependent apoptotic cascade contributes to manganese-induced apoptosis. Furthermore, PKCdelta was proteolytically cleaved by caspase-3, causing a persistent activation of the kinase. The manganese-induced proteolytic cleavage of PKCdelta was significantly blocked by Bcl-2-overexpression. Administration of active recombinant PKCdelta induced DNA fragmentation in PC12 cells, suggesting a pro-apoptotic role of PKCdelta. Furthermore, expression of catalytically inactive mutant PKCdelta(K376R) via a lentiviral gene delivery system effectively attenuated manganese-induced apoptosis. Together, these results suggest that the mitochondrial-dependent caspase cascade mediates apoptosis via proteolytic activation of PKCdelta in manganese-induced neurotoxicity.  相似文献   

14.
三甲基氯化锡(trimethyltin chloride,TMT)是聚氯乙烯(polyvinyl chloride,PVC)塑料制品合成过程中所产生的一种剧毒副产物。它具有选择性中枢神经毒性作用,主要表现为诱导人和动物边缘神经系统的神经元死亡,尤其是海马神经元。TMT中毒后会出现癫痫、腹泻及学习记忆功能障碍等多种临床表现,严重者甚至出现昏迷或死亡。为了提高对TMT中枢神经毒性的认识,现对TMT中枢神经毒性的分子机制及治疗药物的研究进展进行综述,旨在为TMT中枢神经毒性的预防或治疗提供新的研究思路。  相似文献   

15.
Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb(2+) causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb(2+). Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb(2+)-induced neuronal death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb(2+) treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 microM) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb(2+). And that Pb(2+)-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb(2+) and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.  相似文献   

16.
In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe)2/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe)2 significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe)2 provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe)2 treated striatal slices suggested apoptotic cell death. (PhTe)2 exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe)2-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis.  相似文献   

17.
18.
Exposure to a variety of agricultural, industrial, and pharmaceutical chemicals produces nerve damage classified as a central-peripheral distal axonopathy. Morphologically, this axonopathy is characterized by distal axon swellings and secondary degeneration. Over the past 25 years substantial research efforts have been devoted toward deciphering the molecular mechanisms of these presumed hallmark neuropathic features. However, recent studies suggest that axon swelling and degeneration are related to subchronic low-dose neurotoxicant exposure rates (i.e., mg toxicant/kg/day) and not to the development of neurophysiological deficits or behavioral toxicity. This suggests these phenomena are nonspecific and of uncertain pathophysiologic relevance. This possibility has significant implications for research investigating mechanisms of neurotoxicity, development of exposure biomarkers, design of risk assessment models, neurotoxicant classification schemes, and clinical diagnosis and treatment of toxic neuropathies. In this commentary we will review the evidence for the dose-related dependency of distal axonopathies and discuss how this concept might influence our current understanding of chemical-induced neurotoxicities.  相似文献   

19.
Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.  相似文献   

20.
Numerous studies on lead (Pb) neurotoxicity have indicated this metal to be a dangerous toxin, particularly during developmental stages of higher organisms. Astrocytes are responsible for sequestration of this metal in brain tissue. Activation of astroglia may often lead to loss of the buffering function and contribute to pathological processes. This phenomenon is accompanied by death of neuronal cells and may be connected with inflammatory events arising from the production of a wide range of cytokines and chemokines. The effects of prolonged exposure to Pb upon glial activation are examined in immature rats to investigate this potential proinflammatory effect. When analyzed at the protein level, glial activation is observed after Pb exposure, as reflected by the increased level of glial fibrillary acidic protein and S-100beta proteins in all parts of the brain examined. These changes are associated with elevation of proinflammatory cytokines. Production of interleukin (IL)-1beta and tumor necrosis factor-alpha is observed in hippocampus, and production of IL-6 is seen in forebrain. The expression of fractalkine is observed in both hippocampus and forebrain but inconsiderably in the cerebellum. In parallel with cytokine expression, signs of synaptic damage in hippocampus are seen after Pb exposure, as indicated by decreased levels of the axonal markers synapsin I and synaptophysin. Obtained results indicate chronic glial activation with coexisting inflammatory and neurodegenerative features as a new mechanism of Pb neurotoxicity in immature rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号