首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital nephrogenic diabetes insipidus (NDI) is, in most instances, a rare X-linked recessive renal disorder (MIM 304800) characterized by the clinical symptoms of polyuria, polydipsia, and dehydration. The X-linked NDI is associated with mutations of the arginine vasopressin receptor type 2 (AVPR2) gene, which results in resistance to the antidiuretic action of arginine vasopressin (AVP) in the renal tubules and collecting ducts. Identification of mutations in the AVPR2 gene can facilitate early diagnosis of NDI, which can prevent serious complications such as growth retardation and mental retardation. We analyzed three unrelated Chinese NDI families and identified three mutations: R106C, F287L, and R337X. In addition, an A/G polymorphism at cDNA nucleotide position 927 (codon 309L) was identified. A functional expression assay of the R106C and F287L mutants in COS-7 cells revealed that both mutants show significant dysfunction and accumulate intracellular cyclic adenosine monophosphate in response to AVP hormone stimulation. These results facilitate the diagnosis of NDI at the molecular level in the Chinese population, and provide insight into the molecular pathology of NDI. Received: July 4, 2001 / Accepted: December 4, 2001  相似文献   

2.
Nephrogenic diabetes insipidus (NDI) is a serious side effect of various drugs. Elevated renal prostaglandin E2 levels have been found in patients with lithium-induced NDI and have been implicated in the pathogenesis. We report the case of a patient who developed NDI following treatment with amphotericin B. Prostaglandin levels were elevated. Indomethacin had an antidiuretic effect and normalized prostaglandin levels.Abbreviations NDI nephrogenic diabetes insipidus - DNDI drug-induced nephrogenic diabetes insipidius - ICU intensive care unit - PGE2 Prostaglandin E2 Correspondence to: K.-H. Meyer zum Buschenfelde  相似文献   

3.
X-linked hydrocephalus with aqueductal stenosis (HSAS) is caused by mutation or deletion of the L1 cell adhesion molecule gene (L1CAM) at Xq28. Central diabetes insipidus (CDI) can arise as a consequence of resultant hypothalamic dysfunction from hydrocephalus and must be distinguished from nephrogenic diabetes insipidus (NDI) by exogenous vasopressin response. Causes of NDI are heterogeneous and include mutation or deletion of the arginine vasopressin receptor 2 gene (AVPR2), which is located approximately 29 kb telomeric to L1CAM. We identified a patient with both HSAS and NDI where DNA sequencing failure suggested the possibility of a contiguous gene deletion. A 32.7 kb deletion mapping from L1CAM intron1 to AVPR2 exon2 was confirmed. A 90 bp junctional insertion fragment sharing short direct repeat homology with flanking sequences was identified. To our knowledge this is the first reported case of an Xq28 microdeletion involving both L1CAM and AVPR2, defining a new contiguous gene syndrome comprised of HSAS and NDI. Contiguous gene deletion should be considered as a mechanism for all patients presenting with hydrocephalus and NDI.  相似文献   

4.
Loss-of-function mutations in the V2 vasopressin receptor (AVPR2) gene have been identified as a molecular basis for X-linked nephrogenic diabetes insipidus (NDI). Herein, we describe a novel deletion mutation at nucleotide position 102 (delG102) found in a Russian family resulting in a frameshift and a truncated receptor protein. Furthermore, we analyzed the AVPR2 gene of two other unrelated boys with NDI from our patient clientele. These patients showed previously described mutations (R137H, R181C). In-depth characterization of the three mutant AVPR2s by a combination of functional and immunological techniques permitted further insight into molecular mechanisms leading to receptor dysfunction. Premature truncation of the AVPR2 (delG102) led to a drastically reduced receptor protein expression in transfected COS-7 cells and, as expected, precluded specific AVPR2 functions. As indicated by different ELISA and binding studies, the R137H mutant was almost completely retained in the cell interior. In contrast to previous studies, the few mutant receptors in the plasma membrane displayed a low (2.3-fold above basal) but significant ability to stimulate the Gs/adenylyl cyclase system. In contrast to the latter mutation, the R181C mutant is properly delivered to the cell surface but the mutation interferes with high affinity vasopressin binding. Impaired ligand binding is reflected in an about 100-fold shift of the concentration-response curve toward higher vasopressin concentrations with only slightly reduced agonist potency. Hum Mutat 12:196–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.

Background  

Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire AVPR2 locus and approximately half of the Rho GTPase-activating protein 4 (ARHGAP4) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity.  相似文献   

6.
7.
The function of small GTPases is fine‐tuned by a complex network of regulatory proteins such as GTPase‐activating proteins. The C1 gene at Xq28 encodes a protein assumed to function as a Rho GTPase‐activating protein (rhoGAP). Characterization of the molecular defect causing X‐linked nephrogenic diabetes insipidus (NDI) in a patient revealed a submicroscopic deletion of a 21.5‐kb genomic fragment encompassing the entire arginine‐vasopressin V2 receptor gene (AVPR2) and most of the C1 gene locus. In the absence of detailed information about the physiological relevance and specific functions of rhoGAP C1, a thorough clinical and laboratory investigation of the patient was performed. Besides clearly defined NDI symptoms caused by deletion of the AVPR2 gene, no major morphological abnormalities as determined by physical examination, radiography, ultrasound, and computed tomographic scan were detected. Extensive analysis of blood chemical, enzyme, and hormone values over a period of 16 years showed no deviations from normal ranges. On the basis of our observations, the rhoGAP C1 protein is not essential for normal development in the human. Because of a predominant expression pattern of the C1 gene in hematopoietic cells, we focused on immunologic and hematologic laboratory parameters of the affected boy and the mother who was found to be heterozygous. Differential white cell counts, including lymphocyte typing, determination of lymphokines, cytokines, and immunoglobulins, as well as numerous leukocyte function tests, showed no pathological findings. Therefore, we postulate that the loss of rhoGAP C1 function is most likely compensated by other members of the GAP family. Hum Mutat 14:163–174, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Most cases of hydronephrosis are caused by urinary tract obstruction. However, excessive polyuric syndrome rarely gives rise to non-obstructive hydronephrosis, megaureter, and a distended bladder. The authors report here on two cases of congenital nephrogenic diabetes insipidus (NDI) with severe bilateral hydronephrosis and megaureter. It is Interesting that the patients were symptomless except for their polyuria, and they both presented with bilateral hydronephrosis. Fluid deprivation testing revealed the presence of AVP resistant NDI. Gene analysis for these patients showed the AVP receptor 2 (V2R) missense mutations (Q225X and S126F), which have previously been reported on in other studies. We made the diagnosis of NDI by using a physiologic test, and we confirmed it by mutation analysis of the V2R gene.  相似文献   

9.
10.
We evaluated a baby boy with severe combined immunodeficiency (SCID) and X-linked nephrogenic diabetes insipidus (NDI). This patient had less than 10% CD3+ T cells, almost all of which were positive for CD4 and CD45RO. Genetic studies demonstrated a 34.4 kb deletion at Xq28 which included AVPR2, the gene responsible for NDI; ARHGAP4, a hematopoietic specific gene encoding a GTPase-activating protein; and a highly conserved segment of DNA between ARHGAP4 and ARD1A, a gene involved in the response to hypoxia. Other patients with NDI, but without immunodeficiency, have had deletions that remove all ARHGAP4 except exon 1; however, no other patients have had deletions of the highly conserved intragenic region between ARHGAP4 and ARD1A. X chromosome inactivation studies, done on sorted cells from the mother and grandmother of the patient, carriers of the deletion, demonstrated exclusive use of the non-mutant X chromosome as the active X in CD4 and CD8 T cells. Surprisingly, NK cells, monocytes and neutrophils from these women demonstrated preferential use of the mutant X chromosome as the active X. These results are consistent with an X-linked form of SCID, due to the loss of regulatory elements that control the response to hypoxia in hematopoietic cells.  相似文献   

11.
12.
Regulation of body water homeostasis occurs by the vasopressin‐dependent sorting of aquaporin‐2 (AQP2) water channels to and from the apical membrane of renal principal cells. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease that renders the kidney unresponsive to vasopressin, resulting in polyuria and polydipsia. The AQP2 mutant c.772G>A; p.Glu258Lys (AQP2–E258K) causes dominant NDI by oligomerizing with wild‐type AQP2 and missorting of this AQP2 complex to multivesicular bodies instead of the apical membrane. The motif causing this missorting of AQP2–E258K was identified here. Functional analyses and plasma membrane expression studies of truncation mutants in oocytes revealed that AQP2–E258K shortened to Leu259 is still intracellular retained. Alanine scanning and glutamic acid to arginine exchanges revealed increased function and plasma membrane expression for AQP2–E258K mutants with the following additional changes: Leu259Ala, Arg252Glu, Arg253Glu, or Arg252Ala–Arg254Ala, or for the AQP2 mutant p.Glu258Ala, indicating that the motif RRRxxxK258L confers AQP2–E258K retention. Fusion of this motif to aquaporin‐1 also resulted in missorting of that water channel, indicating that this retention motif is transferable. In conclusion, our data reveal that the RRRxxxKL motif and repulsion between K258 and the arginine‐triplet within this motif are the primary cause of missorting of AQP2–E258K in NDI. Hum Mutat 30:1–10, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. Favorably skewed X‐inactivation accounts for neurological sparing in female carriers of Menkes disease. Classical Menkes disease is an X‐linked recessive neurodegenerative disorder caused by mutations in ATP7A, which is located at Xq13.1‐q21. ATP7A encodes a copper‐transporting P‐type ATPase and plays a critical role in development of the central nervous system. With rare exceptions involving sex chromosome aneuploidy or X‐autosome translocations, female carriers of ATP7A mutations are asymptomatic except for subtle hair and skin abnormalities, although the mechanism for this neurological sparing has not been reported. We studied a three‐generation family in which a severe ATP7A mutation, a 5.5‐kb genomic deletion spanning exons 13 and 14, segregated. The deletion junction fragment was amplified from the proband by long‐range polymerase chain reaction and sequenced to characterize the breakpoints. We screened at‐risk females in the family for this junction fragment and analyzed their X‐inactivation patterns using the human androgen‐receptor (HUMARA) gene methylation assay. We detected the junction fragment in the proband, two obligate heterozygotes, and four of six at‐risk females. Skewed inactivation of the X chromosome harboring the deletion was noted in all female carriers of the deletion (n = 6), whereas random X‐inactivation was observed in all non‐carriers (n = 2). Our results formally document one mechanism for neurological sparing in female carriers of ATP7A mutations. Based on review of X‐inactivation patterns in female carriers of other X‐linked recessive diseases, our findings imply that substantial expression of a mutant ATP7A at the expense of the normal allele could be associated with neurologic symptoms in female carriers of Menkes disease and its allelic variants, occipital horn syndrome, and ATP7A‐related distal motor neuropathy.  相似文献   

14.
Mental retardation (MR) is generally considered one of the main complications of congenital nephrogenic diabetes insipidus (NDI). However, psychometric studies of NDI patients are scarce and outdated. In the present study, 17 male NDI patients underwent psychological evaluation. Total intelligence quotient of 14 patients was within (n = 13) or above (n = 1) the normal range, 1 patient had an intelligence score between −1 and −2 standard deviations (S.D.) and 2 young patients had a general cognitive index more than 2 S.D. below the norm. Attention deficit hyperactivity disorder criteria were met by 8 out of 17 patients and scores on short-term memory were low in 7 out of 10. No relation between test performances and age at diagnosis or hypernatremia could be found, with the exception of a negative correlation between age at start of therapy and verbal IQ in one age group. Although several explanations for an association between MR and NDI can be postulated, it seems that the current prevalence of MR among patients with this disease is considerably lower than suggested in literature. © 1995 Wiley-Liss, Inc.  相似文献   

15.

Background

Nephrogenic diabetes insipidus (NDI) is a rare disease whose complications include polyuria, renal dysfunction, growth disorder and mental retardation. The details of NDI’s clinical course have been unclear. To address this uncertainty, we performed a large investigation of the clinical course of NDI in Japan.

Methods

Between December 2009 and March 2011, we provided a primary questionnaire to 26,282 members of the Japan Endocrine Society, the Japanese Urological Association, the Japanese Society for Pediatric Endocrinology, the Japanese Society for Pediatric Nephrology, the Japanese Society of Nephrology, the Japanese Society of Neurology and the Japanese Society of Pediatric Urology. In addition, we provided a secondary questionnaire to 121 members who reported experience with cases of NDI. We asked about patient’s age at onset, diagnosis, complications, effect of treatment and patient’s genotype.

Results

We enrolled 173 patients with NDI in our study. Of these NDI patients, 143 were congenital and 30 were acquired. Of the 173, 73 patients (42%) experienced urologic complications. Among the 143 with congenital NDI, 20 patients (14%) had mental retardation. Patients with NDI mainly received thiazide diuretics, and some patients responded to treatment with desmopressin acetate (DDAVP). Gene analyses were performed in 87 patients (61%) with congenital NDI, revealing that 65 patients had an arginine vasopressin receptor type 2 (AVPR2) gene mutation and that 8 patients (9.2%) had an aquaporin 2 (AQP2) gene mutation. Patients with the AVPR2 mutation (D85N) generally showed a mild phenotype, and we found that DDAVP was generally an effective treatment for NDI among these patients.

Conclusion

We suggest that adequate diagnosis and treatment are the most important factors for improving prognoses. We further suggest that gene analysis should be performed for optimal treatment selection and the early detection of NDI among siblings.  相似文献   

16.
Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X‐linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing). However, in female ID patients, we hypothesized that the presence of skewing of X‐inactivation would be an indicator for an X chromosomal ID cause. We analyzed the X‐inactivation patterns of 288 females with ID, and found that 22 (7.6%) had extreme skewing (>90%), which is significantly higher than observed in the general population (3.6%; = 0.029). Whole‐exome sequencing of 19 females with extreme skewing revealed causal variants in six females in the XLID genes DDX3X, NHS, WDR45, MECP2, and SMC1A. Interestingly, variants in genes escaping X‐inactivation presumably cause both XLID and skewing of X‐inactivation in three of these patients. Moreover, variants likely accounting for skewing only were detected in MED12, HDAC8, and TAF9B. All tested candidate causative variants were de novo events. Hence, extreme skewing is a good indicator for the presence of X‐linked variants in female patients.  相似文献   

17.
Study of two families containing individuals with nephrogenic diabetes insipidus (NDI) indicated different types of 21.3 kb and 26.3 kb deletions involving the AVPR2 and ARHGAP4 (RhoGAP C1) genes. In the case of the 21.3 kb deletion, the deletion consensus motif (5′‐TGAAGG‐3′) and polypurine runs, known as the arrest site of polymerase alpha, were detected in the vicinity of the deletion junction. Inverted repeats (7/8 matches), believed to potentiate DNA loop formation, flank the deletion breakpoint. We propose this deletion to be the result of slipped mispairing during DNA replication. In the case of the 26.3 kb deletion, the 12,945 bp inverted region with the 10,003 bp internal deletion was accompanied with the 2,509 bp deletion in the 5′‐side and the 13,785 bp deletion in the 3′‐side. We defined three deletion junctions in this rearrangement (DJ1, DJ2, and DJ3) from the 5′‐side. The surrounding sequence of DJ1 (5′‐CCC‐3′) closely resembled that of DJ3 (5′‐AGGG‐3′) (DJ1; 5′‐cCCCgaggg‐3′, DJ3; 5′‐ccccAGGG‐3′), and DJ1 was located in the 5′‐side of DJ3 without any overlapping in sequence. The immunoglobulin class switch (ICS) motif (5′‐TGGGG‐3′) was found around the complementary sequence of DJ3. There was a 10‐base palindrome (5′‐aGACAtgtct‐3′) in the alignment of the DJ2 (5′‐GACA‐3′) region. From these findings, we propose a novel mutation process with the rearrangement probably resulting from stem‐loop induced non‐homologous recombination in an ICS‐like fashion. Both patients, despite lacking ARHGAP4, had no morphological, clinical, or laboratory abnormalities except for those usually found in patients with NDI. Hum Mutat 19:23–29, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
Mutations in the V2 vasopressin receptor (AVPR2) are the most frequent genetic cause of the inherited nephrogenic diabetes insipidus (NDI). About 50% of all missense mutations found in extracellular loops of AVPR2 introduce additional cysteine residues, e.g. R181C, G185C, and Y205C. To explain the loss of receptor function two mechanistic models were suggested: First, the introduction of an additional extracellular Cys residue disrupts the conserved disulfide bond connecting the first and the second extracellular loop. And second, the mutationally introduced Cys residue forms a second disulfide bond with a free Cys residue within the second exoloop. Herein, we took advantage of a new NDI-causing mutation Y205H which affects a codon frequently found to be mutated to Cys in NDI patients. In contrast to Y205C the two mechanisms described above cannot account for the loss of receptor function of Y205H. In-depth functional characterization of mutant AVPR2 showed that also for Y205C the lack of a Tyr residue at position 205 is responsible for the abolished receptor function rather than the formation of a disastrous second disulfide bond. The concerted experimental and phylogenetic analysis emphasizes that Y205 is a key residue in maintaining the structure of AVPR2 and other members of the vasopressin receptor family.  相似文献   

19.
Nephrogenic diabetes insipidus (NDI) is associated with germline mutations in two genes: vasopressin receptor type 2 (V2(R)) in X‐linked NDI, and the water channel aquaporin‐2, in autosomal‐recessive disease. Genetic heterogeneity is further emphasized by reports of phenotypically abnormal individuals with normal structural genes. We analyzed both genes in five Brazilian families and the aquaporin‐2 gene in two Swedish families with clinical and laboratory diagnosis of NDI, by a combination of denaturing gradient gel electrophoresis (DGGE) and direct DNA sequencing. A novel polymorphism in the aquaporin‐2 gene (S167S), but no disease‐associated mutations in any tested individual from all seven families, was detected. In two Brazilian families, frameshift mutations were detected in the V2(R) gene: one leading to a premature stop after codon 36 and the other to a longer peptide (462 aa instead of the 373 aa wild‐type protein). In two other Brazilian families, probable disease‐associated missense mutations were detected: an alanine to proline at codon 163 (A163P) and an asparagine to aspartic acid at codon 85 (D85N). In one Brazilian family, both genes were structurally normal and the aquaporin‐2 gene was also normal in the two Swedish kindreds. This report further extends the mutational spectrum of NDI and suggests that there are other mutational or epigenetic events inactivating the two known genes or even novel genes that underlie NDI. Hum Mutat 14:233–239, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Congenital nephrogenic diabetes insipidus (NDI) is a rare disease caused most often by mutations in the vasopressin V2 receptor (AVPR2). We studied a family which included a female patient with NDI with symptoms dating from infancy. The patient responded to large doses of desmopressin (dDAVP) which decreased urine volume from 10 to 4 I/day. Neither the parents nor the three sisters were polyuric. The patient was found to be a compound heterozygote for two novel recessive point mutations in the aquaporin-2 (AQP2) gene: L22V in exon 1 and C181W in exon 3. Residue Cys181 in AQP2 is the site for inhibition of water permeation by mercurial compounds and is located near to the NPA motif conserved in all aquaporins. Osmotic water permeability (Pf) in Xenopus oocytes injected with cRNA encoding C181W-AQP2 was not increased over water control, while expression of L22V cRNA increased the Pf to approximately 60% of that for wild-type AQP2. Co-injection of the mutant cRNAs with the wild-type cRNA did not affect the function of the wild-type AQP2. Immunolocalization of AQP2-transfected CHO cells showed that the C181W mutant had an endoplasmic reticulum-like intracellular distribution, whereas L22V and wild-type AQP2 showed endosome and plasma membrane staining. Water permeability assays showed a high Pf in cells expressing wild-type and L22V AQP2. This study indicates that AQP2 mutations can confer partially responsive NDI.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号