首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhabdomyosarcoma (RMS) is an aggressive childhood sarcoma with two distinct subtypes, embryonal (ERMS) and alveolar (ARMS) histologies. More effective treatment is needed to improve outcomes, beyond conventional cytotoxic chemotherapy. The pan-histone deacetylase inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), has shown promising efficacy in limited preclinical studies. We used a panel of human ERMS and ARMS cell lines and xenografts to evaluate the effects of SAHA as a therapeutic agent in both RMS subtypes. SAHA decreased cell viability by inhibiting S-phase progression in all cell lines tested, and induced apoptosis in all but one cell line. Molecularly, SAHA-treated cells showed activation of a DNA damage response, induction of the cell cycle inhibitors p21Cip1 and p27Kip1 and downregulation of Cyclin D1. In a subset of RMS cell lines, SAHA promoted features of cellular senescence and myogenic differentiation. Interestingly, SAHA treatment profoundly decreased protein levels of the driver fusion oncoprotein PAX3-FOXO1 in ARMS cells at a post-translational level. In vivo, SAHA-treated xenografts showed increased histone acetylation and induction of a DNA damage response, along with variable upregulation of p21Cip1 and p27Kip1. However, while the ARMS Rh41 xenograft tumor growth was significantly inhibited, there was no significant inhibition of the ERMS tumor xenograft RD. Thus, our work shows that, while SAHA is effective against ERMS and ARMS tumor cells in vitro, it has divergent in vivo effects . Together with the observed effects on the PAX3-FOXO1 fusion protein, these data suggest SAHA as a possible therapeutic agent for clinical testing in patients with fusion protein-positive RMS.  相似文献   

2.
Rhabdomyosarcoma (RMS) is a common solid tumor in childhood divided into two histological subtypes, embryonal (ERMS) and alveolar (ARMS). The ARMS subtype shows aggressive clinical behavior with poor prognosis, while the ERMS subtype has a more favorable outcome. Because of the rarity, diagnostic diversity and heterogeneity of this tumor, its etiology remains to be completely elucidated. Thus, to identify genetic alterations associated with RMS development, we performed single nucleotide polymorphism array analyses of 55 RMS samples including eight RMS‐derived cell lines. The ERMS subtype was characterized by hyperploidy, significantly associated with gains of chromosomes 2, 8 and 12, whereas the majority of ARMS cases exhibited near‐diploid copy number profiles. Loss of heterozygosity of 15q was detected in 45.5% of ARMS that had been unrecognized in RMS to date. Novel amplifications were also detected, including IRS2 locus in two fusion‐positive tumors, and KRAS or NRAS loci in three ERMS cases. Of note, gain of 13q was significantly associated with good patient outcome in ERMS. We also identified possible application of an ALK inhibitor to RMS, as ALK amplification and frequent expression of ALK were detected in our RMS cohort. These findings enhance our understanding of the genetic mechanisms underlying RMS pathogenesis and support further studies for therapeutic development of RMS.  相似文献   

3.
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.  相似文献   

4.

Background  

Rhabdomyosarcoma (RMS) is a malignant soft tissue sarcoma of childhood including two major histological subtypes, alveolar (ARMS) and embryonal (ERMS) RMS. Like other human malignancies RMS possesses high metastatic potential, more pronounced in ARMS than in ERMS. This feature is influenced by several biological molecules, including soluble factors secreted by tumor cells, such as heparanase (HPSE). HPSE is an endo-β-D-glucuronidase that cleaves heparan sulphate proteoglycans.  相似文献   

5.

BACKGROUND:

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents aged <20 years; its etiology remains largely unknown. It is believed that embryonal (ERMS) and alveolar rhabdomyosarcoma (ARMS), the most common subtypes, arise through distinct biologic mechanisms. The authors of this report evaluated incidence and survival trends by RMS demographic subgroups to inform future etiologic hypotheses.

METHODS:

Incidence and survival trends in RMS among children and adolescents aged <20 years were analyzed using data from the Surveillance, Epidemiology, and End Results Program. Frequencies, age‐adjusted incidence and survival rates, and joinpoint regression results, including annual percentage change (APC) and 95% confidence interval (CI), were calculated.

RESULTS:

Between 1975 and 2005, the incidence of ERMS was stable, whereas a significant increase in the incidence of ARMS was observed (APC, 4.20%; 95%CI, 2.60%‐5.82%). This trend may have been attributable in part to shifts in diagnosis, because a significant negative trend in RMS, not otherwise specified was observed concurrently. A bimodal age peak for ERMS was observed, with the second, smaller peak in adolescence noted for males only; ARMS incidence did not vary by age or sex. Five‐year survival rates for RMS and ERMS increased during the period from 1976 to 1980 (52.7% and 60.9%, respectively) to the period from 1996 to 2000 (61.8% and 73.4%, respectively), whereas there was little improvement for ARMS (40.1% and 47.8%, respectively).

CONCLUSIONS:

Observed differences in incidence and survival for 2 major RMS subtypes across sex and age subgroups further supported the hypothesis that there are unique underlying etiologies for these tumors. Exploration of these differences presents an opportunity to increase current knowledge of RMS. Cancer 2009. © 2009 American Cancer Society.  相似文献   

6.
Rhabdomyosarcoma (RMS) is the most common paediatric soft-tissue sarcoma including two major subtypes, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS). Increasing evidence suggests that oncogenesis of RMS involves multiple stages of signalling protein dysregulation which may include prolonged activation of serine/threonine kinases such as phosphoinositide-dependent kinase-1 (PDK-1) and AKT. To date, whether PDK-1/AKT pathway is activated in RMS is unknown. This study was to examine phosphorylation status of AKT and to evaluate a novel small molecular inhibitor, OSU-03012 targeting PDK-1 in RMS. We examined phosphorylation levels of AKT using ARMS and ERMS tissue microarray and immunohistochemistry staining. Our results showed phospho-AKT(Thr308) level is elevated 42 and 35% in ARMS and ERMS, respectively. Phospho-AKT(Ser473) level is also increased 43% in ARMS and 55% in ERMS. Furthermore, we showed that OSU-03012 inhibits cell viability and induces apoptosis in ARMS and ERMS cell lines (RH30, SMS-CTR), which express elevated phospho-AKT levels. Normal cells are much less sensitive to OSU-03012 and in which no detectable apoptosis was observed. This study showed, for the first time, that PDK-1/AKT pathway is activated in RMS and may play an important role in survival of RMS. PDK-1/AKT pathway may be an attractive therapeutic target for cancer intervention in RMS using OSU-03012.  相似文献   

7.
Rhabdomyosarcoma (RMS) is a malignant tumour of skeletal muscle origin which includes two major histological subtypes: alveolar rhabdomyosarcoma (ARMS), the more aggressive, and embryonal rhabdomyosarcoma (ERMS). In order to establish whether the higher metastatic potential of ARMS cells may depend on differential expression of specific matrix metalloproteinases (MMPs) and angiogenesis-related factors, we studied the expression of MMP-2, MT1-MMP, TIMP-2, VEGF and VEGF receptors in four ARMS (RH30, RH4, RH18, RH28), three ERMS (RD, RH36, SMS-CTR) and one undifferentiated sarcoma cell line (A204). Semi-quantitative analysis of MMP-2 revealed high levels of expression in 3 out of 4 ARMS cell lines whereas, among ERMS, only RH36 showed comparable levels of the protease. TIMP-2 and MT1-MMP showed no significant differences among cell lines. in vitro invasiveness was also evaluated. The MMP-2-overexpressing RH30 cells were more invasive than RD cells, which expressed low levels of MMP-2. Exogenous expression of the ARMS specific PAX3-FKHR chimeric protein in RD cells increased MMP-2 activity and invasiveness. Of the three main VEGF isoforms only VEGF165 and VEGF121 were detected in RMS lines: ARMS expressed both isoforms, whereas the ERMS cell line SMS-CTR and the undifferentiated sarcoma cell line A204 showed the VEGF121 isoform only. All RMS cell lines expressed VEGFR-1 at mRNA as well as at protein level. The VEGFR-2, on the contrary, was undetectable with the sole exception of the RH28 cell line. Overall, our data suggest that a high level of MMP-2 protein and VEGF/VEGFR expression may contribute to the metastatic phenotype of ARMS cells and that exogenously induced PAX3-FKHR expression increases MMP-2 secretion and invasive capability of RMS cells.  相似文献   

8.
AimsEmbryonal and alveolar rhabdomyosarcoma (ERMS, ARMS) are subtypes of RMS that mainly occur in children, with relatively good outcomes. The incidence in adults is extremely low and survival is significantly worse compared with children. Data are scarce and literature generally combines all RMS subtypes, including pleomorphic RMS, which primarily occurs in adults and behaves more like undifferentiated pleomorphic sarcoma. The aim of this study was to evaluate patient and tumour characteristics, outcome and prognostic factors in adult patients with ERMS and ARMS.Materials and methodsAll adult (18 years or older) ERMS and ARMS patients (presenting 1990–2016) were identified from a prospectively maintained database and were included in this analysis.ResultsOverall, 66 patients were included (42 men, 24 women). The median age at presentation was 28 years (range 18–71). The median overall survival for all ARMS (n = 42) and ERMS (n = 24) patients was 18 months, with a 5-year overall survival rate of 27%. Patients presenting with localised disease (n = 38, 58%) and metastatic disease (n = 25, 42%), had a 5-year overall survival rate of 36% and 11%, respectively. In univariate analysis we found alveolar subtype, fusion gene positivity, infiltrative tumour and metastatic presentation to be negative prognostic factors.ConclusionSurvival in adult ERMS and ARMS patients is poor and the current data may be useful in the design of trials with novel agents. Ideally, paediatric and adult oncologists should set up trials together to get a better understanding of biological, genetic and clinically relevant factors in this disease.  相似文献   

9.
10.
The tyrosine kinase inhibitor, imatinib, is the first line of treatment for chronic myeloid leukemia (CML) patients. Unfortunately, patients develop resistance and relapse due to bcr‐abl point mutations and the persistence of leukemia initiating cells (LIC). Retinoids regulate vital biological processes such as cellular proliferation, apoptosis, and differentiation, in particular of hematopoietic progenitor cells. The clinical usage of natural retinoids is hindered by acquired resistance and undesirable side effects. However, bioavailable and less toxic synthetic retinoids, such as the atypical adamantyl retinoid ST1926, have been developed and tested in cancer clinical trials. We investigated the preclinical efficacy of the synthetic retinoid ST1926 using human CML cell lines and the murine bone marrow transduction/transplantation CML model. In vitro, ST1926 induced irreversible growth inhibition, cell cycle arrest and apoptosis through the dissipation of the mitochondrial membrane potential and caspase activation. Furthermore, ST1926 induced DNA damage and downregulated BCR‐ABL. Most importantly, oral treatment with ST1926 significantly prolonged the longevity of primary CML mice, and reduced tumor burden. However, ST1926 did not eradicate LIC, evident by the ability of splenocytes isolated from treated primary mice to develop CML in untreated secondary recipients. These results support a potential therapeutic use of ST1926 in CML targeted therapy.  相似文献   

11.
Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma   总被引:1,自引:0,他引:1       下载免费PDF全文
The poor prognosis of patients with advanced bone and soft‐tissue sarcoma has not changed in the past several decades, highlighting the necessity for new therapeutic approaches. Immunotherapies, including oncolytic viral (OV) therapy, have shown great promise in a number of clinical trials for a variety of tumor types. However, the effective application of OV in treating sarcoma still remains to be demonstrated. Although few pre‐clinical studies using distinct OVs have been performed and demonstrated therapeutic benefit in sarcoma models, a side‐by‐side comparison of clinically relevant OV platforms has not been performed. Four clinically relevant OV platforms (Reovirus, Vaccinia virus, Herpes‐simplex virus and Rhabdovirus) were screened for their ability to infect and kill human and canine sarcoma cell lines in vitro, and human sarcoma specimens ex vivo. In vivo treatment efficacy was tested in a murine model. The rhabdovirus MG1 demonstrated the highest potency in vitro. Ex vivo, MG1 productively infected more than 80% of human sarcoma tissues tested, and treatment in vivo led to a significant increase in long‐lasting cures in sarcoma‐bearing mice. Importantly, MG1 treatment induced the generation of memory immune response that provided protection against a subsequent tumor challenge. This study opens the door for the use of MG1‐based oncolytic immunotherapy strategies as treatment for sarcoma or as a component of a combined therapy.  相似文献   

12.
Squamous cell carcinoma of the head and neck (HNSCC) is the tenth most common tumor entity in men worldwide. Nevertheless therapeutic options are mostly limited to surgery and radio‐chemotherapy resulting in 5‐year survival rates of around 50%. Therefore new therapeutic options are urgently needed. During the last years, targeting of receptor tyrosine kinases has emerged as a promising strategy that can complement standard therapeutical approaches. Here, we aimed at investigating if the receptor tyrosine kinase DDR2 is a targetable structure in HNSCC. DDR2 expression was assessed on a large HNSCC cohort (554 patients) including primary tumors, lymph node metastases and recurrences and normal mucosa as control. Subsequently, DDR2 was stably overexpressed in two different cell lines (FaDu and HSC‐3) using lentiviral technology. Different tumorigenic properties such as proliferation, migration, invasion, adhesion and anchorage independent growth were assessed with and without dasatinib treatment using in‐vitro cell models and in‐vivo zebrafish xenografts. DDR2 was overexpressed in all tumor tissues when compared to normal mucosa. DDR2 overexpression led to increased migration, invasion, adhesion and anchorage independent growth whereas proliferation remained unaltered. Upon dasatinib treatment migration, invasion and adhesion could be inhibited in‐vitro and in‐vivo whereas proliferation was unchanged. Our data suggest treatment with dasatinib as a promising new therapeutic option for patients suffering from DDR2 overexpressing HNSCC. Since dasatinib is already FDA‐approved we propose to test this drug in clinical trials so that patients could directly benefit from this new treatment option.  相似文献   

13.
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development.  相似文献   

14.
15.
16.
17.
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma. There are two main subtypes of RMS, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma. ARMS typically encompasses fusion‐positive rhabdomyosarcoma, which expresses either PAX3‐FOXO1 or PAX7‐FOXO1 fusion proteins. There are no targeted therapies for ARMS; however, recent studies have begun to illustrate the cooperation between epigenetic proteins and the PAX3‐FOXO1 fusion, indicating that epigenetic proteins may serve as targets in ARMS. Here, we investigate the contribution of BMI1, given the established role of this epigenetic regulator in sustaining aggression in cancer. We determined that BMI1 is expressed across ARMS tumors, patient‐derived xenografts, and cell lines. We depleted BMI1 using RNAi and inhibitors (PTC‐209 and PTC‐028) and found that this leads to a decrease in cell growth/increase in apoptosis in vitro, and delays tumor growth in vivo. Our data suggest that BMI1 inhibition activates the Hippo pathway via phosphorylation of LATS1/2 and subsequent reduction in YAP levels and YAP/TAZ target genes. These results identify BMI1 as a potential therapeutic vulnerability in ARMS and warrant further investigation of BMI1 in ARMS and other sarcomas.  相似文献   

18.
Rhabdomyosarcoma (RMS) is a family of soft tissue tumors that are associated with the skeletal muscle lineage and generally occur in the pediatric population. Based on histopathologic features, two subtypes, embryonal (ERMS) and alveolar (ARMS), were identified and associated with distinct clinical characteristics and genetic alterations. ARMS is associated with 2;13 or 1;13 chromosomal translocations, which generate PAX3-FKHR and PAX7-FKHR fusion products, respectively. These translocations result in altered expression, function, and subcellular localization of the fusion products relative to the wild-type proteins, and ultimately contribute to oncogenic behavior by modifying growth, differentiation, and apoptosis pathways. In contrast to the specific translocations found in ARMS, most ERMS cases have allelic loss at chromosome 11p15.5. Chromosome fragment transfer studies demonstrated that this region represses tumor cell growth, suggesting the presence of tumor suppressor gene(s) in this region. In both ERMS and ARMS, there is evidence of collaborating alterations that affect common targets, such as the p53 and RB pathways. One mechanism for perturbing these pathways involves amplification of genes such as MDM2 and CDK4; these amplification events occur frequently in ARMS but only rarely in ERMS. Therefore, despite similarities in the downstream targets of these genetic alterations, the striking cytogenetic and molecular differences between ARMS and ERMS indicate distinct molecular etiologies in these two subtypes.  相似文献   

19.
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. To improve existing therapies and broaden the spectrum of cytotoxic agents that can be used in RMS treatment, we performed a phage‐display‐based screening for peptides that bind specifically to RMS cells. Two peptides binding to RMS and to other tumour cell lines, but not to normal skeletal muscle cells and fibroblasts, were isolated from phage‐displayed random peptide libraries. One peptide, named RMS‐I (CQQSNRGDRKRC) contained the integrin‐binding motif RGD and its binding was blocked by an antibody against αvβ3integrin, which is expressed on the RMS cell line RD. The isolation of RMS‐I confirmed the validity of our screening procedure. The second peptide, named RMS‐II (CMGNKRSAKRPC), shows sequence similarity to a previously identified peptide with tumour lymphatic specificity, LyP‐1. However, RMS‐II binds in vivo to RMS xenografts better than LyP‐1 and homes to the tumour blood and not to lymphatic vessels. Therefore, RMS‐II represents a promising peptide for the development of RMS‐specific targeting approaches. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The synthetic atypical retinoids containing an adamantyl group exhibit antiproliferative or proapoptotic activities. Apoptosis induction is a dose‐dependent effect independent of retinoid receptors. We have reported that induction of apoptosis by the atypical retinoid, ST1926, is associated with early manifestations of genotoxic stress. Indeed, in this study performed in ovarian carcinoma cells, we show that exposure to ST1926 resulted in an increase of early markers of DNA damage, including ATM and H2AX phosphorylation. In addition, we found that a novel histone deacetylase (HDAC) inhibitor (RC307) was able to enhance sensitivity of ovarian carcinoma cells to ST1926. Under conditions where single‐agent treatment caused only antiproliferative effects, the combination of the atypical retinoid and HDAC inhibitor resulted in marked apoptotic cell death with a more rapid onset in wild‐type p53 ovarian carcinoma cells. The sensitization to ST1926‐induced apoptosis was associated with an enhanced DNA damage response, because a prolonged expression of DNA damage markers (e.g., H2AX, p53 and RPA‐2 phosphorylation) and a marked activation of DNA damage checkpoint kinases (in particular, phosphorylation of Chk1) were observed indicating an accumulation of DNA damage by the ST1926/HDAC inhibitor combination. The study provides additional support to the role of DNA damage as a primary event leading to the activation of apoptosis in ovarian carcinoma cells by adamantyl retinoids and documents the potential therapeutic efficacy of the combination of ST1926 and HDAC inhibitors of the novel series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号