首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Supportive social interactions may be protective against stressors and certain mental and physical illness, while social isolation may be a powerful stressor. Prairie voles are socially monogamous rodents that model some of the behavioral and physiological traits displayed by humans, including sensitivity to social isolation. Neuroendocrine and behavioral parameters, selected for their relevance to stress and depression, were measured in adult female and male prairie voles following 4 weeks of social isolation versus paired housing. In Experiment 1, oxytocin-immunoreactive cell density was higher in the hypothalamic paraventricular nucleus (PVN) and plasma oxytocin was elevated in isolated females, but not in males. In Experiment 2, sucrose intake, used as an operational definition of hedonia, was reduced in both sexes following 4 weeks of isolation. Animals then received a resident-intruder test, and were sacrificed either 10 min later for the analysis of circulating hormones and peptides, or 2h later to examine neural activation, indexed by c-Fos expression in PVN cells immunoreactive for oxytocin or corticotropin-releasing factor (CRF). Compared to paired animals, plasma oxytocin, ACTH and corticosterone were elevated in isolated females and plasma oxytocin was elevated in isolated males, following the resident-intruder test. The proportion of cells double-labeled for c-Fos and oxytocin or c-Fos and CRF was elevated in isolated females, and the proportion of cells double-labeled for c-Fos and oxytocin was elevated in isolated males following this test. These findings suggest that social isolation induces behavioral and neuroendocrine responses relevant to depression in male and female prairie voles, although neuroendocrine responses in females may be especially sensitive to isolation.  相似文献   

2.
Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.  相似文献   

3.
An association between obesity and depression has been indicated in studies addressing common physical (metabolic) and psychological (anxiety, low self-esteem) outcomes. Of consideration in both obesity and depression are chronic mild stressors to which individuals are exposed to on a daily basis. However, the response to stress is remarkably variable depending on numerous factors, such as the physical health and the mental state at the time of exposure. Here a chronic mild stress (CMS) protocol was used to assess the effect of high-fat diet (HFD)-induced obesity on response to stress in a rat model. In addition to the development of metabolic complications, such as glucose intolerance, diet-induced obesity caused behavioral alterations. Specifically, animals fed on HFD displayed depressive- and anxious-like behaviors that were only present in the normal diet (ND) group upon exposure to CMS. Of notice, these mood impairments were not further aggravated when the HFD animals were exposed to CMS, which suggest a ceiling effect. Moreover, although there was a sudden drop of food consumption in the first 3 weeks of the CMS protocol in both ND and HFD groups, only the CMS-HFD displayed an overall noticeable decrease in total food intake during the 6 weeks of the CMS protocol. Altogether, the study suggests that HFD impacts on the response to CMS, which should be considered when addressing the consequences of obesity in behavior.  相似文献   

4.
Neural and behavioral responses after peripheral immune challenge have been observed in numerous studies. The majority of these studies have utilized relatively high doses of lipopolysaccharide (LPS) as the immune stimulant. Little attention has been given to the effects of LPS dose ranges that simulate low grade-inflammation. The current studies were designed to characterize neural and behavioral responses following low-dose LPS stimulation. Results show burrowing and open field activity was significantly impaired following a single i.p. injection of 10, but not 1, μg/kg of LPS. In addition, following repeated 1μg/kg LPS administration for 10 days, animals showed the progressive development of motor deficits over time. To correlate behavior with CNS activity, cFos activation was determined in the paraventricular nucleus, nucleus of the solitary tract, central amygdaloid nucleus, and ventrolateral medulla. Data revealed there was a dose-dependent activation in all brain areas examined, but only the PVN showed significant activation by low-dose LPS. Additionally, animals that received 1μg/kg of LPS for 8 days had PVN cFos activation similar to animals that received a single 10μg/kg LPS injection. These data demonstrate neural and behavior responses can be induced by low-grade inflammation and chronic exposure to sub-threshold levels of LPS can precipitate significantly heightened neural and behavioral responses.  相似文献   

5.
Vestibular dysfunction was chemically induced in male meadow voles (Microtus pennsylvanicus) by intratympanic injections (30 mg per side) of sodium arsanilate (atoxyl). The control group received intratympanic injections of isotonic saline. After a one-week recovery period the voles were behaviorally assayed for integrity of their labyrinthine systems. All subjects were tested for the presence of the air-righting reflex and body rotation-induced nystagmus. Three weeks later a multivariate assessment of spontaneous motor activity of the voles was carried out in the automated Digiscan Activity Monitor. In addition, the swimming behavior of the voles was examined. Voles with vestibular dysfunction exhibited pronounced postural abnormalities (head dorsiflexion), were not able to swim with their nose above the water for a 1 min test period, and displayed disorientation and thrashing movements. In the Digiscan activity test the atoxyl-treated voles displayed significantly more activity in the horizontal measures (Ps less than 0.01), including greater distance travelled per movement and greater speed of movements, relative to the control animals. The labyrinthectomized group also spent significantly (P less than 0.05) less time in vertical movements and exhibited significantly more time in stereotypic behavior (P less than 0.01), relative to controls. Atoxyl-treated voles also showed significantly less thigmotaxis (wall-hugging) than the control animals (P less than 0.01). In general, changes in spontaneous behavior observed in the sodium arsanilate-treated voles were consistent with the presence of postural and balance abnormalities and a redirecting of exploratory vertical movements toward horizontal locomotion to the extent that these animals were clearly hyperactive in this dimension. The multivariate behavioral assessment available in the Digiscan Activity Monitoring system, thus seems to be especially useful in the examination of behavioral components affected by vestibular dysfunction.  相似文献   

6.
Stimulation of gastric vagal afferents by systemic administration of cholecystokinin octapeptide (CCK) inhibits gastric motility, reduces food intake, and stimulates pituitary secretion of oxytocin and adrenocorticotropic hormone in rats. To characterize further the central neurol circuits responsible for these effects, the present study used triple-labeling immunocytochemical methods to determine whether or not exogenous CCK activates cFos expression in catecholaminergic neurons in the caudal medulla that project to the paraventricular nucleus of the hypothalamus (PVN). To identify these neurons, the retrograde tracer fluorogold (FG) was iontophoresed into the PVN of anesthetized rats under stereotaxic guidance. After 2 weeks, rats were injected with CCK (100 μg/kg, i. p.) and then anesthetized and killed 1 hour later by perfusion fixation. Medullary sections were processed for triple immunocytochemical localization of cFos, retrogradely transported FG, and tyrosine hydroxylase (TH). In rats with FG injections centered in the PVN (n = 10), approximately 70% of the FG-labeled neurons in the caudal nucleus of the solitary tract (NST) and ventrolateral medulla (VLM) expressed cFos. Of these activated PVN-projecting neurons, approximately 78% in the NST and 89% in the VLM were catecholaminergic (TH positive). These results indicate that PVN-projecting catecholaminergic neurons within the caudal medulla are activated by periph eral administration of CCK, further implicating these ascending catecholaminergic path ways in the neuroendocrine, physiological, and behavioral effects produced by gastric vagal stimulation. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Parkinson’s disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson’s disease in patients who were active during life.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) is associated with cardiovascular regulation. Exercise increases plasma BDNF and attenuates activation of central pathways in the PVN and RVLM post myocardial infarction (MI). The present study assessed whether MI alters BDNF-TrkB signaling and intracellular factors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt in the PVN and RVLM of male Wistar rats with or without exercise or treatment with the TrkB blocker ANA-12. A 4-week period of treadmill exercise training was performed in MI rats. A separate experiment was conducted with 2.5 mg/kg ANA-12 in sedentary MI rats. At 5 weeks post MI, in both the PVN and RVLM, the ratio of full-length TrkB (TrkB.FL) and truncated TrkB (TrkB.T1) was decreased. 0.5 mg/kg ANA-12 did not affect BDNF-TrkB signaling and cardiac function post MI, but 2.5 mg/kg ANA-12 further decreased ejection fraction (EF). Exercise increased mature BDNF (mBDNF) and decreased Akt activity in the PVN, whereas in the RVLM, exercise did not affect mBDNF but lowered p-CaMKIIβ. ANA-12 prevented the exercise-induced increase in mBDNF in the PVN and decrease in p-CaMKIIβ in the RVLM. In conclusion, exercise decreases Akt activity in the PVN and decreases p-CaMKIIβ in the RVLM post MI. BDNF-TrkB signaling only mediates the decrease in p-CaMKIIβ in the RVLM. The exercise-induced decreases in Akt activity in the PVN and p-CaMKIIβ in the RVLM may contribute to the attenuation of the decrease in EF and sympathetic hyperactivity post MI.  相似文献   

9.
Liver abnormalities have been reported to occur in up to 20 % of patients on a long-term therapy with the tricyclic antidepressant drug imipramine (IMI). The mechanism involved in this IMI-induced process is unknown but a contribution of oxidative stress is highly likely. Chronic mild stress (CMS) is widely used for modeling depressive-like behavior in rats. In the present study, we examined the effects of CMS and chronic IMI treatment, applied alone or in combination, on the levels of oxidative stress markers, such as reactive oxygen species (ROS), malondialdehyde (MDA), non-protein sulfhydryl groups, and sulfane sulfur as well as on activities of key antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase in the rat liver. Administration of IMI for 5 weeks to rats subjected to CMS resulted in a gradual significant reduction of anhedonia measured by sucrose intake, in a majority of animals (CMS IMI-reactive, CMS IMI-R), although about 20 % of rats did not respond to the IMI treatment (CMS IMI non-reactive, CMS IMI-NR). CMS-induced hepatic oxidative stress, estimated by increased ROS and MDA concentrations, was not prevented by the IMI administration, moreover, in CMS IMI-NR animals, the level of the marker of lipid peroxidation, i.e., MDA was increased in comparison to CMS-subjected rats and activity of antioxidant enzymes (GPx and CAT) was decreased compared to IMI-treated rats. The clinical significance of this observation remains to be established.  相似文献   

10.
Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, resulting in accumulated loss of cognitive, sensory, and motor function. This study evaluates the neuropathological effects of voluntary exercise in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Two groups of C57BL/6J mice were injected with an emulsion containing myelin oligodendrocyte glycoprotein and then randomized to housing with a running wheel or a locked wheel. Exercising EAE mice exhibited a less severe neurological disease score and later onset of disease compared with sedentary EAE animals. Immune cell infiltration and demyelination in the ventral white matter tracts of the lumbar spinal cord were significantly reduced in the EAE exercise group compared with sedentary EAE animals. Neurofilament immunolabeling in the ventral pyramidal and extrapyramidal motor tracts displayed a more random distribution of axons and an apparent loss of smaller diameter axons, with a greater loss of fluorescence immunolabeling in the sedentary EAE animals. In lamina IX gray matter regions of the lumbar spinal cord, sedentary animals with EAE displayed a greater loss of α‐motor neurons compared with EAE animals exposed to exercise. These findings provide evidence that voluntary exercise results in reduced and attenuated disability, reductions in autoimmune cell infiltration, and preservation of axons and motor neurons in the lumbar spinal cord of mice with EAE. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
An objective measure for the assessment of exercise and sedentary activity choices was evaluated for reliability in 38 sedentary women, aged 18-45, in El Paso, TX. Twenty-two Hispanic women and 16 Anglo women participated. An equal number of obese and nonobese women comprised each group of participants. Using five computer-generated slot machine games, participants were allowed to earn points for access to a bicycle/stair stepper or videos/magazines. Exercise alternatives remained easily accessible while the sedentary choices became progressively difficult to access. Two sessions were completed at least 2 weeks apart for reliability. Reliability for choosing to be physically active from session to session was rI = .83 for all participants, rI = .90 for Hispanics, and rI = .74 for Anglos. Hispanic women earned twice the number of points for access to exercise (m = 20 +/- 2; 40% of the available points) as Anglo women (m = 10 +/- 3; 20% of the available points), independent of body mass index (BMI) or socioeconomic status (SES). Hispanic women's choices to exercise were independent of acculturation level; however, Hispanic women of higher SES and lower BMI chose to exercise more than Hispanic women of lower SES and higher BMI. Hispanic women may find exercise more reinforcing than Anglo women, which has important implications for exercise interventions. In addition, results indicated that self-reported liking and enjoyment of exercise were not related to the choice to actually engage in exercise. The behavioral economic methods presented in this study provide preliminary results to support the use of an objective, reliable method to assess the determinants of exercise and sedentary activity choices in sedentary, Hispanic and Anglo women.  相似文献   

12.
Exercise showed the beneficial effects on mental health in depressed sufferers, whereas, its underlying mechanisms remained unresolved. This study utilized the chronic unpredictable stress (CNS) animal model of depression to evaluate the effects of exercise on depressive behaviors and spatial performance in rats. Furthermore, we tested the hypothesis that the capacity of exercise to reverse the harmful effects of CNS was relative to the hypothalamo-pituitary-adrenal (HPA) system and brain-derived neurotrophic factor (BDNF) in the hippocampus. Animal groups were exposed to CNS for 4 weeks with and without access to voluntary wheel running. Stressed rats consumed significantly less of a 1% sucrose solution during CNS and exhibited a significant decrease in open field behavior. On the other hand, they showed impaired spatial performance in Morris water maze test 2 weeks after the end of CNS. Further, CNS significantly decreased hippocampal BDNF mRNA levels. However, voluntary exercise improved or even reversed these harmful behavioral effects in stressed rats. Furthermore, exercise counteracted a decrease in hippocampal BDNF mRNA caused by CNS. In addition, we also found that CMS alone increased circulating corticosterone (CORT) significantly and decreased hippocampal glucocorticoid receptor (GR) mRNA. At the same time, exercise alone increased CORT moderately and did not affect hippocampal GR mRNA levels. While, when both CNS and exercise were combined, exercise reduced the increase of CORT and the decrease of GR caused by CMS. The results demonstrated that: (1) exercise reversed the harmful effects of CNS on mood and spatial performance in rats and (2) the behavioral changes induced by exercise and/or CNS might be associated with hippocampal BDNF levels, and in addition, the HPA system might play different roles in the two different processes.  相似文献   

13.
The cellular organization of the paraventricular nucleus (PVN) is complex and eight distinct regions have been identified by Nissl staining. Three consist of magnocellular neurons and five of parvocellular neurons. Ibotenic acid, a glutamate analogue, is a toxin with neuroexcitatory properties which acts on N-methyl-D-aspartate and metabotropic receptors. Depending on the dose used, ibotenic acid causes extensive damage of parvocellular neurons of the paraventricular nucleus but preserves magnocellular neurons and passage fibers, in contrast to electrolytic lesions, which causes diffuse and nonspecific destruction. We studied the prolactin (PRL) and corticosterone secretion in response to acute stress induced by exposure to the ether, 3 weeks after selective neurotoxic lesion of parvocellular neurons of the paraventricular nucleus by microinjection of ibotenic acid. There was no significant difference in the basal levels of PRL and corticosterone between control and lesioned animals. The plasma PRL increased in the sham and lesioned groups after stress of similar manner. However, the increase in plasma corticosterone in response to stress was significantly higher in lesioned animals. In conclusion, the selective lesion of parvocellular neurons of the PVN did not change basal or stress induced PRL secretion but it caused hypersensitivity of the hypothalamus-pituitary-adrenal axis 3 weeks later, probably by corticotropin releasing hormone (CRH) from hypothalamic areas others than parvocellular neurons of the PVN; hypersensitivity of corticotropes to the secretagogues others than CRH; or hyperresponsiveness of AVP receptors in the adenohypophysis. Furthermore, we cannot rule out a putative inhibitory factor of the hypothalamus-pituitary axis produced by parvocellular neurons of the PVN. This factor modulator of corticotropin secretion could be absent after recuperation of the response of the hypothalamus-pituitary axis to the stress.  相似文献   

14.
Chronic mild stress (CMS) in rats is an established rodent depression model. Antidepressants attenuate the depression-like symptoms and prevent the biochemical changes caused by stress. In the present study, we examined the effect of CMS and the selective norepinephrine reuptake inhibitor (NRI) reboxetine (REB) treatment on behavioral parameters in rats and on hippocampal and cortical neurotrophic factors. Male Sprague Dawley rats were exposed for 5 weeks to a variety of mild stressors. REB (5 mg/kg/i.p.) was daily injected to half of the stressed and unstressed groups. Animal behavior following CMS was tested using the Morris Water Maze (MWM) cognitive paradigm and by monitoring sucrose intake and weight gain. After 5 weeks of CMS, stressed rats showed decreased sucrose intake, and REB treatment normalized this decrease. CMS reduced hippocampal brain-derived neurotrophic factor (BDNF) levels, and REB treatment reversed this alteration and increased BDNF receptor (TrkB) levels. REB elevated hippocampal extracellular signal-regulated kinase (ERK) phosphorylation of both stressed and unstressed rats. In conclusion, our study shows that BDNF, its receptor TrkB, and ERK participate in the neurobiological response to chronic stress and in the molecular and cellular activities of REB in the hippocampus.  相似文献   

15.
The present study was designed to investigate the modulation of the stress responses by the environmental conditions and its putative neurobiological mechanisms. For that an integrative study on the effects of environmental enrichment and isolation housing on (1) the corticosterone, dopamine and acetylcholine responses to acute restraint stress in the prefrontal cortex (PFC) of the awake rat; (2) the mRNA levels of glucocorticoid receptors (GRs) in the PFC, and (3) the behavioral responses to stress, related to the PFC (habituation to a novel environment, spatial-working memory and inhibitory avoidance response) was performed. Male Wistar rats were maintained from 3 to 6 months of age in two different conditions: enriched (EC) or impoverished (IC). Animals were stereotaxically implanted with bilateral guide cannulae in the PFC to perform microdialysis experiments to evaluate the concentrations of corticosterone, dopamine and acetylcholine. EC animals showed lower increases of corticosterone and dopamine but not of acetylcholine than IC animals in the PFC in response to acute restraint stress (20 min). In the PFC, GR mRNA levels showed a trend towards an enhancement in EC animals. EC reduced the days to learn the spatial working memory task (radial-water maze). Spatial working memory, however, was not different between groups in either basal or stress conditions. Inhibitory avoidance response was reduced in EC rats. The changes produced by EC in the neurochemical, neuroendocrine and behavioral parameters evaluated suggest that EC rats could show a better coping during an acute stress challenge.  相似文献   

16.
Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (ACE) participate in neurohumoral and behavioral responses to stress. To understand better the central regulation of CRH, the present study assessed the effects of ipsilateral surgical hemisection of the brainstem on expression of CRH mRNA in the PVN and the ACE. In situ hybridization was used to demonstrate PVN CRH mRNA expression in hemisected, sham-operated or intact rats before and after 3  h of immobilization (IMMO). In addition, hypothalamic-pituitary-adrenocortical (HPA) axis activity at baseline and during IMMO was assessed by measurements of plasma concentrations of ACTH and corticosterone. IMMO markedly increased CRH mRNA expression in the PVN in all experimental groups. Rats with brainstem hemisections had lower PVN CRH mRNA expression ipsilateral to the lesion and markedly blunted responses after IMMO, compared to values in sham-operated rats. In contrast, neither hemisection nor IMMO affected CRH mRNA expression in the ACE. Lesioned and SHAM-operated groups did not differ in baseline or IMMO-induced increases in plasma ACTH or corticosterone levels. The present results indicate that baseline levels and IMMO-induced increments in CRH mRNA expression in the PVN, but not in the ACE, depend on ipsilaterally ascending medullary tracts and that IMMO-induced HPA activation does not depend on these pathways.  相似文献   

17.
Significant prior evidence indicates that centrally acting oxytocin robustly modulates stress responsiveness and anxiety‐like behaviour, although the neural mechanisms behind these effects are not entirely understood. A plausible neural basis for oxytocin‐mediated stress reduction is via inhibition of corticotrophin‐releasing hormone (CRH) neurones in the paraventricular nucleus of the hypothalamus (PVN) that regulate activation of the hypothalamic‐pituitary‐adrenal axis. Previously, we have shown that, following s.c. injection of 2.0 mol L?1 NaCl, oxytocin synthesising neurones are activated in the rat PVN, an oxytocin receptor (Oxtr)‐dependent inhibitory tone develops on a subset of parvocellular neurones and stress‐mediated increases in plasma corticosterone levels are blunted. In the present study, we utilised transgenic male CRH‐reporter mice to selectively target PVN CRH neurones for whole‐cell recordings. These experiments reveal that acute salt loading produces tonic inhibition of PVN CRH neurones through a mechanism that is largely independent of synaptic activity. Further studies reveal that a subset of CRH neurones within the PVN synthesise mRNA for Oxtr(s). Salt induced Oxtr‐dependent inhibitory tone was eliminated in individual PVN CRH neurones filled with GDP‐β‐S. Additional electrophysiological studies suggest that reduced excitability of PVN CRH neurones in salt‐loaded animals is associated with increased activation of inwardly rectifying potassium channels. Nevertheless, substantial effort to recapitulate the core effects of salt loading by activating Oxtr(s) with an exogenous agonist produced mixed results. Collectively, these results enhance our understanding of how oxytocin receptor‐mediated signalling modulates the function of CRH neurones in the PVN.  相似文献   

18.
Two experiments were performed to investigate the effects of physical exercise upon the hypokinesia induced by two different types of MPTP administration to C57/BL6 mice. In the first, mice were administered either the standard MPTP dose (2 × 20 or 2 × 40 mg/kg, 24-h interval) or vehicle (saline, 5 ml/kg); and over the following 3 weeks were given daily 30-min period of wheel running exercise over five consecutive days/week or placed in a cage in close proximity to the running wheels. Spontaneous motor activity testing in motor activity test chambers indicated that exercise attenuated the hypokinesic effects of both doses of MPTP upon spontaneous activity or subthreshold l-Dopa-induced activity. In the second experiment, mice were either given wheel running activity on four consecutive days (30-min period) or placed in a cage nearby and on the fifth day, following motor activity testing over 60 min, injected with either MPTP (1 × 40 mg/kg) or vehicle. An identical procedure was maintained over the following 4 weeks with the exception that neither MPTP nor vehicle was injected after the fifth week. The animals were left alone (without either exercise or MPTP) and tested after 2- and 4-week intervals. Weekly exercise blocked, almost completely, the progressive development of severe hypokinesia in the MPTP mice and partially restored normal levels of activity after administration of subthreshold l-Dopa, despite the total absence of exercise following the fifth week. In both experiments, MPTP-induced loss of dopamine was attenuated by the respective regime of physical exercise with dopamine integrity more effectively preserved in the first experiment. The present findings are discussed in the context of physical exercise influences upon general plasticity and neuroreparative propensities as well as those specific for the nigrostriatal pathway.  相似文献   

19.
We examined the effects of chronic activity wheel running on brain monoamines and latency to escape foot shock after prior exposure to uncontrollable, inescapable foot shock. Individually housed young (∼50 day) female Sprague-Dawley rats were randomly assigned to standard cages (sedentary) or cages with activity wheels. After 9–12 weeks, animals were matched in pairs on body mass. Activity wheel animals were also matched on running distance. An animal from each matched pair was randomly assigned to controllable or uncontrollable inescapable foot shock followed the next day by a foot shock escape test in a shuttle box. Brain concentrations of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), and 5-hydroxyindole acetic acid (5-HIAA) were assayed in the locus coeruleus (LC), dorsal raphe (DR), central amygdala (AC), hippocampus (CA1), arcuate nucleus, paraventricular nucleus (PVN), and midbrain central gray. After prior exposure to uncontrollable foot shock, escape latency was reduced by 34% for wheel runners compared with sedentary controls. The shortened escape latency for wheel runners was associated with 61% higher NE concentrations in LC and 44% higher NE concentrations in DR compared with sedentary controls. Sedentary controls, compared with wheel runners, had 31% higher 5-HIAA concentrations in CA1 and 30% higher 5-HIAA concentrations in AC after uncontrollable foot shock and had 28% higher 5-HT and 33% higher 5-HIAA concentrations in AC averaged across both foot shock conditions. There were no group differences in monoamines in the central gray or in plasma prolactin or ACTH concentrations, despite 52% higher DA concentrations in the arcuate nucleus after uncontrollable foot shock and 50% higher DOPAC/DA and 17% higher 5-HIAA/5-HT concentrations in the PVN averaged across both foot shock conditions for sedentary compared with activity wheel animals. The present results extend understanding of the escape-deficit by indicating an attenuating role for circadian physical activity. The altered monoamine levels suggest brain regions for more direct probes of neural activity after wheel running and foot shock.  相似文献   

20.
The humoral response and the role of catecholamines and corticosterone were analyzed in a chronic mild stress (CMS) model of depression. Mice subjected for more than 6 weeks to CMS showed a significant decrease in T-cell dependent antibody production. However, T-cell independent humoral response was not altered. Serum corticosterone levels and splenic norepinephrine (NE) contents showed an early increase but they were not altered after prolonged CMS exposure. Nevertheless, hormonal inhibitory effect on T lymphocyte reactivity was higher in 6-week CMS mice compared to non-exposed animals. Thus, our results suggest that the impaired T-cell dependent humoral response in a CMS model of depression is neither related to changes in glucocorticoids nor in NE levels but is correlated with an increment of T-cell sensitivity to stress hormones. These findings would underlie the involvement of catecholamines and glucocorticoid lymphocyte receptors in the immune alterations observed in stress and depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号