首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
5.
The 3'-fluoro-and 3'-azido-substituted derivatives of 2',3'-dideoxythymidine (ddThd), 2',3'-dideoxyuridine (ddUrd), 2',3'-dideoxy-5-ethyluridine (ddEtUrd) and 2',3'-dideoxycytidine (ddCyd) have been synthesized and evaluated for their anti-retrovirus activity [against human immunodeficiency virus (HIV) and murine Moloney sarcoma virus (MSV)]. Based on their 50% effective doses the most potent inhibitors of HIV replication in human MT4 lymphocytes were: FddThd (0.001 microM), AzddThd (0.004 microM), FddUrd (0.04 microM) and AzddUrd (0.36 microM). Their selectivity indexes were 197, 5000, 500 and 677, respectively. In contrast, none of the 3'-substituted ddEtUrd derivatives had a marked antiviral effect. The 2',3'-dideoxynucleoside analogues showed poor, if any, substrate affinity for (bacterial) dThd phosphorylase. AzddThd and FddThd inhibited human dThd kinase to a much greater extent (Ki/Km: 0.66 and 3.4, respectively) than did AzddUrd or FddUrd (Ki/Km: 71 and 171, respectively). The Ki/Km values of FddCyd and AzddCyd for human dCyd kinase were about 60. Although phosphorylation is a prerequisite for the anti-retrovirus activity of the 2',3'-dideoxynucleoside derivatives, there is no close correlation between the anti-retrovirus potency of the 3'-fluoro- and 3'-azido-substituted ddUrd, ddThd, ddEtUrd and ddCyd derivatives and their affinity for dThd kinase or dCyd kinase.  相似文献   

6.
A series of 2',3'-didehydro-2',3'-dideoxyribonucleosides (ddeNs) [i.e., 2',3'-dideoxythymidinene (ddeThd), 2',3'-dideoxyuridinene (ddeUrd), 2',3'-dideoxycytidinene (ddeCyd), and 2',3'-dideoxyadenosinene (ddeAdo)] has been synthesized and the individual members compared in terms of their in vitro antiviral, antimetabolic, and cytostatic properties to their 2',3'-saturated counterparts (ddNs) (i.e., ddThd, ddUrd, ddCyd and ddAdo). All ddeNs except ddeUrd are potent and/or selective inhibitors of human immunodeficiency virus (HIV) in vitro, ddeCyd being the most potent (MIC50, 0.30 microM). The inhibitory effect of ddeCyd on ATH8 cell proliferation and HIV-induced cytopathogenicity is comparable to that of ddCyd. ddeThd is a more potent anti-HIV agent than ddThd (MIC50, 3.4 microM and 84 microM, respectively), but also more cytostatic (ID50, 172 microM and greater than 2000 microM, respectively). However, its in vitro chemotherapeutic index is higher than that of 3'-azido-2',3'-dideoxythymidine, a drug which has recently proven effective in the treatment of acquired immunodeficiency syndrome. ddeAdo has a weaker anti-HIV and a stronger cytostatic effect than ddAdo. Neither ddeUrd nor ddUrd shows significant anti-retroviral activity at 500 microM. In contrast to their anti-retroviral activity, both ddNs and ddeNs lack any appreciable inhibitory activity against a series of nononcogenic RNA and DNA viruses, pointing to their selectivity as anti-retroviral agents. All ddeNs show a progressive loss of anti-retroviral effect upon prolonged incubation with virus-infected cells. This phenomenon is most likely due to the chemical instability of these compounds, and not to a preferential enzymatic phosphorolytic cleavage of the ddeNs. Evidence is presented that ddeCyd and ddCyd, and ddeThd and ddThd are phosphorylated by cellular dCyd kinase and dThd kinase, respectively. However, the Ki values as alternate substrate inhibitors for their respective kinases are high (greater than 500 microM), indicating poor substrate activity and, thus, poor anabolism in ATH8 cells.  相似文献   

7.
8.
9.
The carbocyclic analog of 2'-deoxyguanosine (CdG) is active against herpes simplex virus (HSV), human cytomegalovirus, and human hepatitis-B virus. In order to understand the mechanism of action of this compound against HSV, we have evaluated (a) the incorporation of [3H]CdG into viral and host DNA in HEp-2 cells infected with HSV and (b) the interaction of the 5'-triphosphate of CdG (CdG-TP) with the HSV DNA polymerase and human DNA polymerases alpha, beta, and gamma (EC 2.7.7.7). Incubation of HSV-1-infected HEp-2 cells with [3H]CdG resulted in the incorporation of CdG into both the HSV and the host cell DNA. These results indicated that CdG-TP was used as a substrate for HSV DNA polymerase and for at least one of the cellular DNA polymerases. Degradation of both viral and host DNA with micrococcal nuclease and spleen phosphodiesterase indicated that CdG was incorporated primarily into internal positions in both DNAs. The viral DNA containing CdG sedimented in neutral and alkaline sucrose gradients in the same way as did viral DNA labeled with [3H]thymidine, indicating that the HSV DNA containing CdG was similar in size to untreated HSV DNA. CdG-TP was a competitive inhibitor of the incorporation of dGTP into DNA by the HSV DNA polymerase (Ki of 0.35 microM) and the human DNA polymerase alpha (Ki of 1 microM). CdG-TP was not a potent inhibitor of either DNA polymerase beta or gamma. Using DNA-sequencing technology, CdG-TP was found to be an efficient substrate for HSV DNA polymerase. Incorporation of CdG monophosphate (CdG-MP) into the DNA by HSV DNA polymerase did not interfere with subsequent chain extension. These results suggested that the antiviral activity of CdG was due to its incorporation into the DNA and subsequent disruption of viral functions. In contrast, CdG-TP was not as good as dGTP as a substrate for DNA synthesis by DNA polymerase alpha, and incorporation of CdG-MP by DNA polymerase alpha inhibited further DNA chain elongation.  相似文献   

10.
11.
12.
13.
In order to understand further the molecular mode of action of 5-Aza-2'-deoxycytidine (5-AZA-dCyd), a potent antileukemic agent, we prepared enzymatically 5-Aza-2'-deoxycytidine 5'-triphosphate (5-AZA-dCTP) and performed studies with purified DNA polymerase alpha and DNA methylase from mammalian cells. DNA polymerase alpha catalyzed the incorporation of 5-AZA-dCTP into DNA. The apparent Km value for 5-AZA-dCTP was estimated to be 3.0 microM; the Km of dCTP was 2.0 microM. The apparent Vmax of 5-AZA-dCTP was slightly lower than that for dCTP. 5-AZA-dCTP was a weak competitive inhibitor (Ki 4.3 microM) with respect to dCTP. Template studies with 5-AZA-dCTP showed that this nucleotide analogue was incorporated into poly(dIC), but not into poly(dAT), suggesting that the incorporation follows the rules of Watson-Crick base pairing. Incorporation of 5-AZA-dCTP into hemimethylated DNA produced a significant inhibition of DNA methylase. These results show that 5-AZA-dCTP is a very good substrate for DNA polymerase alpha and that its incorporation into DNA inhibits DNA methylation.  相似文献   

14.
The inhibitory effect of (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) 5'-triphosphate on varicella zoster virus (VZV) DNA polymerase was studied using the parent strain (TK+-VZV) and the mutant strain (TK--VZV). The mutant strain was deficient in thymidine kinase (TK)-inducing activity and resistant to BVDU. In the absence of BVDU, TK--VZV and TK+-VZV induced an equivalent level of viral DNA polymerase activity in human embryo fibroblasts. In the presence of 5 microM BVDU, TK--VZV still induced viral DNA polymerase activity, whereas TK+-VZV failed to do so. BVDU 5'-triphosphate (BVDUTP) was considerably more inhibitory to the TK+- and TK--VZV DNA polymerases than to the cellular DNA polymerases. There were no significant differences in the affinity for dTTP as substrate and the sensitivity to BVDUTP as inhibitor between the TK+- and TK--VZV DNA polymerases. The Km value for dTTP and the Ki value for BVDUTP of the VZV DNA polymerases were 1.43 microM and 0.55 microM, respectively. The inhibitory effect of BVDUTP to VZV DNA polymerase was competitive with respect to the natural substrate.  相似文献   

15.
16.
17.
18.
19.
Long-term use of 3'-azido-3'-deoxythymidine (AZT) is associated with various tissue toxicities, including hepatotoxicity and cardiomyopathy, and with mitochondrial DNA depletion. AZT-5'-triphosphate (AZTTP) is a known inhibitor of the mitochondrial DNA polymerase gamma and has been targeted as the source of the mitochondrial DNA depletion. However, in previous work from this laboratory with isolated rat heart and liver mitochondria, AZT itself was shown to be a more potent inhibitor of thymidine phosphorylation (IC50 of 7.0+/-1.0 microM AZT in heart mitochondria and of 14.4+/-2.6 microM AZT in liver mitochondria) than AZTTP is of polymerase gamma (IC50 of >100 microM AZTTP), suggesting that depletion of mitochondrial stores of TTP may limit replication and could be the cause of the mitochondrial DNA depletion observed in tissues affected by AZT toxicity. The purpose of this work is to characterize the nature of AZT inhibition of thymidine phosphorylation in isolated rat heart and rat liver mitochondria. In both of these tissues, AZT was found to be a competitive inhibitor of the phosphorylation of thymidine to TMP, catalyzed by thymidine kinase 2. The inhibition constant (Ki) for heart mitochondria is 10.6+/-4.5 microM AZT, and for liver mitochondria Ki is 14.0+/-2.5 microM AZT. Since AZT is functioning as a competitive inhibitor, increasing thymidine concentrations may be one mechanism to overcome the inhibition and decrease AZT-related toxicity in these tissues.  相似文献   

20.
The silylated AzddThd 5 and AzddUrd 6 prepared from 2,3'-anhydronucleoside derivatives 3 and 4 were transformed to formamides 7 and 8 by using the sequence RN3----RN = P(C6H5)----RNHCHO. Formamides 7 and 8 were dehydrated to the protected 3'-isocyano derivatives 9 and 10; deblocking gave 11 and 12. Neither 3'-isocyano-3'-deoxythymidine (11) nor 3'-isocyano-2',3'-dideoxyuridine (12) showed anti-HIV activity at noncytotoxic concentrations. ddThd derivative 11 was considerably more toxic to MT-4 cells than ddUrd derivative 12; it also had a much greater affinity (Ki) for MT-4 cell dThd kinase than ddUrd derivative 12. Both compounds appear to be linear mixed-type inhibitors of MT-4 cell dThd kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号