首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 968 毫秒
1.
目的:研究剂量率和准直器角度对二维电离室矩阵调强验证Gamma通过率的影响。方法:使用PTw二维电离室矩阵对2组36例测试病例进行验证。两组病例分别对应不同剂量率组和不同准直器角度组,比较不同的剂量率(100cGy/min-600Gy/min的整百剂量率)和准直器角度对3%、3mm标准Gamma分析的影响。结果:本研究中6档剂量率两两配对共计15对,配对t检验结果中,除了200和500这一对t=-3.68,P〈0.05,有统计学差异,其余14对配对t检验结果均为P〉0.05,无统计学差异;不同的准直器角度Gamma通过率配对t检验结果t=-15.582,P〈0.05,有统计学差异。结论:不同的剂量率对二维电离室矩阵调强验证Gamma通过率无明显影响,不同的准直器角度对二维电离室矩阵调强验证Gamma通过率有明显的影响.制订治疗计划时适当的调整准直器角度,使不同射野的准直器角度互不相同能够明显提高调强验证的通过率。  相似文献   

2.
目的:研究ArcCheck验证系统在鼻咽癌容积旋转调强剂量验证中的应用。在病人接受放射治疗之前,进行容积调强计划的验证,使其满足计划设计要求。保证患者实际照射中接受到准确的剂量,确保治疗的安全。方法:选择34例鼻咽癌病例用热塑型体部网罩固定,CT扫描定位,将计划CT传到Pinnacle计划系统(9.2版本)中进行容积旋转调强治疗计划设计,然后将设计好的计划传输至MOSAIQ网络系统上。同时把治疗计划导入ArcCheck模体中重新新型剂量计算。在验证之前,对Arccheck系统进行本底校准,矩阵校准,绝对剂量校准。分析方法采用的是Gamma方法在ArcCHECK自带软件中对治疗计划系统中计算的结果和实际测量的结果二者的差异,阈值标准选择3%,3mm,10%。采用微软Excel2003数据统计软件。结果:Gamma分析方法相对量通过率97.9%,绝对量通过率为95.9%;实测剂量分布图与理论计算剂量分布图在高低剂量点分布上重合很好;另外X方向和Y方向的平坦度,实测结果与计算结果很接近。结论:ArcCheck验证系统在鼻咽癌容积旋转剂量验证中是可行的。它是一种方便快捷准确的旋转调强剂量验证方法。  相似文献   

3.
目的:调强计划在用于病人治疗之前必须要进行剂量学验证,以此确保调强计划各个射野出束剂量的精确度以及测量层面平面剂量分布的精确度。本文探讨逆向调强适形放射治疗过程中的剂量学验证,分析影响剂量验证结果的因素,采取相应措施消除影响,保证IMRT治疗计划临床实施的正确性。方法:选取30例需要做验证的调强计划,将计划移植至标准水模体上生成QA计划并在TPS上计算出测量平面的剂量分布,然后将计划导入MOSAIQ,ELEKTA Precise加速器执行QA计划,用PTW729二维电离室矩阵进行平面剂量验证,收集数据经矩阵扫描软件Matri Scan读出二维电离室矩阵收集的信息传递至Veri Soft软件中,对比剂量分布图得出计划通过率。结果:PTW729二维电离室矩阵能够测量照射野的剂量分布和强度分布,能够对逆向调强计划进行准确的剂量学验证,得出平面剂量验证的通过率与MLC叶片到位精准度和计划的子野面积有明确关系。结论 :利用PTW729二维电离室矩阵可以极大地简化验证工作量,提高验证的效率。  相似文献   

4.
插值对二维电离室矩阵调强验证Gamma通过率的影响   总被引:1,自引:0,他引:1  
目的:研究插值对二维电离室矩阵调强验证Gamma通过率的影响。材料和方法:使用IBA二维电离室矩阵对8例调强计划56个射野进行验证。验证中分别使用矩阵固有间隔、线性1 mm间隔插值、三次样条函数1 mm和2 mm间隔插值将测量结果和计划输出进行Gamma分析。比较不同插值方法对3 mm,3%标准Gamma分析的影响。结果:本研究中,电离室矩阵固有间隔(无插值)的Gamma通过率最高,进行样条函数插值后的通过率其次,进行线性插值后的验证通过率最低。结果具有统计学意义(P〈0.01)。样条函数插值间隔对Gamma通过率的影响无统计差异。结论:插值后调强验证的Gamma通过率将显著下降,不同插值方法的影响有显著差异。本研究提示,调强验证的Gamma通过率与多种条件相关,放疗单位不宜直接使用文献资料确定本单位的Gamma通过率标准。  相似文献   

5.
目的:应用Sun Nuclear公司的MapCheck二维半导体阵列对Varian Clinical 23EX加速器固定剂量率旋转调强计划进行验证。方法:随机选择10例肺部肿瘤患者和10例直肠肿瘤患者,使用Ray Station计划系统在Varian Clinical 23EX加速器上制定固定剂量率旋转调强计划,其中肺部患者使用182°到178°及其对偶的两个6 MV能量的治疗弧,直肠患者使用230°到130°及其对偶的两个10 MV能量的治疗弧,剂量率均为200 MU/min。使用MapCheck在治疗床上水平放置测量冠状面的剂量分布,竖直放置测量矢状面的剂量分布,分别评估每个放疗计划在冠状面和矢状面的剂量验证通过率。结果:使用(3 mm,3%)标准,肺部6 MV计划的DTA和Gamma通过率为(95.03±2.91)%和(96.82±2.40)%,直肠10 MV计划的DTA和Gamma通过率为(95.30±4.05)%和(97.48±2.78)%。单个患者计划执行时间约为3 min。结论:使用MapCheck的水平和竖直两种摆位方式进行旋转调强计划的冠状位和矢状位剂量分布验证,或许可以作为Varian Clinical 23EX加速器固定剂量率旋转调强放疗计划验证的可选方法之一。  相似文献   

6.
目的:为确保调强放射治疗的精确,利用自制和专用设备对每个射野的位置、形状和野内剂量分布进行验证。方法:用自制的位置验证标记球,贴在病人体表的某个固定位置,和病人一起进行CT扫描,设计计划时将此标记球设为位置验证靶区进行射野位置验证。利用加速器自带的射野影像系统(EPID)和治疗计划系统(TPS)的DRR图比对进行射野形状验证。利用Matrixx二维电离室矩阵和OnmiPro软件进行每个射野的剂量验证。结果:射野位置验证在统一调整系统后,误差结果满意。射野形状验证以3mm为标准,调整前的吻合率约为75%。剂量验证通过率大于等于95%的射野占77%。结论:通过81例鼻咽癌调强放疗的实验证明,利用上述三种方法对调强计划进行验证,可以及时纠正误差,确保计划准确执行。  相似文献   

7.
目的:实现射野区域剂量分布Gamma([γ])通过率的计算,对治疗传输的准确性进行评估。方法:从Oncentra Masterplan治疗计划系统中随机提取6位完全匿名患者的调强放射治疗验证计划,导出DICOM格式的验证计划并利用Matlab软件重建多叶准直器区域和剂量。然后将验证计划移植到MatriXX模体并测量剂量分布。用Matlab代码对验证计划剂量分布和模体测量的绝对剂量分布进行分析。结果:传统方法[γ]通过率受计算区域选择影响较大,而以射野区域作为计算区域则避免了这个问题,两种方法计算得到的[γ]通过率有统计学差异([P]<0.05)。结论:射野区域的剂量验证避免了[Dn]值对[γ]通过率的影响,而且对射野区域利用剂量面积直方图分析其剂量特性,有利于评估治疗计划系统临床治疗的准确性和指导临床工作。  相似文献   

8.
目的:调强放射治疗的剂量学质量保证是一项较为繁琐的工作.本文主要探讨二维阵列实施螺旋断层凋强计划的剂量学特性,并对其在日常旋转调强放疗质量保证中的地位进行评估及分析.方法:采用Sun Nuclear公司MapCHECK~(TM)二维半导体探测器阵列及其相配套MapPHAN等效固体水模体对10例螺旋断层计划实施其剂量学验证.笔者将MapCHECKrM置于MapPHAN模体中,冠状及矢状位摆放分别测量获取模体中阵列的冠状和矢状面剂量分布.束流照射后将二维阵列剂量测量平面分布与计划系统模体计划中计算平面结果实现比较,定量评估其绝对剂量验证情况.探讨其不同位置摆放来实现其测量方法的可行性.结果:通过利用MapCHECKrM二维半导体阵列采用两种摆位方式对10例特定患者的螺旋断层放疗计划进行剂量学验证,软件定量分析所测量与计算绝对剂量分布的结果均显示出了较为理想的一致性.MapCHECK~(TM)阵列测量剂量分布与螺旋断层治疗计划系统模体计划中计算剂量相比较,采用Gamma法(3mm/3%、4mm/4%)进行评估,γ≤1的冠状和矢状位探测器平均通过率分别为96.8%/99.38%、96.99%/99.49%.建立了3%/3mm(通过率为90%)的Gamma分析推荐标准.结论:MapCHECK~(TM)二维阵列可成功地实现螺旋断层调强计划的剂量学验证,提供了一套精确而快捷的旋转剂量学验证工具.  相似文献   

9.
调强放射治疗剂量验证工具与方法   总被引:3,自引:0,他引:3  
调强放射治疗广泛应用于肿瘤的治疗,其剂量分布在三维方向上与靶区高度适形.然而调强放疗的复杂射野、数据误差、算法误差及机器误差等因素可能会引起较大的剂量偏差,从而造成实际剂量与计划剂量不符,而严重的剂量不符可能会造成不必要的辐射事故.因此鉴于患者安全角度考虑,治疗计划在执行之前通常需要进行剂量验证,以确保患者治疗计划的安全实施,避免计划外的剂量照射.目前,临床上剂量验证的工具与方法有很多,包括指形电离室工具和热释光剂量仪工具等的点剂量验证法、半导体阵列工具和电离室阵列工具以及胶片工具等的二维剂量验证法、ArcCHECK工具和Delta4工具以及第三方软件工具等的三维剂量验证法等,对临床上常见的剂量验证工具和方法进行了综述.  相似文献   

10.
目的:对接受调强放射治疗的鼻咽癌病人进行治疗前的剂量验证.材料和方法:利用电离室,胶片和验证模体对39个接受调强放射治疗的鼻咽癌患者,在治疗开始前进行绝对剂量和相对剂量验证.绝对剂量验证主要在两个位置进行:一个在等中心位置,另一个在离等中心4cm靠进腮腺的位置.相对剂量主要用体模对单野和整个计划的剂量分布进行验证.将得到的剂量分布利用分析软件与计划中的剂量分布进行分析比较.利用剂量偏差(dose difference)、吻合距离(distance to agreement,DTA)、γ指数等参数来测量剂量验证的偏差.结果:中心点和腮腺边上点的平均绝对误差分别为2.70%和3.03%.对于测量感兴趣区域(ROI,region of interested)的相对误差的测量,90%的测量都在设定的标准(3%,3 mm)之内,对于未能达到剂量偏差和间距偏差标准的区域,结合γ分析后一般也可以得到满意的结果.结论:验证结果表明实际测量剂量分布与计划计算的剂量分布符合的相当理想.  相似文献   

11.
目的:探究ArcCHECK模体在旋转容积调强技术(VMAT)计划验证中的应用,并利用软件模拟摆位误差对剂量验证的影响。方法:随机收集45例VMAT计划,分别选取胸部肿瘤、乳腺癌和宫颈癌各15例,将ArcCHECK模体实测的剂量分布与计划系统计算的结果进行对比分析,分别探究在阈值10%下,3%/3 mm和2%/2 mm时,Gamma分析与DTA分析下相对剂量(RD)与绝对剂量(AD)的通过率。利用SUNnuclear公司Sunpatient软件将计划系统计算的剂量分布与实际测量的剂量分布进行对比,并利用软件模拟旋转误差,分别旋转±0.5°、±1°、±1.5°、±2°,将旋转后的剂量分布与计划系统计算剂量分布对比,得到旋转误差下的计划验证通过率;同样利用软件模拟平移误差,分别向X、Y方向平移±1、±2、±3、±5 mm后进行剂量分布对比,得到平移误差下的计划验证通过率。结果:当阈值选择10%、3%/3 mm时,Gamma分析时,RD与AD下各部位的通过率基本达到95%及以上,DTA分析时,RD和AD下各部位的通过率基本达到90%及以上。当阈值选择10%、2%/2 mm时,各部位肿瘤VMAT计划的验证通过率无论在Gamma还是DTA分析时,RD和AD的平均通过率只有80%左右。存在误差时,旋转误差大于等于1°时,各部位肿瘤VMAT计划验证在两种分析方法下通过率的单因素方差分析结果显示P<0.05;X方向和Y方向平移误差大于等于3 mm时,单因素方差分析结果显示P<0.05。结论:ArcCHECK模体能很好地应用于VMAT计划的验证,阈值选择10%、3%/3 mm时,胸部肿瘤、乳腺癌和宫颈癌验证通过率均能达到95%及以上;阈值选择10%、2%/2 mm时通过率均有大幅度下降,仅有80%左右。旋转误差大于等于1°时对计划验证通过率有显著影响,差异具有统计学意义,同样X方向或Y方向平移误差大于等于3 mm时,两种分析方法下的计划验证通过率均有显著差异。  相似文献   

12.
For pre-treatment plan verification of advanced treatment techniques such as intensity-modulated arc therapy, a fast and reliable dosimetric device is required. In this study, we investigated the suitability of MatriXX in different setups for verification of volumetric modulated arc therapy (VMAT) plans. If MatriXX is used in a stationary phantom (MULTICube), the measured dose is dependent on the beam angle. For the first setup (MatriXX/MULTICube), we developed correction factors (CFs) for each detector element (1020 CFs). We investigated the accuracy of these CFs by verifying 12 VMAT plans. In the second setup, we also assessed the suitability of MatriXX in a dedicated holder. Using this setup (MatriXX/Holder), 30 additional VMAT plans were verified. Deviations of up to ~17% and ~11% were noted for one of the ion chambers at 90° and 180° gantry positions. The influence of the beam angle dependence (MULTICube) can explicitly be seen when a gamma criterion of 2%/2 mm was chosen. An overall improvement of 4.3% of passing pixels (pp) was noted after applying beam angular-dependent CFs. When the gamma criterion was 3%/3 mm, the %pp was ≥ 95% without and ~100% with correction. With the second setup, MatriXX/holder, we showed excellent agreement between measurements and calculations. The %pp averaged over all plans (30 VMAT treatment plans) was nearly ~100%. The combination of MatriXX with MULTICube or with holder proved to be a fast and reliable method for pretreatment verification of arc therapy with sufficient accuracy.  相似文献   

13.
目的:研究鼻咽癌容积调强剂量验证γ通过率与计划复杂性之间的相关性。 方法:选取106例鼻咽癌容积调强计划,采用二维电离室矩阵Matrixx进行剂量验证,比较测量的和计划的剂量分布,评价在不同标准(3%/3 mm、3%/2 mm、3%/1 mm、2%/2 mm)下的通过率。采用调强复杂性指数(MCS)定量评价计划的复杂性,并分析计划验证γ通过率与MCS间的关系。 结果:鼻咽癌容积调强计划在3%/3 m、3%/2 mm、3%/1 mm、2%/2 mm标准下的通过率分别为(98.49±0.95)%、(95.92±1.71)%、(89.74±2.44)%、(90.58±2.87)%。计划的平均MCS值为0.210±0.019,与通过率间(3%/3 m、3%/2 mm、3%/1 mm、2%/2 mm标准)的Pearson相关性系数分别为0.333(P<0.001)、0.303(P=0.002)、0.347(P<0.001)、0.267(P=0.006)。 结论:鼻咽癌容积调强计划验证γ通过率与MCS之间有相关性,但相关性较弱。  相似文献   

14.
目的:在调强放射治疗“end to end”质量核查中,探讨应用针尖电离室对调强放射治疗小野照射进行绝对剂量测量的研究。方法:选择3省20家医院,将放有热释光剂量计TLD(距模体表面距离约7.5 cm)和胶片的国际原子能机构(IAEA)模体进行CT扫描,图像导入放射治疗计划系统(TPS)中,设计治疗计划,进行7野等中心调强照射,MLC照射野大小>2 cm×2 cm且<4 cm×4 cm。同时针尖电离室(0.015 cc)放在固体水模体距模体表面7.5 cm下进行点剂量绝对剂量验证:(1)将治疗计划中射野角度归零平移到固体水模体中进行剂量验证;(2)治疗计划射野角度不归零时为实际治疗照射方向,平移到固体水模体中进行绝对剂量验证。结果:在调强放射治疗多叶光栅小野照射的固体水模体中,用针尖电离室测量的绝对剂量与TPS计算得到的绝对剂量比较,7野照射方向归为零度时,比较偏差<5%;实际照射方向时,比较偏差<5%。验证后的计划,在IAEA模体上进行实际7野调强治疗,模体中的高剂量靶区胶片(Gafchromic EBT3 film)绝对剂量通过率均≥90%(Gamma分析:3%, 3 mm),TLD偏差<7%。均符合IAEA提出的标准。结论:在调强放射治疗多叶光栅小野照射时,可以应用针尖电离室作为绝对剂量验证的一个方法。  相似文献   

15.

Purpose:

To evaluate the performance of 2D-array I’mRT MatriXX for dose verification of TomoDirect treatment plans.

Methods:

In this study, a 2D-array ion chamber device – the I’mRT MatriXX and Multicube Phantom from IBA – was used for dose verification of different TomoDirect plans. Pre-treatment megavoltage computed tomography (MVCT) was performed on the phantom setup for position correction. After the irradiation of treatment plans on the I’mRT MatriXX and Multicube Phantom, the measured doses of coronal planes were compared with those from the planning calculations for verification. The results were evaluated by comparing the absolute dose difference in the high dose region as well as the gamma analysis of the 2D-dose distributions on the coronal plane. The comparison was then repeated with the measured dose corrected for angular dependence of the MatriXX.

Results:

When angular dependence is taken into account, the passing rate of gamma analysis is over 90% for all measurements using the MatriXX. If there is no angular dependence correction, the passing rate of gamma analysis worsens for treatment plans with dose contribution from the rear. The passing rate can be as low as 53.55% in extreme cases, i.e. where all doses in the treatment plan are delivered from the rear.

Conclusion:

It is important to correct the measured dose for angular dependence when verifying TomoDirect treatment plans using the MatriXX. If left uncorrected, a large dose discrepancy may be introduced to the verification results.  相似文献   

16.
康盛伟    王培    祁国海    刘操  龚岚  黎杰    肖明勇    唐斌    郎锦义   《中国医学物理学杂志》2020,37(8):945-950
目的:对新型国产二维矩阵剂量验证系统在临床条件下进行测试,检验其是否能够满足临床使用需要。方法:参照GB15213-94对用来检测国产二维矩阵剂量验证系统的医用直线加速器进行检测调整,使其达到国家标准。使用新型国产二维矩阵剂量验证系统,对标准照射野下的绝对剂量重复性,标准照射野下的剂量线性,平坦度、对称性,真实病例放疗计划验证进行测试。结果:标准照射野下的绝对剂量重复性检测,其变异系数小于0.7%,符合测试要求;标准照射野下的剂量线性检测与电离室检测结果相比,无明显差异;平坦度检测±3%以内、对称性检测±2%以内,均满足临床使用要求;真实病例计划验证γ通过率均大于98%,完全满足临床放疗计划验证要求。结论:新型国产二维矩阵剂量验证系统具备点剂量、面剂量测量功能,能够对加速器基本剂量性能进行检测,达到临床使用要求;能够实现放疗计划系统的DICOM数据导入,与实际测量结果比较分析,达到临床计划验证要求。  相似文献   

17.
Two-dimensional ionization chamber arrays for IMRT plan verification   总被引:1,自引:0,他引:1  
In this paper we describe a concept for dosimetric treatment plan verification using two-dimensional ionization chamber arrays. Two different versions of the 2D-ARRAY (PTW-Freiburg, Germany) will be presented, a matrix of 16 x 16 chambers (chamber cross section 8 mm x 8 mm; the distance between chamber centers, 16 mm) and a matrix of 27 x 27 chambers (chamber cross section 5 mm x 5 mm; the distance between chamber centers is 10 mm). The two-dimensional response function of a single chamber is experimentally determined by scanning it with a slit beam. For dosimetric plan verification, the expected two-dimensional distribution of the array signals is calculated via convolution of the planned dose distribution, obtained from the treatment planning system, with the two-dimensional response function of a single chamber. By comparing the measured two-dimensional distribution of the array signals with the expected one, a distribution of deviations is obtained that can be subjected to verification criteria, such as the gamma index criterion. As an example, this verification method is discussed for one sequence of an IMRT plan. The error detection capability is demonstrated in a case study. Both versions of two-dimensional ionization chamber arrays, together with the developed treatment plan verification strategy, have been found to provide a suitable and easy-to-handle quality assurance instrument for IMRT.  相似文献   

18.
目的:通过旋转准直器,研究准直器的旋转对鼻咽癌容积旋转调强(VMAT)计划与剂量验证的影响。方法:选择10名T3期鼻咽癌患者,每位患者分别设计10个VMAT计划,10个VMAT计划准直器角度分别为0°、5°、10°、15°、20°、25°、30°、35°、40°、45°,比较分析不同计划中靶区剂量、危及器官和正常组织的受照剂量以及机器跳数,并对每个计划进行剂量验证。结果:准直器角度为10°的VMAT计划,PGTVnx、PTV1以及PTV2的HI均值最小,CI均值最大(P<0.05)。PGTVnd的HI均值在所有计划中变化不大(P>0.05),CI均值在5°~30°最大(P<0.05)。脑干、脊髓以及眼球Dmax在5°~20°时较小(P<0.05),视交叉和下颌骨Dmax在15°~25°时较小,腮腺V30在35°时最小。靶区外正常组织,在低剂量区V5~V20时,0°和5°受照体积最低,在高剂量区V25~V50,10°最低。在不同的准直器角度,机器跳数平均值最小的是准直器为0°的计划,最大的是30°(P<0.05)。所有计划的γ通过率均在98%以上,其中准直器在20°时通过率最高。结论:在进行鼻咽癌VMAT计划设计时,可以将准直器角度设置在10°~20°来获取更好的靶区剂量分布,减少危及器官以及正常组织的受照剂量,同时不会降低剂量验证的通过率。 【关键词】鼻咽癌;容积旋转调强;准直器角度;剂量验证  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号