首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein L-I (apoL-I) is a human high-density lipoprotein (HDL) component able to kill Trypanosoma brucei brucei by forming anion-selective pores in the lysosomal membrane of the parasite. Another HDL component, haptoglobin-related protein (Hpr), has been suggested as an additional toxin required for full trypanolytic activity of normal human serum. We recently reported the case of a human lacking apoL-I (apoL-I(-/-)HS) as the result of frameshift mutations in both apoL-I alleles. Here, we show that this serum, devoid of any trypanolytic activity, exhibits normal concentrations of HDL-bound Hpr. Conversely, the serum of individuals with normal HDL-bound apoL-I but who lack Hpr and haptoglobin [Hp(r)(-/-)HS] as the result of gene deletion (anhaptoglobinemia) exhibited phenotypically normal but delayed trypanolytic activity. The trypanolytic properties of Hp(r)(-/-)HS were mimicked by free recombinant apoL-I, whereas recombinant Hpr did not affect trypanosomes. The lysis delay observed with either Hp(r)(-/-)HS or recombinant apoL-I could entirely be attributed to a defect in the uptake of the lytic components. Thus, apoL-I is responsible for the trypanolytic activity of normal human serum, whereas Hpr allows fast uptake of the carrier HDL particles, presumably through their binding to an Hp/Hpr surface receptor of the parasite.  相似文献   

2.
Several species of African trypanosomes cause fatal disease in livestock, but most cannot infect humans due to innate trypanosome lytic factors (TLFs). Human TLFs are pore forming high-density lipoprotein (HDL) particles that contain apolipoprotein L-I (apoL-I) the trypanolytic component, and haptoglobin-related protein (Hpr), which binds free hemoglobin (Hb) in blood and facilitates the uptake of TLF via a trypanosome haptoglobin-hemoglobin receptor. The human-infective Trypanosoma brucei rhodesiense escapes lysis by TLF by expression of serum resistance-associated (SRA) protein, which binds and neutralizes apoL-I. Unlike humans, baboons are not susceptible to infection by T. b. rhodesiense due to previously unidentified serum factors. Here, we show that baboons have a TLF complex that contains orthologs of Hpr and apoL-I and that full-length baboon apoL-I confers trypanolytic activity to mice and when expressed together with baboon Hpr and human apoA-I, provides protection against both animal infective and the human-infective T. brucei rhodesiense in vivo. We further define two critical lysines near the C terminus of baboon apoL-1 that are necessary and sufficient to prevent binding to SRA and thereby confer resistance to human-infective trypanosomes. These findings form the basis for the creation of TLF transgenic livestock that would be resistant to animal and human-infective trypanosomes, which would result in the reduction of disease and the zoonotic transmission of human infective trypanosomes.  相似文献   

3.
In individuals with diabetes mellitus (DM), the haptoglobin (Hp) genotype is a major determinant of susceptibility to myocardial infarction. We have proposed that this is because of DM and Hp genotype-dependent differences in the response to intraplaque hemorrhage. The macrophage hemoglobin scavenging receptor CD163 plays an essential role in the clearance of hemoglobin released from lysed red blood cells after intraplaque hemorrhage. We sought to test the hypothesis that expression of CD163 is DM and Hp genotype-dependent. CD163 was quantified in plaques by immunohistochemistry, on peripheral blood monocytes (PBMs) by FACS, and as soluble CD163 (sCD163) in plasma by ELISA. In DM plaques, despite an increase in macrophage infiltration, CD163 immunoreactivity was lower, resulting in a dramatic reduction in the percentage of macrophages expressing CD163 (27+/-2% versus 70+/-2%, P=0.0001). In individuals with DM as compared with individuals without DM, the percentage of PBMs expressing CD163 was reduced (3.7+/-0.6% versus 7.1+/-0.9%, P<0.002) whereas soluble plasma CD163 was increased (2.6+/-1.1 microg/mL versus 1.6+/-0.8 microg/mL, P<0.0005). Among DM individuals, the Hp 2-2 genotype was associated with a decrease in the percentage of PBMs expressing CD163 (2.3+/-0.5% versus 5.6+/-1.3%, P=0.01) and an increase in plasma soluble CD163 (3.0+/-0.2 microg/mL versus 2.3+/-0.2 microg/mL, P=0.04). Taken together, these results demonstrate an impaired hemoglobin clearance capacity in Hp 2-2 DM individuals and may provide the key insight explaining the increased incidence of myocardial infarction in this population.  相似文献   

4.
During intravascular hemolysis hemoglobin (Hb) binds to haptoglobin (Hp) leading to endocytosis of the complex by the macrophage receptor, CD163. In the present study, we used a phage-display Fab antibody strategy to explore if the complex formation between Hp and Hb leads to exposure of antigenic epitopes specific for the complex. By Hp-Hb-affinity screening of a phage-Fab library, we isolated a phage clone against the ligand complex. Surface plasmon resonance analyses of the Fab part expressed as a recombinant protein revealed a high affinity binding (KD = 3.9 nm) to Hp-Hb, whereas no binding was measured for non-complexed Hp or Hb. The Fab antibody completely inhibited the binding of 125I-labeled Hp-Hb complexes to CD163 and blocked their uptake in CD163-transfected cells. In conclusion, we have raised a receptor-blocking antibody specifically recognizing the Hp-Hb complex. In addition to provide new insight into the changes occurring when Hp and Hb bind, the present study provides a new potential tool for measuring and removal of Hp-Hb complexes from plasma/serum.  相似文献   

5.
The recently described hemoglobin scavenger receptor CD163 mediates the endocytosis of hemoglobin:haptoglobin (Hb:Hp) complexes and thereby counters Hb-induced oxidative tissue damage after hemolysis. Although CD163 has been indirectly associated with antiinflammatory and atheroprotective activity, no ligand-receptor-effector pathway has yet been described for this receptor. To understand the significance of CD163 and more clearly define downstream pathways linked to inflammatory resolution, we studied the expression and function of CD163 in human monocytes/macrophages using both in vitro and in vivo models. Differentiation of human blood monocytes into macrophages either by in vitro culture or in resolving cantharidin-induced skin blisters led to an equivalent increase (>15x) in CD163 expression. Elevated CD163 levels were also noted on circulating monocytes in cardiac surgical patients during the resolution phase of the systemic inflammatory response to cardiopulmonary bypass surgery. In each case, binding of Hb:Hp to CD163-bearing cells elicited potent interleukin-10 secretion, and this was inhibited by the anti-CD163 antibody RM3/1. Release of interleukin-10, in turn, induced heme oxygenase-1 stress protein synthesis via an autocrine mechanism. Such induction of heme oxygenase-1 was observed in vivo 24 to 48 hours after the onset of cardiopulmonary bypass surgery. These results identify novel antiinflammatory and cytoprotective effector pathways in human monocytes/macrophages related to Hb scavenging and metabolism, which may have relevance in atheroprotection, wound healing, and patient recovery postoperatively.  相似文献   

6.
CD163 mediates the internalization of hemoglobin-haptoglobin (Hb-Hp) complexes by macrophages. Because Hp binding capacity is exhausted during severe hemolysis, an Hp-independent Hb-clearance pathway is presumed to exist. We demonstrate that Hb interacts efficiently with CD163 in the absence of Hp. Not only is Hb internalized into an endosomal compartment by CD163 as a result of active receptor-dependent endocytosis; it also inhibits the uptake of Hb-Hp complexes, suggesting a common receptor-binding site. Free Hb further induces heme oxygenase mRNA expression in CD163+ HEK293 cells, but not in CD163- cells. Additional evidence for Hp-independent Hb-CD163 interaction is provided by the demonstration that CD163 mediates the uptake of alpha alpha-DBBF crosslinked Hb, a chemically modified Hb that forms minimal Hp complexes. Moreover, certain modifications to Hb, such as polymerization or the attachment of specific functional groups (3 lysyl residues) to the beta-Cys93 can reduce or enhance this pathway of uptake. In human macrophages, Hp-complex formation critically enhances Hb uptake at low (1 microg/mL), but not at high (greater than 100 microg/mL), ligand concentrations, lending support for a concentration-dependent biphasic model of macrophage Hb-clearance. These results identify CD163 as a scavenger receptor for native Hb and small-molecular-weight Hb-based blood substitutes after Hp depletion.  相似文献   

7.
A major function of haptoglobin (Hp) is to bind hemoglobin (Hb) to form a stable Hp-Hb complex and thereby prevent Hb-induced oxidative tissue damage. Clearance of the Hp-Hb complex can be mediated by the monocyte/macrophage scavenger receptor CD163. We recently demonstrated that diabetic individuals homozygous for the Hp 2 allele (Hp 2-2) were at 500% greater risk of cardiovascular disease (CVD) compared with diabetic individuals homozygous for the Hp 1 allele (Hp 1-1). No differences in risk by Hp type were seen in individuals without diabetes. To understand the relationship between the Hp polymorphism and diabetic CVD, we sought to identify differences in antioxidant and scavenging functions between the Hp types and to determine how these functions were modified in diabetes. The scavenging function of Hp was assessed using rhodamine-tagged and 125I-Hp in cell lines stably transfected with CD163 and in macrophages expressing endogenous CD163. We found that the rate of clearance of Hp 1-1-Hb by CD163 is markedly greater than that of Hp 2-2-Hb. Diabetes is associated with an increase in the nonenzymatic glycosylation of serum proteins, including Hb. The antioxidant function of Hp was assessed with glycosylated and nonglycosylated Hb. We identified a severe impairment in the ability of Hp to prevent oxidation mediated by glycosylated Hb. We propose that the specific interaction between diabetes, CVD, and Hp genotype is the result of the heightened urgency of rapidly clearing glycosylated Hb-Hp complexes from the subendothelial space before they can oxidatively modify low-density lipoprotein to atherogenic oxidized low-density lipoprotein.  相似文献   

8.
We have found polymorphisms for the number of tandemly arranged haptoglobin-related (Hpr) genes in the haptoglobin gene cluster of Blacks. Genomic mapping and nucleotide sequence analysis indicate that two copies of the Hpr gene first resulted from unequal but homologous crossing-over in a region 3' to the haptoglobin (Hp) and the haptoglobin-related genes. Subsequent increases in the number of Hpr loci have occurred in some chromosomes. Among 25 American Blacks studied (15 were unrelated), 2 related individuals have one extra copy of the Hpr gene and 5 unrelated individuals have more than two extra Hpr genes. None of 26 Whites and one Oriental studied have extra copies. In one of the Blacks, six tandemly arranged Hpr genes were demonstrated in one chromosome by pulsed field gradient electrophoresis. His other chromosome had one Hpr gene. The tandem Hpr genes were found in individuals with the haptoglobin genotypes Hp2/Hp2 (3 of 3 tested) and Hp2/Hp1 (4 of 11 tested), but none were found in the Hp1/Hp1 individuals (11 tested). Fibroblast cell cultures from two Hp2/Hp1 heterozygotes were fused to mouse cells to obtain cell lines retaining a human chromosome 16 on which the haptoglobin gene cluster is located. DNA analysis of the hybrid cells showed that in both individuals the tandemly arranged Hpr genes are linked to the Hp2 allele. These results suggest that the multiple copies are associated with the Hp2 gene.  相似文献   

9.
We describe a novel syndrome of severe toxic symptoms during intravascular hemolysis due to impaired hemoglobin scavenging in 2 children with acute myeloid leukemia undergoing CD33-directed therapy with the immunotoxin gemtuzumab ozogamicin (GO). A simultaneous high plasma hemoglobin, haptoglobin, and low bilirubin after septicemia-induced intravascular hemolysis indicated abrogated clearance of haptoglobin-hemoglobin complexes. This was further supported by low levels of plasma soluble CD163 and a concordant low number of CD163-expressing monocytes. We show that CD163 positive monocytes and macrophages from liver, spleen, and bone marrow coexpress CD33, thus suggesting that the GO-induced cellular cytotoxicity of CD33 positive cells eradicates a significant part of the CD163 positive monocytes and macrophages. The risk of severe toxic symptoms from plasma hemoglobin should be considered after CD33-targeted chemotherapy when the disease is complicated by a pathologic intravascular hemolysis. Furthermore, the cases provide further circumstantial evidence of a key role of (CD163-expressing) monocytes/macrophages in plasma hemoglobin clearance in vivo.  相似文献   

10.
Objective: High-density lipoprotein (HDL) particles are heterogeneous in structure and function and the role of HDL subfractions in atherogenesis is not well understood. It has been suggested that small HDL may be dysfunctional in patients with coronary artery disease (CAD). Monocytes are considered to play a key role in atherosclerotic diseases. Circulating monocytes can be divided into three subtypes according to their surface expression of CD14 and CD16. Our aim was to examine whether monocyte subsets are associated with HDL subfractions in patients with atherosclerosis. Methods: We included 90 patients with angiographically stable CAD. Monocyte subsets were defined as classical monocytes (CD14++CD16-; CM), intermediate monocytes (CD14++CD16+; IM) and non-classical monocytes (CD14+CD16++; NCM). HDL subfractions were measured by electrophoresis on polyacrylamide gel. Results: Serum levels of small HDL correlated with circulating pro-inflammatory NCM and showed an inverse relationship to circulating CM independently from other lipid parameters, risk factors, inflammatory parameters or statin treatment regime, respectively. IM were not associated with small HDL. In particular, patients with small HDL levels in the highest tertile showed dramatically increased levels of NCM (14.7 ± 7% vs. 10.7 ± 5% and 10.8 ± 5%; p = 0.006) and a decreased proportion of CM (79.3 ± 7% vs. 83.7 ± 6% and 83.9 ± 6%; p = 0.004) compared to patients in the two lower tertiles. In contrast, intermediate HDL, large HDL and total HDL were not associated with monocyte subset distribution. Conclusion: Small HDL levels are associated with pro-inflammatory NCM and inversely correlated with CM. This may suggest that small HDL could have dysfunctional anti-inflammatory properties in patients with established CAD.  相似文献   

11.
These studies describe the detection of a haptoglobin species, its characterization as the HPR gene product, and its association with both pregnancy and neoplasia. Previous work showed that the early recurrence of human breast cancer correlated with immunohistochemical staining with a commercial antiserum ostensibly directed against pregnancy-associated plasma protein A (PAPP-A). Use of this antiserum to guide purification of the putative antigen led to the present identification and purification of a strongly immunoreactive protein species distinct from PAPP-A that was present in the plasma of pregnant women at term. Unlike PAPP-A, a homotetramer of 200-kDa polypeptides, the immunoreactive protein consists of a light (alpha) chain (16.5 kDa) and a heavy (beta) chain (40 kDa); protein microsequencing of the beta chain showed it to be a member of the haptoglobin family. The alpha chain of this haptoglobin species differs from ordinary haptoglobin 1 and 2 alpha chains both structurally and immunologically and represents the product of the HPR gene, haptoglobin-related protein (Hpr), since (i) the apparent molecular mass is the same as that predicted for Hpr alpha chain, (ii) the peptide map differs from that of haptoglobin 1 in a manner predicted by the HPR nucleotide sequence, (iii) monospecific antibodies that react with epitopes shared by the unique alpha chain and a synthetic peptide derived from the HPR nucleotide sequence do not detect these epitopes in either haptoglobin 1 or 2, and (iv) sequences of alpha-chain peptides were consistent with this identification, excluding haptoglobin 1 but not haptoglobin 2. The immunohistochemical reactivity of antibodies raised to the synthetic Hpr peptide is similar to that of anti-PAPP-A. Moreover, staining of neoplastic breast tissue is abolished by preincubation with purified Hpr.  相似文献   

12.
High-density lipoprotein (HDL) catabolism induced by copper deficiency was examined in vivo in hypercholesterolemic Sprague-Dawley rats. Doubly labeled HDL was used to trace the catabolic pathways of both cholesteryl ester and protein moieties of HDL particles. The catabolic rate of removal from the plasma, as well as uptake by various tissues, was determined for each HDL component. Copper-deficient rats exhibited a 30% increase in HDL cholesterol concentration, confirming hypercholesterolemia. In addition, plasma volume was enlarged 38% in deficient animals, resulting in a significantly increased intravascular pool of all HDL components of at least 60%. These data emphasize the importance of determining plasma volume and total pool size of pertinent plasma components in this hypercholesterolemic model. The absolute catabolic rate (ACR) of HDL protein removal from the plasma was 369 +/- 22 and 278 +/- 12 micrograms/h in copper-deficient and control rats, respectively. The ACR of HDL cholesteryl ester was 647 +/- 37 micrograms/h in deficient animals and 321 +/- 13 micrograms/h in controls, suggesting that the mechanisms of selective clearance of HDL cholesteryl ester (compared with protein) were increased threefold by copper deficiency. Virtually all of the increased removal of HDL cholesteryl ester in deficient rats occurred in the liver. Since previous studies indicate that increased hepatic cholesterol excretion may not occur in copper deficiency, the present results suggest that cholesterol delivered to the liver as HDL cholesteryl ester is possibly reassembled into new HDL particles at an increased rate in copper-deficient rats.  相似文献   

13.
Activities of cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) were measured in plasma of four vertebrate species: man, rabbit, pig, and rat. The activities were measured in the absence and presence of antibodies raised against purified human CETP. PLTP activities were present in all four species with highest values in pig (11.7 ± 1.2 U/ml) and human plasma (9.2 ± 1.6 U/ml). Considerable lower activities were found in rabbit (3.5 ± 0.6 U/ml) and rat plasma (1.6 ± 0.7 U/ml). These activities were not affected significantly by antibody against human CETP. CETP activities could be measured in human (0.23 ± 0.05 U/ml) and in rabbit plasma (0.19 ± 0.03 U/ml). CETP activity in human plasma was inhibited over 97% by antibody against human CETP. Plasma was chromatographed on a Superose 6 gel filtration column. Average HDL particle sizes in the four species differed notably and decreased in the order: rat HDL > rabbit HDL > human HDL > pig HDL. A separation of the two lipid transfer activities was evident after gel filtration chromatography. The peak of the PLTP activity coeluted with a fraction of HDL particles with the size of human HDL2 (particle weights 300–375 kDa). CETP activity in human and rabbit plasma coeluted largely with relatively small HDL particles (particle weights 140–180 kDa). These results show that CETP and PLTP activities are located in different macromolecular complexes.  相似文献   

14.
OBJECTIVE: Since CD163+ macrophages are selectively increased in spondylarthropathy (SpA) synovitis, we investigated the role of CD163+ macrophages in synovial inflammation. METHODS: Synovial biopsy samples from 26 SpA and 23 rheumatoid arthritis (RA) patients were analyzed for macrophage and lymphocyte subsets. Synovial fluid (SF) samples were analyzed by Western blotting and enzyme-linked immunosorbent assay for soluble CD163 (sCD163) and by flow cytometry for lymphocyte activation. We also analyzed sCD163 in sera from 100 SpA patients, 23 RA patients, 20 healthy controls, and 20 SpA patients treated with infliximab. Polymorphism of haptoglobin (Hp), the CD163 ligand, was determined in 130 SpA and 23 RA patients. RESULTS: CD163+ macrophages, but not CD68+ macrophages, were significantly increased in SpA versus RA synovium and in HLA-B27+ versus HLA-B27- SpA. Despite similar lymphocyte numbers, activated lymphocytes (CD69+) were significantly decreased in SpA versus RA patients, with an inverse correlation between CD163 and CD69 levels. Local production of sCD163 was evidenced by a 5-7-fold higher level of sCD163 in SF than in serum and by the correlation with synovial lining CD163+ macrophages in SpA. SF sCD163 levels correlated directly with global inflammation but correlated inversely with CD69+ SF T lymphocytes in the synovium. In contrast, serum sCD163 levels were only moderately increased, did not correlate with SF sCD163 levels or parameters of inflammation, and were unaffected by infliximab therapy. The distribution of Hp polymorphism was not altered in SpA and was not related to CD163 expression. CONCLUSION: Increased numbers of CD163+ macrophages in SpA synovium and local production of sCD163 are associated with global inflammation as well as impairment of T cell activation, suggesting a dual role for CD163+ macrophages in SpA synovitis.  相似文献   

15.
J Yu  J T Guo  H Zhu  M S Kindy 《Amyloid》2000,7(1):32-40
Serum amyloid A (SAA) proteins are acute-phase apolipoproteins that are associated with high-density lipoprotein (HDL) particles: SAA proteins are precursors to secondary amyloid fibril proteins and under certain conditions of chronic or recurrent inflammation these proteins are deposited as amyloid fibrils. Of two isotypes found in mouse, SAA1.1 and SAA2.1, only SAA1.1 is deposited into amyloid. The CE/J mouse is unique, in that the only isoform identified is a hybrid between SAA1.1 and SAA2.1 and the mouse does not show amyloid deposition. In the rat, a deletion in the SAA1/SAA2 gene is associated with the absence of protein in the plasma and subsequently no amyloid deposition is detected. We have generated adenoviral vectors to study the expression of SAA proteins on HDL metabolism and amyloid formation. Injection of SAA viruses into rats resulted in expression of the mouse SAA proteins in the plasma with specific association of the SAA with HDL particles. The induction of SAA proteins was comparable to that seen in mice presented with the inflammatory agent, bacterial lipopolysaccharide (LPS). Adenoviral induced SAA levels were maintained for up to several weeks without a significant decrease in SAA expression. Injection of rats with the mouse SAA1.1 adenoviral vector, followed by amyloid enhancing factor (AEF) and silver nitrate resulted in the deposition of amyloid fibrils in the spleen. After 2 weeks, amyloid could be detected in other tissues, including the heart, liver, kidneys and lungs. When animals were injected with null or the SAA2.2 virus no amyloid was detected. These studies demonstrate that the inability of the rat to develop AA amyloid is due to the lack of synthesizing an amyloidogenic SAA protein. Furthermore, the expression of the adenoviral SAA protein from the liver and incorporation onto HDL particles further supports the hypothesis that AA amyloid is derived from circulating SAA protein. The ease of use of the adenoviral vectors and the rat provide an excellent model to study the function of SAA proteins.  相似文献   

16.
Although high-density lipoproteins (HDLs) have been shown to be the best single indicator of the risk of coronary heart disease (CHD), relatively little is known about their metabolism. Accordingly, only limited strategies are available for therapeutically raising plasma HDL levels. The circulating HDL particle is assembled in the blood as the result of remodeling the nascent discoidal HDL followed by transfer of lipid and protein components from other lipoproteins. The catabolism of HDL is equally complex. The receptor-mediated removal mechanism of HDL from the plasma has yet to be substantiated. Despite the extensive studies performed, no clear mechanism has emerged whereby HDL particles protect the arteries from atherosclerosis. Reverse cholesterol transport remains an attractive hypothesis, but several other potential mechanisms may also play a role in the interaction between HDL and the arterial surface. Recent studies related to the regulation of HDL metabolism are discussed with particular emphasis on the potential role of the postprandial state. A brief discussion is also provided on potential future strategies for regulating HDL levels through pharmacologic intervention.  相似文献   

17.
Exposure of the LpA1-containing particles present in HDL3 and plasma to a minimal degree of proteolysis by the neutral protease chymase from exocytosed rat mast cell granules (granule remnants) leads to a reduction in the high-affinity component of cholesterol efflux from macrophage foam cells. In this study, we demonstrate for the first time, a role for mast cell chymase in the depletion of the lipid-poor minor components of HDL that are specifically involved in reverse cholesterol transport as initial acceptors of cellular cholesterol. Thus, addition of proteolytically active granule remnants or human skin chymase to cholesterol-loaded macrophages of mouse or human origin incubated with human apoA1, ie, a system in which prebeta1LpA1 is generated, resulted in a sharp reduction in the high-affinity cholesterol efflux promoted by apoA1. As determined by nondenaturing 2-dimensional polyacrylamide gradient gel electrophoresis, the granule remnants effectively depleted the prebeta1LpA1, but not the alphaLpA1, in HDL3 and in plasma during incubation at 37 degrees C for <1 hour. Incubation of plasma with granule remnants for 1 hour also led to near disappearance of the LpA4-1 and LpA4-2 particles, but did not affect the distribution of the apoA2-containing lipoproteins present in the plasma. We conclude that the reduced ability of granule remnant-treated HDL3 and granule remnant-treated plasma to induce cholesterol efflux from macrophage foam cells is caused by selective depletion by mast cell chymase of quantitatively minor A1- and A4-containing subpopulations of HDL. Because these particles, ie, prebeta1LpA1 and LpA4, are efficient acceptors of cholesterol from cell surfaces, their depletion by mast cells may block the initiation of reverse cholesterol transport in vivo and thereby favor foam cell formation in the arterial intima, the site of atherogenesis.  相似文献   

18.
Limited expression of the amphotropic envelope receptor is a recognized barrier to efficient oncoretroviral vector-mediated gene transfer. Human hematopoietic cell lines and cord blood-derived CD34(+) and CD34(+), CD38(-) cell populations and the progenitors contained therein were transduced far more efficiently with oncoretroviral particles pseudotyped with the envelope protein of feline endogenous virus (RD114) than with conventional amphotropic vector particles. Similarly, human repopulating cells from umbilical cord blood capable of establishing hematopoiesis in immunodeficient mice were efficiently transduced with RD114-pseudotyped particles, whereas amphotropic particles were ineffective at introducing the proviral genome. After only a single exposure of CD34(+) cord blood cells to RD114-pseudotyped particles, all engrafted nonobese diabetic/severe combined immunodeficiency mice (15 of 15) contained genetically modified human bone marrow cells. Human cells that were positive for enhanced green fluorescent protein represented as much as 90% of the graft. The use of RD114-pseudotyped vectors may be advantageous for therapeutic gene transfer into hematopoietic stem cells. (Blood. 2000;96:1206-1214)  相似文献   

19.
In reverse cholesterol transport, plasma phospholipid transfer protein (PLTP) converts high density lipoprotein(3) (HDL(3)) into two new subpopulations, HDL(2)-like particles and prebeta-HDL. During the acute-phase reaction (APR), serum amyloid A (SAA) becomes the predominant apolipoprotein on HDL. Displacement of apo A-I by SAA and subsequent remodeling of HDL during the APR impairs cholesterol efflux from peripheral tissues, and might thereby change substrate properties of HDL for lipid transfer proteins. Therefore, the aim of this work was to study the properties of SAA-containing HDL in PLTP-mediated conversion. Enrichment of HDL by SAA was performed in vitro and in vivo and the SAA content in HDL varied between 32 and 58 mass%. These HDLs were incubated with PLTP, and the conversion products were analyzed for their size, composition, mobility in agarose gels, and apo A-I degradation. Despite decreased apo A-I concentrations, PLTP facilitated the conversion of acute-phase HDL (AP-HDL) more effectively than the conversion of native HDL(3), and large fusion particles with diameters of 10.5, 12.0, and 13.8 nm were generated. The ability of PLTP to release prebeta from AP-HDL was more profound than from native HDL(3). Prebeta-HDL formed contained fragmented apo A-I with a molecular mass of about 23 kDa. The present findings suggest that PLTP-mediated conversion of AP-HDL is not impaired, indicating that the production of prebeta-HDL is functional during the ARP. However, PLTP-mediated in vitro degradation of apo A-I in AP-HDL was more effective than that of native HDL, which may be associated with a faster catabolism of inflammatory HDL.  相似文献   

20.
We previously reported that hyperhomocysteinemia (HHcy), an independent risk factor of coronary artery disease (CAD), is associated with increased atherosclerosis and decreased plasma high-density lipoprotein cholesterol (HDL-C) in cystathionine beta-synthase-/apolipoprotein E-deficient (CBS(-/-)/apoE(-/-)) mice. We observed that plasma homocysteine (Hcy) concentrations are negatively correlated with HDL-C and apolipoprotein A1 (apoA-I) in patients with CAD. We found the loss of large HDL particles, increased HDL-free cholesterol, and decreased HDL protein in CBS(-/-)/apoE(-/-) mice, and attenuated cholesterol efflux from cholesterol-loaded macrophages to plasma in CBS(-/-)/apoE(-/-) mice. ApoA-I protein was reduced in the plasma and liver, but hepatic apoA-I mRNA was unchanged in CBS(-/-)/apoE(-/-) mice. Moreover, Hcy (0.5 to 2 mmol/L) reduced the levels of apoA-I protein but not mRNA and inhibited apoA-1 protein synthesis in mouse primary hepatocytes. Further, plasma lecithin:cholesterol acyltransferase (LCAT) substrate reactivity was decreased, LCAT specific activity increased, and plasma LCAT protein levels unchanged in apoE(-/-)/CBS(-/-) mice. Finally, the clearance of plasma HDL cholesteryl ester, but not HDL protein, was faster in CBS(-/-)/apoE(-/-) mice, correlated with increased scavenger receptor B1, and unchanged ATP-binding cassette transporter A1 protein expression in the liver. These findings indicate that HHcy inhibits reverse cholesterol transport by reducing circulating HDL via inhibiting apoA-I protein synthesis and enhancing HDL-C clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号