首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cohesin-dockerin interaction in Clostridium thermocellum cellulosome mediates the tight binding of cellulolytic enzymes to the cellulosome-integrating protein CipA. Here, this interaction was used to study the effect of different cellulose-binding domains (CBDs) on the enzymatic activity of C. thermocellum endoglucanase CelD (1,4-beta-d endoglucanase, EC) toward various cellulosic substrates. The seventh cohesin domain of CipA was fused to CBDs originating from the Trichoderma reesei cellobiohydrolases I and II (CBD(CBH1) and CBD(CBH2)) (1,4-beta-d glucan-cellobiohydrolase, EC), from the Cellulomonas fimi xylanase/exoglucanase Cex (CBD(Cex)) (beta-1,4-d glucanase, EC), and from C. thermocellum CipA (CBD(CipA)). The CBD-cohesin hybrids interacted with the dockerin domain of CelD, leading to the formation of CelD-CBD complexes. Each of the CBDs increased the fraction of cellulose accessible to hydrolysis by CelD in the order CBD(CBH1) < CBD(CBH2) approximately CBD(Cex) < CBD(CipA). In all cases, the extent of hydrolysis was limited by the disappearance of sites accessible to CelD. Addition of a batch of fresh cellulose after completion of the reaction resulted in a new burst of activity, proving the reversible binding of the intact complexes despite the apparent binding irreversibility of some CBDs. Furthermore, burst of activity also was observed upon adding new batches of CelD-CBD complexes that contained a CBD differing from the first one. This complementation between different CBDs suggests that the sites made available for hydrolysis by each of the CBDs are at least partially nonoverlapping. The only exception was CBD(CipA), whose sites appeared to overlap all of the other sites.  相似文献   

2.
Clostridium cellulovorans uses not only cellulose but also xylan, mannan, pectin, and several other carbon sources for its growth and produces an extracellular multienzyme complex called the cellulosome, which is involved in plant cell wall degradation. Here we report a gene for a cellulosomal subunit, pectate lyase A (PelA), lying downstream of the engY gene, which codes for cellulosomal enzyme EngY. pelA is composed of an ORF of 2,742 bp and encodes a protein of 914 aa with a molecular weight of 94,458. The amino acid sequence derived from pelA revealed a multidomain structure, i.e., an N-terminal domain partially homologous to the C terminus of PelB of Erwinia chrysanthemi belonging to family 1 of pectate lyases, a putative cellulose-binding domain, a catalytic domain homologous to PelL and PelX of E. chrysanthemi that belongs to family 4 of pectate lyases, and a duplicated sequence (or dockerin) at the C terminus that is highly conserved in enzymatic subunits of the C. cellulovorans cellulosome. The recombinant truncated enzyme cleaved polygalacturonic acid to digalacturonic acid (G2) and trigalacturonic acid (G3) but did not act on G2 and G3. There have been no reports available to date on pectate lyase genes from Clostridia.  相似文献   

3.
Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose binding was largely entropically driven. We solved the crystal structures of EXLX1 complexed with cellulose-like oligosaccharides to find that EXLX1 binds the ligands through hydrophobic interactions of three linearly arranged aromatic residues in D2. The crystal structures revealed a unique form of ligand-mediated dimerization, with the oligosaccharide sandwiched between two D2 domains in opposite polarity. This report clarifies the molecular target of expansin and the specific molecular interactions of a type-A CBM with cellulose.  相似文献   

4.
Isothermal titration microcalorimetry is combined with solution-depletion isotherm data to analyze the thermodynamics of binding of the cellulose-binding domain (CBD) from the beta-1,4-(exo)glucanase Cex of Cellulomonas fimi to insoluble bacterial microcrystalline cellulose. Analysis of isothermal titration microcalorimetry data against two putative binding models indicates that the bacterial microcrystalline cellulose surface presents two independent classes of binding sites, with the predominant high-affinity site being characterized by a Langmuir-type Ka of 6.3 (+/-1.4) x 10(7) M-1 and the low-affinity site by a Ka of 1.1 (+/-0.6) x 10(6) M-1. CBDCex binding to either site is exothermic, but is mainly driven by a large positive change in entropy. This differs from protein binding to soluble carbohydrates, which is usually driven by a relatively large exothermic standard enthalpy change for binding. Differential heat capacity changes are large and negative, indicating that sorbent and protein dehydration effects make a dominant contribution to the driving force for binding.  相似文献   

5.
A mutagenesis study of a catalytic antibody.   总被引:1,自引:3,他引:1       下载免费PDF全文
We have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (VH) of the phosphocholine-binding antibody S107. S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and four Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the VH binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. The wild-type and mutant S107 antibodies were expressed in P-3X63-Ag8.653 (P-3) myeloma cells by using a modified SV2 shuttle vector. The catalytic properties of wild-type antibody S107 are similar to those of the phosphocholine-specific antibody T15, which has the same VH protein sequence. In general, mutations at Tyr-33 had little effect on catalytic activity, whereas mutations at Arg-52 that result in loss of the positively charged side chain significantly lower the catalytic activity of S107. One mutant, Y33H, catalyzed the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate with a kcat of 5.7 min-1 and a Km of 1.6 mM at pH 7.5. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.  相似文献   

6.
Cellulose-binding domains (CBDs) bind specifically to cellulose, and form distinct domains of most cellulose degrading enzymes. The CBD-mediated binding of the enzyme has a fundamental role in the hydrolysis of the solid cellulose substrate. In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose. The CBD was produced in Escherichia coli, purified, and radioactively labeled by reductive alkylation with 3H. Sensitive detection of the labeled CBD allowed more detailed analysis of its behavior than has been possible before, and important novel features were resolved. Binding of the CBD was found to be temperature sensitive, with an increased affinity at lower temperatures. The interaction of the CBD with cellulose was shown to be fully reversible and the CBD could be eluted from cellulose by simple dilution. The rate of exchange measured for the CBD-cellulose interaction compares well with the hydrolysis rate of cellobiohydrolase I, which is consistent with its proposed mode of action as a processive exoglucanase.  相似文献   

7.
Cyclic nucleotide phosphodiesterases (PDEs) are enzymes controlling cellular concentrations of the second messengers cAMP and cGMP. The crystal structure of the catalytic domain of PDE9A2, a member of a PDE family specifically hydrolyzing cGMP, has been determined at 2.23-A resolution. The PDE9A2 catalytic domain closely resembles the cAMP-specific PDE4D2 but is significantly different from the cGMP-specific PDE5A1, implying that each individual PDE family has its own characteristic substrate recognition mechanism. The different conformations of the H and M loops between PDE9A2 and PDE5A1 imply their less critical roles in nucleotide recognition. The nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) binds to a similar subpocket in the active sites of PDE4, PDE5, and PDE9 and has a common pattern of the binding. However, significantly different orientations and interactions of IBMXs are observed among the three PDE families and also between two monomers of the PDE9A2 dimer. The kinetic properties of the PDE9A2 catalytic domain similar to those of full-length PDE9A imply that the N-terminal regulatory domain does not significantly alter the catalytic activity and the IBMX inhibition.  相似文献   

8.
A strategy for rational enzyme design is reported and illustrated by the engineering of a protein catalyst for thiol-ester hydrolysis. Five mutants of human glutathione (GSH; gamma-Glu-Cys-Gly) transferase A1-1 were designed in the search for a catalyst and to provide a set of proteins from which the reaction mechanism could be elucidated. The single mutant A216H catalyzed the hydrolysis of the S-benzoyl ester of GSH under turnover conditions with a k(cat)/K(M) of 156 M(-1) x min(-1), and a catalytic proficiency of >10(7) M(-1) when compared with the first-order rate constant of the uncatalyzed reaction. The wild-type enzyme did not hydrolyze the substrate, and thus, the introduction of a single histidine residue transformed the wild-type enzyme into a turnover system for thiol-ester hydrolysis. By kinetic analysis of single, double, and triple mutants, as well as from studies of reaction products, it was established that the enzyme A216H catalyzes the hydrolysis of the thiol-ester substrate by a mechanism that includes an acyl intermediate at the side chain of Y9. Kinetic measurements and the crystal structure of the A216H GSH complex provided compelling evidence that H216 acts as a general-base catalyst. The introduction of a single His residue into human GSH transferase A1-1 created an unprecedented enzymatic function, suggesting a strategy that may be of broad applicability in the design of new enzymes. The protein catalyst has the hallmarks of a native enzyme and is expected to catalyze various hydrolytic, as well as transesterification, reactions.  相似文献   

9.
Date palm fiber (Phoenix dactylifera L.) is a natural biopolymer rich in lignocellulosic components. Its high cellulose content lends them to the extraction of tiny particles like microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). These cellulose-derived small size particles can be used as an alternative biomaterial in wide fields of application due to their renewability and sustainability. In the present work, NCC (A) and NCC (B) were isolated from date palm MCC at 60 min and 90 min hydrolysis times, respectively. The isolated NCC product was subjected to characterization to study their properties differences. With the hydrolysis treatment, the yields of produced NCC could be attained at between 22% and 25%. The infrared-ray functional analysis also revealed the isolated NCC possessed a highly exposed cellulose compartment with minimized lignoresidues of lignin and hemicellulose. From morphology evaluation, the nanoparticles’ size was decreased gradually from NCC (A) (7.51 nm width, 139.91 nm length) to NCC (B) (4.34 nm width, 111.51 nm length) as a result of fragmentation into cellulose fibrils. The crystallinity index was found increasing from NCC (A) to NCC (B). With 90 min hydrolysis time, NCC (B) showed the highest crystallinity index of 71% due to its great cellulose rigidity. For thermal analysis, NCC (B) also exhibited stable heat resistance, in associating with its highly crystalline cellulose structure. In conclusion, the NCC isolated from date palm MCC would be a promising biomaterial for various applications such as biomedical and food packaging applications.  相似文献   

10.
S Stender 《Atherosclerosis》1979,32(2):129-139
The arterial walls of 3 cholesterol-fed rabbits were exposed for 3--4 hours in vivo to homologous cholesterol-labelled plasma with a 20-fold higher [3H/14C] ratio in esterified cholesterol (EC) than in free cholesterol (FC). The [3H/14C] ratio in total cholesterol (TC) in the thoracic aorta was 0.6--0.9 times the ratio prevailing in TC in plasma. This corresponds to a transfer from plasma into the arterial wall of relatively more FC, with the low ratio, than EC with the higher ratio. The [3H/14C] ratio in FC in the arterial wall was 1.4--2.0 times the ratio in FC in plasma. This corresponds to hydrolysis of some of the entered EC, adding cholesterol with the high ratio to FC with the lower ratio. The [3H/14C] ratio in EC in the arterial wall was 0.1--1.1 times the ratio in EC in plasma. This corresponds to no esterification in the arterial wall of entered FC. The same method applied to normolipidemic cockerels gave similar results. In a kinetic model the arterial influx from plasma of FC and EC combined (lipoprotein influx) corresponded in both groups to 20--90 nl plasma per cm2 arterial surface per hour with subsequent hydrolysis of 10--50% of the entered EC. The arterial influx of FC without EC (influx by exchange) accounted for 10--25% of the total influx of cholesterol in the rabbits and 40--70% in the cockerels.  相似文献   

11.
12.
Toward antibody-catalyzed hydrolysis of organophosphorus poisons   总被引:1,自引:0,他引:1       下载免费PDF全文
We report here our preliminary results on the use of catalytic antibodies as an approach to neutralizing organophosphorus chemical weapons. A first-generation hapten, methyl-alpha-hydroxyphosphinate Ha, was designed to mimic the approach of an incoming water molecule for the hydrolysis of exceedingly toxic methylphosphonothioate VX (1a). A moderate protective activity was first observed on polyclonal antibodies raised against Ha. The results were further confirmed by using a mAb PAR 15 raised against phenyl-alpha-hydroxyphosphinate Hb, which catalyzes the hydrolysis of PhX (1b), a less toxic phenylphosphonothioate analog of VX with a rate constant of 0.36 M(-1) x min(-1) at pH 7.4 and 25 degrees C, which corresponds to a catalytic proficiency of 14,400 M(-1) toward the rate constant for the uncatalyzed hydrolysis of 1b. This is a demonstration on the organophosphorus poisons themselves that mAbs can catalytically hydrolyze nerve agents, and a significant step toward the production of therapeutically active abzymes to treat poisoning by warfare agents.  相似文献   

13.
Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme–substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph Iβ to IIII results in 40–50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings.  相似文献   

14.
F1, a water-soluble portion of FoF1-ATP synthase, is an ATP hydrolysis-driven rotary motor. The central gamma-subunit rotates in the alpha 3 beta 3 cylinder by repeating the following four stages of rotation: ATP-binding dwell, rapid 80 degrees substep rotation, interim dwell, and rapid 40 degrees substep rotation. At least two 1-ms catalytic events occur in the interim dwell, but it is still unclear which steps in the ATPase cycle, except for ATP binding, correspond to these events. To discover which steps, we analyzed rotations of F1 subcomplex (alpha 3 beta 3 gamma) from thermophilic Bacillus PS3 under conditions where cleavage of ATP at the catalytic site is decelerated: hydrolysis of ATP by the catalytic-site mutant F1 and hydrolysis of a slowly hydrolyzable substrate ATP gamma S (adenosine 5'-[gamma-thio]triphosphate) by wild-type F1. In both cases, interim dwells were extended as expected from bulk phase kinetics, confirming that cleavage of ATP takes place during the interim dwell. Furthermore, the results of ATP gamma S hydrolysis by the mutant F1 ensure that cleavage of ATP most likely corresponds to one of the two 1-ms events and not some other faster undetected event. Thus, cleavage of ATP on F1 occurs in 1 ms during the interim dwell, and we call this interim dwell catalytic dwell.  相似文献   

15.
Dissecting the catalytic mechanism of protein-tyrosine phosphatases.   总被引:13,自引:2,他引:13       下载免费PDF全文
Protein-tyrosine phosphatases (PTPases) contain anevolutionarily conserved segment of 250 amino acids referred to as the PTPasecatalytic domain. The recombinant PTPase domain from Yersinia enterocoliticaenhances the rate of hydrolysis of p-nitrophenyl phosphate, a phosphatemonoester, by approximately 10(11) over the non-enzyme-catalyzed rate by water.Specific amino acid residues responsible for the catalytic rate accelerationhave been examined by site-directed mutagenesis. Our results suggest thatAsp-356 (D356) and Glu-290 (E290) are the general acid and the general basecatalysts responsible for Yersinia PTPase-catalyzed phosphate ester hydrolysis.The PTPase with both E290Q and D356N mutations shows no pH dependence forcatalysis but displays a rate enhancement of 2.6 x 10(6), compared to thenoncatalyzed hydrolysis of p-nitrophenyl phosphate by water. This rateenhancement probably occurs via transition-state stabilization. Our resultssuggest that all PTP-ases use a common mechanism that depends upon formation ofa thiol-phosphate intermediate and general acid-general basecatalysis.  相似文献   

16.
Yeast to directly convert cellulose and, especially, the microcrystalline cellulose into bioethanol, was engineered through display of minicellulosomes on the cell surface of Saccharomyces cerevisiae. The construction and cell surface attachment of cellulosomes were accomplished with two individual miniscaffoldins to increase the display level. All of the cellulases including a celCCA (endoglucanase), a celCCE (cellobiohydrolase), and a Ccel_2454 (β-glucosidase) were cloned from Clostridium cellulolyticum, ensuring the thermal compatibility between cellulose hydrolysis and yeast fermentation. Cellulases and one of miniscaffoldins were secreted by α-factor; thus, the assembly and attachment to anchoring miniscaffoldin were accomplished extracellularly. Immunofluorescence microscopy, flow cytometric analysis (FACS), and cellulosic ethanol fermentation confirmed the successful display of such complex on the yeast surface. Enzyme-enzyme synergy, enzyme-proximity synergy, and cellulose-enzyme-cell synergy were analyzed, and the length of anchoring miniscaffoldin was optimized. The engineered S. cerevisiae was applied in fermentation of carboxymethyl cellulose (CMC), phosphoric acid-swollen cellulose (PASC), or Avicel. It showed a significant hydrolytic activity toward microcrystalline cellulose, with an ethanol titer of 1,412 mg/L. This indicates that simultaneous saccharification and fermentation of crystalline cellulose to ethanol can be accomplished by the yeast, engineered with minicellulosome.  相似文献   

17.
In vivo synthesis of cellulose by Acetobacter xylinum was monitored by darkfield light microscopy. Cellulose is synthesized in the form of a ribbon projecting from the pole of the bacterial rod. The ribbon elongates at a rate of 2 mum min-1. The ribbon consists of approximately 46 microfibrils which average 1.6 X 5.8 nm in cross section. The observed microfibrillar elongation rate corresponds to 470 amol of glucose/cell per hr assimilated into cellulose. Electron microscopy of the process using negative staining, sectioning, and freeze-etching indicated the presence of approximately 50 individual synthetic sites organized in a row along the longitudinal axis of the bacterial rod and in close association with the outer envelope. The process of cellulose synthesis in Acetobacter is compared with that in eukaryotic plant cells.  相似文献   

18.
The x-ray structure of the complex of a catalytic antibody Fab fragment with a phosphonate transition-state analog has been determined. The antibody (CNJ206) catalyzes the hydrolysis of p-nitrophenyl esters with significant rate enhancement and substrate specificity. Comparison of this structure with that of the uncomplexed Fab fragment suggests hapten-induced conformational changes: the shape of the combining site changes from a shallow groove in the uncomplexed Fab to a deep pocket where the hapten is buried. Three hydrogen-bond donors appear to stabilize the charged phosphonate group of the hapten: two NH groups of the heavy (H) chain complementarity-determining region 3 (H3 CDR) polypeptide chain and the side-chain of histidine-H35 in the H chain (His-H35) in the H1 CDR. The combining site shows striking structural similarities to that of antibody 17E8, which also has esterase activity. Both catalytic antibody ("abzyme") structures suggest that oxyanion stabilization plays a significant role in their rate acceleration. Additional catalytic groups that improve efficiency are not necessarily induced by the eliciting hapten; these groups may occur because of the variability in the combining sites of different monoclonal antibodies that bind to the same hapten.  相似文献   

19.
In order to obtain accurate information about the ultrastructure of cellulose from native biomass by 13C cross polarization magic angle spinning (CP/MAS) NMR spectroscopy the cellulose component must be isolated due to overlapping resonances from both lignin and hemicellulose. Typically, cellulose isolation has been achieved via holocellulose pulping to remove lignin followed by an acid hydrolysis procedure to remove the hemicellulose components. Using 13C CP/MAS NMR and non-linear line-fitting of the cellulose C4 region, it was observed that the standard acid hydrolysis procedure caused an apparent increase in crystallinity of ~10% or less on the cellulose isolated from Populus holocellulose. We have examined the effect of the cellulose isolation method, particularly the acid treatment time for hemicellulose removal, on cellulose ultrastructural characteristics by studying these effects on cotton, microcrystalline cellulose (MCC) and holocellulose pulped Populus. 13C CP/MAS NMR of MCC indicated that holocellulose pulping and acid hydrolysis has little effect on the crystalline ultrastructural components of cellulose. Although any chemical method to isolate cellulose from native biomass will invariably alter substrate characteristics, especially those related to regions accessible to solvents, we found those changes to be minimal and consistent in samples of typical crystallinity and lignin/hemicellulose content. Based on the rate of the hemicellulose removal, as determined by HPLC-carbohydrate analysis and magnitude of cellulose ultrastructural alteration, the most suitable cellulose isolation methodology utilizes a treatment of 2.5 M HCl at 100 °C for a standard residence time between 1.5 and 4 h. However, for the most accurate crystallinity results this residence time should be determined empirically for a particular sample.  相似文献   

20.
Enzymatic cellulose degradation is a heterogeneous reaction requiring binding of soluble cellulase molecules to the solid substrate. Based on our studies of the cellulase complex of Clostridium thermocellum (the cellulosome), we have previously proposed that such binding can be brought about by a special "anchorage subunit." In this "anchor-enzyme" model, CipA (a major subunit of the cellulosome) enhances the activity of CelS (the most abundant catalytic subunit of the cellulosome) by anchoring it to the cellulose surface. We have subsequently reported that CelS contains a conserved duplicated sequence at its C terminus and that CipA contains nine repeated sequences with a cellulose binding domain (CBD) in between the second and third repeats. In this work, we reexamined the anchor-enzyme mechanism by using recombinant CelS (rCelS) and various CipA domains, CBD, R3 (the repeat next to CBD), and CBD/R3, expressed in Escherichia coli. As analyzed by non-denaturing gel electrophoresis, rCelS, through its conserved duplicated sequence, formed a stable complex with R3 or CBD/R3 but not with CBD. Although R3 or CBD alone did not affect the binding of rCelS to cellulose, such binding was dependent on CBD/R3, indicating the anchorage role of CBD/R3. Such anchorage apparently increased the rCelS activity toward crystalline cellulose. These results substantiate the proposed anchor-enzyme model and the expected roles of individual CipA domains and the conserved duplicated sequence of CelS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号