首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose  To assess drug–drug interactions of fesoterodine with cytochrome P450 (CYP) 3A4 inhibitor (ketoconazole), inducer (rifampicin), and substrates (ethinylestradiol and levonorgestrel). Methods  Effects of ketoconazole 200 mg twice daily and rifampicin 600 mg twice daily on fesoterodine 8 mg once daily were investigated in CYP2D6 extensive metabolizers (EMs) and poor metabolizers (PMs) based on 5-hydroxymethyl tolterodine (5-HMT) pharmacokinetics (principal active fesoterodine metabolite and CYP3A4 substrate). Effects of fesoterodine 8 mg versus placebo once daily on ethinylestradiol and levonorgestrel were investigated based on oral contraceptive pharmacokinetics and on pharmacodynamic effects on progesterone, luteinizing hormone, follicle-stimulating hormone, and estradiol plasma levels. Results  Compared with fesoterodine alone, coadministration of fesoterodine with ketoconazole resulted in increases in mean 5-HMT maximum concentration in plasma (Cmax; from 3.0 to 6.0 ng/mL in EMs and from 6.4 to 13.4 ng/mL in PMs) and mean area under the plasma concentration time curve (AUC; from 38.2 to 88.3 ng h/mL in EMs and 88.3 to 217.2 ng h/mL in PMs). Coadministration of festerodine with rifampicin resulted in decreases in mean 5-HMT Cmax (from 5.2 to 1.5 ng/mL in EMs and from 6.8 to 1.9 ng/mL in PMs) and mean AUC (from 62.4 to 14.4 ng h/mL in EMs and from 87.8 to 19.6 ng h/mL in PMs). Fesoterodine did not affect oral contraceptive pharmacokinetics or pharmacodynamics or the suppression of ovulation. Conclusions  Fesoterodine dosage should not exceed 4 mg once daily when taken concomitantly with potent CYP3A4 inhibitors. Coadministration of CYP3A4 inducers with fesoterodine may produce subtherapeutic 5-HMT exposures. No dose adjustment is necessary for concomitant use of fesoterodine with oral contraceptives. Funding for this study was provided by Schwarz Biosciences GmbH, and Pfizer Inc.  相似文献   

2.

AIMS

Tolterodine and 5-hydroxymethyl tolterodine (5-HMT) are equipotent active moieties of tolterodine; 5-HMT is the singular active moiety of fesoterodine. Formation of 5-HMT from fesoterodine and tolterodine occurs via esterases and CYP2D6 respectively. This randomized, crossover, open-label, multiple-dose study in CYP2D6 extensive metabolizers (EMs) and poor metabolizers (PMs) compared the pharmacokinetics of fesoterodine vs. tolterodine extended release (ER).

METHODS

Subjects received fesoterodine and tolterodine ER with a ≥3-day washout period. Treatment comprised 4-mg once daily doses for 5 days escalated to 8-mg once daily for 5 days. Pharmacokinetics of active moieties were compared by drug, dose and genotype.

RESULTS

Active moiety exposures following fesoterodine and tolterodine ER increased proportional to dose in EMs and PMs. In EMs only, coefficients of variation for AUC and Cmax following fesoterodine (up to 46% and 48% respectively) were lower than those following tolterodine ER (up to 87% and 87% respectively). Following fesoterodine and tolterodine ER administration, active moiety exposures ranged up to sevenfold and 40-fold respectively. Mean urinary excretion of 5-HMT following fesoterodine 4 and 8 mg, respectively, was 0.44 and 0.89 mg in EMs and 0.60 and 1.32 mg in PMs. Following tolterodine ER 4 and 8 mg, it was 0.38 and 0.71 mg respectively (EMs only). Renal clearance was similar regardless of administered drug, dose or genotype.

CONCLUSIONS

Tolterodine, not 5-HMT, was the principal source of variability after tolterodine ER administration. Fesoterodine delivers 5-HMT with less variability than tolterodine, regardless of CYP2D6 status, with up to 40% higher bioavailability. The pharmacokinetics of fesoterodine were considerably less variable than TER.  相似文献   

3.
Abstract

1. Pharmacokinetic drug-drug interaction (DDI) data is important from a label claim either in combination drug usage or in polypharmacy situation.

2. Eletriptan undergoes first pass related metabolism through CYP3A4 enzyme to form pharmacologically active N-desmethyl metabolite.

3. Differential DDI interaction of the concomitant oral dosing of ketoconazole (20.1?mg/kg), a CYP3A4 inhibitor, with oral (4.2?mg/kg) or subcutaneous dose (2.1?mg/kg) of eletriptan was evaluated in male Sprague Dawley rats. Serial pharmacokinetic samples were collected and simultaneously analysed for eletriptan/N-desmethyl eletriptan using validated assay. Non-compartmentally derived pharmacokinetic parameters for various treatments were analysed statistically.

4. After oral eletriptan in presence of ketoconazole, Cmax (40 vs. 32?ng/mL alone) and AUCinf (81 vs. 24?ng.h/mL alone) of eletriptan increased; the formation of N-desmethyl eletriptan decreased (Cmax=1.1?ng/mL, 3.9%) with ketoconazole as compared to without treatment (Cmax=3.7?ng/mL, 11.2%). After subcutaneous eletriptan in presence of ketoconazole, there was no change in Cmax (153 vs.152?ng/mL) or AUCinf (267 vs. 266?ng.h/mL) of eletriptan. Formation of N-desmethyl eletriptan after the subcutaneous dose was determined at few intermittent time points with/without ketoconazole.

5. Preclinical data support differential DDI of eletriptan when dosed oral vs. subcutaneous, which need to be evaluated in a clinical setting.  相似文献   

4.
In vitro and in vivo binding sites of [3H]-labeled 5-hydroxymethyltolterodine (5-HMT), a new radioligand for labeling muscarinic receptors in rat tissues were characterized. Specific [3H]5-HMT binding in rat tissues was saturable and of high affinity in each tissue. The dissociation constant (Kd) was significantly lower in bladder and heart than in submaxillary gland. Significant levels of in vivo specific [3H]5-HMT binding by intravenous injection of the radioligand were detected in tissues, except for cerebral cortex. Thus, [3H]5-HMT was shown to specifically label muscarinic receptors in rat tissues, suggesting a useful radioligand for labeling muscarinic receptors with high affinity.  相似文献   

5.

AIMS

To assess the effects of fluconazole, a moderate CYP3A4 inhibitor, on the pharmacokinetics (PK) and safety/tolerability of fesoterodine.

METHODS

In this open-label, randomized, two-way crossover study, 28 healthy subjects (18–55 years) received single doses of fesoterodine 8 mg alone or with fluconazole 200 mg. PK endpoints, including the area under the plasma concentration–time curve from 0 to infinity (AUC(0,∞)), maximum plasma concentration (Cmax), time to Cmax (tmax), and half-life (t1/2), were assessed for 5-hydroxymethyl tolterodine (5-HMT), the active moiety of fesoterodine.

RESULTS

Concomitant administration of fesoterodine with fluconazole increased AUC(0,∞) and Cmax of 5-HMT by approximately 27% and 19%, respectively, with corresponding 90% confidence intervals of (18%, 36%) and (11%, 28%). There was no apparent effect of fluconazole on 5-HMT tmax or t½. Fesoterodine was generally well tolerated regardless of fluconazole co-administration, with no reports of death, serious adverse events (AEs) or severe AEs. Following co-administration of fesoterodine with fluconazole, 13 subjects (48%) experienced a total of 40 AEs; following administration of fesoterodine alone, six subjects (22%) experienced a total of 19 AEs. The majority of AEs were of mild intensity. There were no clinically significant changes in laboratory or physical examination parameters.

CONCLUSION

Fesoterodine 8 mg single dose was well tolerated when administered alone or with fluconazole. Based on the observed increase in 5-HMT exposures being within the inherent variability of 5-HMT pharmacokinetics, adjustment of fesoterodine dose is not warranted when co-administered with a moderate CYP3A4 inhibitor provided they are not also inhibitors of transporters.  相似文献   

6.
Polymorphic cytochrome P450 3A5 (CYP3A5) expression contributes to individual differences in the pharmacokinetics of probe drugs. The identification of suitable in vivo CYP3A5 probes would benefit drug metabolism and drug interaction studies using chimeric mice with humanized liver. In this study, we investigated the pharmacokinetic profiles of T-1032, which is known as an in vitro CYP3A5 probe substrate, using humanized-liver mice. Substantial N-oxygenation of T-1032 was observed in hepatocytes from humans and from humanized-liver mice. Hepatocytes from the human donor genotyped as CYP3A513/13 (poor expressers) showed significantly lower T-1032 N-oxidation rates than those from donors harboring CYP3A511. After a single oral dose of T-1032 (1.0 mg/kg) in humanized-liver mice, the plasma levels of T-1032 N-oxide were higher in five mice with CYP3A511/17 hepatocytes than in four mice with CYP3A513/13 hepatocytes. The maximum concentrations of T-1032 N-oxide after oral administration of T-1032 in humanized-liver mice with CYP3A511/17 hepatocytes were twice (a significant difference) those from humanized-liver mice with CYP3A513/13 hepatocytes. These results suggest that polymorphic CYP3A5-dependent T-1032 N-oxidation was observed in humanized liver mice in vitro and in vivo. However, the contribution of CYP3A5 genotypes may have little or only limited effects on the overall pharmacokinetic profiles of T-1032 in vivo.  相似文献   

7.

Purpose  

Diurnal variation can affect drug pharmacokinetics. Fesoterodine is a new antimuscarinic drug for the treatment of overactive bladder (OAB). We estimated the relative bioavailability of 5-hydroxymethyl tolterodine (5-HMT), the active metabolite of fesoterodine, following nighttime and daytime administration.  相似文献   

8.
Objective Axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptors 1, 2, and 3, is metabolized primarily by cytochrome P450 (CYP) 3A with minor contributions from CYP1A2, CYP2C19, and glucuronidation. Co-administration with CYP inhibitors may increase systemic exposure to axitinib and alter its safety profile. This study evaluated changes in axitinib plasma pharmacokinetic parameters and assessed safety and tolerability in healthy subjects, following axitinib co-administration with the potent CYP3A inhibitor ketoconazole. Methods In this randomized, single-blind, two-way crossover study, 32 healthy volunteers received placebo, followed by a single 5-mg oral dose of axitinib, administered either alone or on the fourth day of dosing with oral ketoconazole (400 mg/day for 7 days). Results Axitinib exposure was significantly increased in the presence of ketoconazole, with a geometric mean ratio for area under the plasma concentration–time curve from time zero to infinity of 2.06 (90% confidence interval [CI]: 1.84–2.30) and a geometric mean ratio for maximum plasma concentration (Cmax) of 1.50 (90% CI: 1.33–1.70). For axitinib alone or with ketoconazole, Cmax occurred 1.5 and 2.0 h after dosing, respectively. Adverse events were predominantly mild; the most commonly reported treatment-related adverse events were headache and nausea. Conclusions Axitinib plasma exposures and peak concentrations were increased following concurrent administration of axitinib and ketoconazole in healthy volunteers. Axitinib alone and in combination with ketoconazole was well tolerated. These findings provide an upper exposure for expected axitinib plasma concentrations in the presence of potent metabolic inhibition.  相似文献   

9.
Ritonavir is one of several ketoconazole alternatives used to evaluate strong CYP3A4 inhibition potential in clinical drug–drug interaction (DDI) studies. In this study, four physiologically based pharmacokinetic (PBPK) models of ritonavir as an in vivo time‐dependent inhibitor of CYP3A4 were created and verified for oral doses of 20, 50, 100 and 200 mg using the fraction absorbed (Fa) and oral clearance (CLoral) values reported in the literature, because transporter and CYP enzyme reaction phenotyping data were not available. The models were used subsequently to predict and compare the magnitude of the AUC increase in nine reference DDI studies evaluating the effect of ritonavir at steady‐state on midazolam (CYP3A4 substrate) exposure. Midazolam AUC and Cmax ratios were predicted within 2‐fold of the respective observations in seven studies. Simulations of the hepatic and gut CYP3A4 abundance after multiple oral dosing of ritonavir indicated that a 3‐day treatment with ritonavir 100 mg twice daily is sufficient to reach maximal CYP3A4 inhibition and subsequent systemic exposure increase of a CYP3A4 substrate, resulting in the reliable estimation of fm,CYP3A4. The ritonavir model was submitted as part of the new drug application for Kisqali® (ribociclib) and accepted by health authorities.  相似文献   

10.
Objective: Fesoterodine is a pro-drug of the active metabolite 5-hydroxymethyl tolterodine (5-HMT), a muscarinic receptor antagonist. This study aimed to evaluate the safety profile and pharmacokinetic characteristics of multiple oral doses of sustained-release fesoterodine (fesoterodine SR) in healthy Korean males. Methods: A randomized, double-blind, placebo-controlled, multiple-dose study with two oral doses (4 mg and 8 mg) was conducted in healthy Korean male participants. The study drug was administered once daily for 5 days. The plasma concentration of 5-HMT was measured up to 72 hours after the last drug administration. The CYP2D6 genotype was analyzed using polymerase chain reaction (PCR) methods to assess the effect of genetic polymorphisms on the pharmacokinetic parameters. Results: 20 participants completed the study. The mean (SD) areas under the plasma concentration-time curves during the dosing interval (AUCτ) of the 4 mg and 8 mg dose groups were 26.1 (8.0) and 64.2 (30.5) μga??h/ml and the mean peak concentrations (Cmax) were 2.6 (0.7) and 6.0 (2.0) μg/ml, respectively, at steady-state. The mean AUCτ and Cmax of 5-HMT increased in approximately the same proportion as the dose increased. Fesoterodine SR was well tolerated without any serious adverse events or abnormal clinical laboratory findings. Conclusion: Systemic 5-HMT exposure showed dose-proportional characteristics in the 4 mg to 8 mg dose range in healthy Korean males. Thus, 4 mg or 8 mg doses of fesoterodine SR taken once-daily were tolerable in healthy Korean males.  相似文献   

11.
Cytochrome P450 (CYP) 3A induction-mediated drug–drug interaction (DDI) is one of the major concerns in drug development and clinical practice. The aim of the present study was to develop a novel mechanistic physiologically based pharmacokinetic (PBPK)-enzyme turnover model involving both intestinal and hepatic CYP3A induction to quantitatively predict magnitude of CYP3A induction-mediated DDIs from in vitro data. The contribution of intestinal P-glycoprotein (P-gp) was also incorporated into the PBPK model. First, the pharmacokinetic profiles of three inducers and 14 CYP3A substrates were predicted successfully using the developed model, with the predicted area under the plasma concentration–time curve (AUC) [area under the plasma concentration–time curve] and the peak concentration (Cmax) [the peak concentration] in accordance with reported values. The model was further applied to predict DDIs between the three inducers and 14 CYP3A substrates. Results showed that predicted AUC and Cmax ratios in the presence and absence of inducer were within twofold of observed values for 17 (74%) of the 23 DDI studies, and for 14 (82%) of the 17 DDI studies, respectively. All the results gave us a conclusion that the developed mechanistic PBPK-enzyme turnover model showed great advantages on quantitative prediction of CYP3A induction-mediated DDIs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2819–2836, 2013  相似文献   

12.
QT interval prolongation typically assessed with dedicated clinical trials called thorough QT/QTc (TQT) studies is used as surrogate to identify the proarrhythmic risk of drugs albeit with criticism in terms of cost-effectiveness in establishing the actual risk of torsade de pointes (TdP). Quantitative systems toxicology and safety (QSTS) models have potential to quantitatively translate the in vitro cardiac safety data to clinical level including simulation of TQT trials. Virtual TQT simulations have been exemplified with use of two related drugs tolterodine and fesoterodine. The impact of bio-relevant concentration in plasma versus estimated heart tissue exposure on predictions was also assessed. Tolterodine and its therapeutically equipotent metabolite formed via CYP2D6 pathway, 5-HMT, inhibit multiple cardiac ion currents (IKr, INa, ICaL). The QSTS model was able to accurately simulate the QT prolongation at therapeutic and supra-therapeutic dose levels of tolterodine well within 95% confidence interval limits of observed data. The model was able to predict the QT prolongation difference between CYP2D6 extensive and poor metaboliser subject groups at both dose levels thus confirming the ability of the model to account for electrophysiologically active metabolite. The QSTS model was able to simulate the negligible QT prolongation observed with fesoterodine establishing that the 5-HMT does not prolong QT interval even though it is a blocker of hERG channel. With examples of TOL and FESO, we demonstrated the utility of the QSTS approaches to simulate virtual TQT trials, which in turn could complement and reduce the clinical studies or help optimise clinical trial designs.  相似文献   

13.
Because the expression of drug-metabolizing enzymes and drug efflux transporters has been shown in the intestine, the contribution of this tissue to the first-pass effect has become of significant interest. Consequently, a comprehensive understanding of the absorption barriers in key preclinical species would be useful for the precise characterization of drug candidates. In the present investigation, we evaluated the intestinal first-pass effect of midazolam (MDZ) and fexofenadine (FEX), typical substrates for CYP3A and P-glycoprotein (P-gp), respectively, with ketoconazole (KTZ) as a potent dual CYP3A/P-gp inhibitor in cynomolgus monkeys. When MDZ or FEX was administered i.v. at doses of 0.3 or 1 mg/kg, respectively, the plasma concentration-time profiles were not influenced by p.o. coadministration of KTZ (20 mg/kg). On the other hand, when MDZ or FEX was administered p.o. at doses of 1 or 5 mg/kg, respectively, concomitant with a dose p.o. of KTZ (20 mg/kg), significant increases were observed in the area under the plasma concentration-time curves of MDZ or FEX (22-fold in MDZ and 3-fold in FEX). These findings indicate that both CYP3A and P-gp play a key role in the intestinal barrier and that inhibition of intestinal CYP3A/P-gp activities contributes exclusively toward the drug-drug interactions (DDI) with KTZ. Additionally, the K(i) values of the antifungal agents, KTZ, itraconazole, and fluconazole, for MDZ 1'-hydroxylation in monkey intestinal and liver microsomes were comparable with those in the respective human samples. These results suggest that monkeys may be an appropriate animal species for evaluating the intestinal first-pass effect of p.o. administered drugs and predicting intestinal DDI related to CYP3A4 and P-gp in humans.  相似文献   

14.
The interaction between almotriptan, a 5-HT1B/1D agonist, and the potent CYP3A4 inhibitor ketoconazole was examined in 16 healthy volunteers. Subjects received (A) 12.5 mg almotriptan orally on Day 2 of a 3-day regimen of 400 mg ketoconazole once daily and (B) 12.5 mg almotriptan in a crossover design. Plasma and urine concentrations of almotriptan were measured by HPLC. Treatment effects on almotriptan pharmacokinetics were assessed by analysis of variance. Ketoconazole coadministration increased mean almotriptan AUC and Cmax from 312 to 490 ng h/mL and 52.6 to 84.5 ng/mL, respectively. Mean oral clearance was decreased from 40.7 to 26.2 L/h by ketoconazole, with an accompanying increase in the fraction of almotriptan excreted unchanged in the urine (40.6% to 53.3%) and a decrease in renal clearance (16.4 to 13.8 L/h). These effects were statistically significant. The effects of ketoconazole on almotriptan clearance were consistent with inhibition of the CYP3A4-mediated metabolism and a slight effect on the active tubular secretion of almotriptan.  相似文献   

15.
The present study aims to determine if an in vivo rat model of drug–drug interaction (DDI) could be useful to discriminate a sensitive (buspirone) from a ‘non‐sensitive’ (verapamil) CYP3A substrate, using ketoconazole and ritonavir as perpetrator drugs. Prior to in vivo studies, ketoconazole and ritonavir were shown to inhibit midazolam hydroxylation with IC50 values of 350 ± 60 nm and 11 ± 3 nm , respectively, in rat liver microsomes (RLM). Buspirone and verapamil were also shown to be substrates of recombinant rat CYP3A1/3A2. In the rat model, the mean plasma AUC0‐inf of buspirone (10 mg/kg, p.o.) was increased by 7.4‐fold and 12.8‐fold after co‐administration with ketoconazole and ritonavir (20 mg/kg, p.o.), respectively. The mean plasma AUC0‐inf of verapamil (10 mg/kg, p.o.) was increased by 3.0‐fold and 4.8‐fold after co‐administration with ketoconazole and ritonavir (20 mg/kg, p.o.), respectively. Thus, the rat DDI model correctly identified buspirone as a sensitive CYP3A substrate (>5‐fold AUC change) in contrast to verapamil. In addition, for both victim drugs, the extent of DDI when co‐administered was greater with ritonavir compared with ketoconazole, in line with their in vitro CYP3A inhibition potency in RLM. In conclusion, our study extended the rat DDI model applicability to two additional victim/perpetrator pairs. In addition, we suggest that use of this model would increase our confidence in estimation of the DDI potential for victim drugs in early discovery. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.

Aim

Apixaban is an orally active inhibitor of coagulation factor Xa and is eliminated by multiple pathways, including renal and non-renal elimination. Non-renal elimination pathways consist of metabolism by cytochrome P450 (CYP) enzymes, primarily CYP3A4, as well as direct intestinal excretion. Two single sequence studies evaluated the effect of ketoconazole (a strong dual inhibitor of CYP3A4 and P-glycoprotein [P-gp]) and diltiazem (a moderate CYP3A4 inhibitor and a P-gp inhibitor) on apixaban pharmacokinetics in healthy subjects.

Method

In the ketoconazole study, 18 subjects received apixaban 10 mg on days 1 and 7, and ketoconazole 400 mg once daily on days 4–9. In the diltiazem study, 18 subjects received apixaban 10 mg on days 1 and 11 and diltiazem 360 mg once daily on days 4–13.

Results

Apixaban maximum plasma concentration and area under the plasma concentration–time curve extrapolated to infinity increased by 62% (90% confidence interval [CI], 47, 78%) and 99% (90% CI, 81, 118%), respectively, with co-administration of ketoconazole, and by 31% (90% CI, 16, 49%) and 40% (90% CI, 23, 59%), respectively, with diltiazem.

Conclusion

A 2-fold and 1.4-fold increase in apixaban exposure was observed with co-administration of ketoconazole and diltiazem, respectively.  相似文献   

17.
The influence of ketoconazole, a modulator of P-glycoprotein (P-gp), on the exsorption of ornidazole from everted sacs of rat intestine (duodenum, jejunum and ileum) was investigated. The effect of ketoconazole pretreatment on the pharmacokinetics of ornidazole was also studied in eight healthy human volunteers. After overnight fasting ornidazole 500 mg was administered before and after pretreatment with ketoconazole 200 mg once daily for 7 days. Serum samples were analyzed by reversed phase HPLC. Significant differences were observed in pharmacokinetic parameters C(max), AUC(0-t), AUC(0-infinity), T(max) and clearance. Ornidazole is believed to be metabolized through CYP3A and it has considerable intestinal efflux, which was observed from the in vitro study. The altered pharmacokinetic parameters can be attributed to ornidazole efflux from the blood to the intestine and its metabolism by CYP3A in the intestine.  相似文献   

18.
We developed a novel immunodeficient NOG mouse expressing HSVtk mutant clone 30 cDNA under the control of mouse transthyretin gene enhancer/promoter (NOG-TKm30) to acquire fertility in males and high inducibility of liver injury in females. Maximum human albumin levels (approx. 15 mg/mL plasma) in both male and female NOG-TKm30 mice engrafted with human hepatocytes (humanized liver mice) were observed 8–12 weeks after transplantation. Immunohistochemical analyses revealed abundant expression of major human cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A4) in reconstituted liver with original zonal distribution. In vivo drug–drug interactions were observed in humanized liver mice as decreased area under the curve of midazolam (CYP3A4/5 substrate) and omeprazole (CYP3A4/5 and CYP2C19 substrate) after oral administration of rifampicin. Furthermore, we developed a pregnant model for evaluating prenatal exposure to drugs. The detection of thalidomide metabolites in the fetuses of pregnant humanized liver mice indicates that the novel TK model can be used for developmental toxicity studies requiring the assessment of human drug metabolism. These results suggest that the limitations of traditional TK-NOG mice can be addressed using NOG-TKm30 mice, which constitute a novel platform for humanized liver for both in vivo and in vitro studies.  相似文献   

19.
The authors sought to quantify the influence of the CYP3A and P-glycoprotein inhibitor ketoconazole on the pharmacokinetics of everolimus in healthy subjects. This was a 2-period, single-sequence, crossover study in 12 healthy subjects. In period 1, subjects received the reference treatment of a single 2-mg dose of everolimus. In period 2, they received the test treatment of ketoconazole 200 mg twice daily for a total of 8 days and a single dose of everolimus coadministered on the fourth day of ketoconazole therapy. The test/reference ratio and 90% confidence interval were derived for everolimus maximum concentration and area under the curve. During ketoconazole coadministration, everolimus maximum concentration increased 3.9-fold (90% confidence interval, 3.4-4.6) from 15 +/- 4 ng/mL to 59 +/- 13 ng/mL. Everolimus area under the curve increased 15.0-fold (90% confidence interval, 13.6-16.6) from 90 +/- 23 ng*h/mL to 1324 +/- 232 ng*h/mL. Everolimus half-life was prolonged by 1.9-fold from 30 +/- 4 hours to 56 +/- 5 hours. Everolimus did not appear to alter ketoconazole predose concentrations. Given the magnitude of this drug interaction, use of ketoconazole should be avoided if possible in everolimus-treated patients.  相似文献   

20.
1. A physiologically based pharmacokinetic (PBPK) model that includes inhibition constant evaluated in cryopreserved hepatocytes was used to predict drug–drug interactions (DDIs) between orally administered nifedipine, a CYP substrate, and fluconazole or ketoconazole, CYP inhibitors, in rats.

2. The Kp,uu, ratio of unbound inhibitor concentration in liver ([I]liver,u) to that in plasma ([I]sys,u), of fluconazole and ketoconazole was 1.0 and 13.0, indicating that ketoconazole accumulates in liver. The ratios of inhibition constants in rat liver microsomes (Ki,mic,u) to that in rat cryopreserved hepatocytes (Ki,hep,u) for fluconazole and ketoconazole were 1.5 and 25.5, which were similar to the Kp,uu and suggested that cryopreserved hepatocytes could mimic the hepatic accumulation of inhibitors.

3. The increases in AUC of nifedipine predicted by the minimal PBPK model using [I]liver,u/Ki,mic,u and [I]sys,u/Ki,hep,u were within 1.5-fold of the observed values for both inhibitors, whereas the model using [I]sys,u/Ki,mic,u underestimated the AUC increase caused by ketoconazole 21-fold.

4. These results indicated that hepatic accumulation factor of an inhibitor is required for a precise DDI projection and that cryopreserved hepatocytes would be useful to obtain the Ki including hepatic accumulation factor. It was demonstrated that PBPK model using Ki,hep,u could be a valuable approach for quantitative DDI projection.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号