首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

2.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

3.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

4.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

5.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

6.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

7.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

8.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

9.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

10.
目的 建立三维聚丙烯酰胺凝胶DNA芯片用于大样本单核苷酸多态(single nucleotide polyrnorphisms,SNP)分型的方法.方法 丙烯酰胺基团修饰的PCR产物与丙烯酰胺单体混合后,在丙烯酰胺基团修饰的玻片上点样进行共聚合,建成三维凝胶DNA阵列;芯片与一对特异探针和一对分别标记了Cy3或Cy5的通用序列标签(Tag1和Tag2)进行杂交;杂交后用施加电场的方法去除非特异吸附和错配,最后通过双色荧光共聚焦扫描进行SNP分型.结果 3-D凝胶芯片不但具有很高的固定效率,而且可以提供高效的杂交环境;通用序列标签的使用木需对每个位点都标记荧光,使检测成本大幅降低;外加电场使得单碱基错配容易识别,且能显著降低芯片的信噪比.结论 基于3-D凝胶的基因芯片技术用于大样本SNPs分型简单易操作,且高通量、高特异性、低成本,该方法将可以更广泛地应用于不同需求的DNA检测中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号