首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniature spontaneous inhibitory postsynaptic currents (sIPSCs) mediated by GABAA receptors were recorded using whole-cell patch clamp recordings in rat brain slices maintained in vitro at 34 +/- 1 degree C. We have found that firing of action potentials by principal neurons or by GABAergic interneurons is not necessary to the generation of sIPSCs since they persist in the presence of 1-5 microM tetrodotoxin (TTX). The average frequency of the discrete sIPSCs exhibits a large cell-to-cell variability and is between 5-15 Hz. The amplitudes of the sIPSCs depend on the difference between the membrane potential and the equilibrium potential for Cl- (ECl). Generally, 70-80 mV away from ECl, sIPSCs have a mean amplitude of 30-80 pA (i.e. peak conductance of 400-1000 pS) with an average decay time constant of 5.8 ms. Accordingly, unitary single sIPSCs arise from the simultaneous activation of no more than 20 GABAA receptor/channels. The perpetual barrage of spontaneous GABAergic activity is very likely to be a critical factor in the regulation of neuronal excitability and the mechanism of action of several neuroactive compounds.  相似文献   

2.
The regulatory mechanisms of intracellular Cl- concentration ([Cl-]i) were investigated in the lateral superior olive (LSO) neurons of various developmental stages by taking advantage of gramicidin perforated patch recording mode, which enables neuronal [Cl-]i measurement. Responses to glycine changed from depolarization to hyperpolarization during the second week after birth, resulting from [Cl-]i decrease. Furosemide equally altered the [Cl-]i of both immature and mature LSO neurons, indicating substantial contributions of furosemide-sensitive intracellular Cl- regulators; i.e., K+-Cl- cotransporter (KCC) and Na+-K+-Cl- cotransporter (NKCC), throughout this early development. Increase of extracellular K+ concentration and replacement of intracellular K+ with Cs+ resulted in [Cl-]i elevation at postnatal days 13-15 (P13-P15), but not at P0-P2, indicating that the mechanism of neuronal Cl- extrusion is sensitive to both furosemide and K+-gradient and poorly developed in immature LSO neurons. In addition, removal of extracellular Na+ decreased [Cl-]i at P0-P2, suggesting the existence of extracellular Na+-dependent and furosemide-sensitive Cl- accumulation in immature LSO neurons. These data show clearly that developmental changes of Cl- cotransporters alter [Cl-]i and are responsible for the switch from the neonatal Cl- efflux to the mature Cl- influx in LSO neurons. Such maturational changes in Cl- cotransporters might have the important functional roles for glycinergic and GABAergic synaptic transmission and the broader implications for LSO and auditory development.  相似文献   

3.
The mammalian superior colliculus (SC) is reported to contain gamma-aminobutyric acid (GABA)C receptors (GABACRs) at high concentration. However, their role in GABAergic synaptic transmission is not yet known. The aim of the present study was: (i) to clarify whether GABACRs are activated by endogenous GABA; and (ii), to determine whether GABACRs play a role in inhibitory synaptic transmission. Experiments were performed on acute horizontal slices from the postnatal rat SC or on collicular neurons in dissociated cell culture. In both preparations, bicuculline-resistant current responses to exogenous GABA and currents elicited by cis-4-aminocrotonic acid (CACA) were blocked by (1,2,5,6-tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA), a GABACR antagonist. The CACA-induced currents exhibited a linear current-voltage relationship and reversed at the Cl- equilibrium potential. These results indicate that functional GABACRs are present in the somato-dendritic membrane of collicular neurons. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the whole-cell patch clamp technique. TPMPA significantly decreased mIPSC amplitudes in slices, but not in cultured neurons. As TPMPA decreased also the coefficient of variation of mIPSCs, we suggest that somatodendritic GABACRs are located extrasynaptically but can be involved in the generation of IPSCs if GABA diffusion is constrained. In cultures, individual connections were activated by focal electrical stimulation of single neurons, and evoked inhibitory postsynaptic currents (eIPSCs) were recorded. Paired-pulse stimulation revealed that TPMPA significantly decreased the paired-pulse ratio at short (50 ms) interstimulus intervals, and this effect was inversely dependent on the amplitude of the first eIPSC. We conclude that presynaptic GABACRs are activated by endogenous GABA and can alleviate the short-term depression resulting from a preceding episode of GABA release. Thus, in GABAergic synapses of the SC GABACRs are involved in pre- and postsynaptic functions and may therefore contribute to the activity-dependent adjustment of GABAergic inhibition.  相似文献   

4.
Many postsynaptic neurons release a retrograde transmitter that modulates presynaptic neurotransmitter release. In the suprachiasmatic nucleus (SCN), retrograde signaling is suggested by the presence of dendritic dense-core vesicles. Whole-cell voltage-clamp recordings were made from rat SCN neurons to determine whether a retrograde messenger could modulate the activity of afferent gamma-aminobutyric acid (GABA)ergic inputs. The frequency and amplitude of spontaneous GABAergic currents was significantly reduced in a subpopulation of SCN neurons (eight out of 13) following a postsynaptic depolarization. Similarly, a postsynaptic depolarization significantly reduced the amplitude of evoked GABAergic currents during both day and night recordings. A postsynaptic depolarizing pulse eliminated paired-pulse inhibition of GABAergic currents consistent with a presynaptic mechanism. Muscimol-activated currents were not altered by postsynaptic depolarization, demonstrating that the activity of GABA(A) receptors was not altered. Depolarization-induced inhibition of the GABAergic currents was not observed when a Ca2+ chelator was included in the microelectrode. Postsynaptic depolarization significantly increased the Ca2+ concentration in both the soma and dendrites. The dendritic Ca2+ levels increased faster, to a higher concentration and decayed faster than in the soma. The depolarization-induced inhibition of the evoked GABAergic current was blocked by the G-protein uncoupling agent N-ethylmaleimide, suggesting that the retrograde messenger acts on a pertussis toxin-sensitive G-protein-coupled receptor. Because the majority of SCN neurons receive GABAergic input from neighboring cells, these results describe a retrograde signaling mechanism by which SCN neurons can modulate GABAergic synaptic input.  相似文献   

5.
Long-term depression (LTD) at striatal synapses is mediated by postsynaptic endocannabinoid (eCB) release and presynaptic cannabinoid 1 receptor (CB1R) activation. Previous studies have indicated that eCB mobilization at excitatory synapses might be regulated by afferent activation. To further address the role of neuronal activity in synaptic plasticity we examined changes in synaptic strength induced by the L-type calcium channel activator 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylic acid methyl ester (FPL 64176, FPL) at glutamatergic and γ-aminobutyric acid (GABA)ergic synapses in the striatum. We found that the basic mechanisms for FPL-mediated eCB signaling are the same at glutamatergic and GABAergic synapses. FPL-induced LTD (FPL-LTD) was blocked in slices treated with the CB1R antagonist AM251 (2 μ m ), but established depression was not reversed by AM251. FPL-LTD was temperature dependent, blocked by protein translation inhibitors and prevented by intracellular loading of the anandamide transporter inhibitor VDM11 (10 μ m ) at both glutamatergic and GABAergic synapses. FPL-LTD at glutamatergic synapses required paired-pulse afferent stimulation, while FPL-LTD at GABAergic synapses could be induced even in the absence of explicit afferent activation. By evaluating tetrodotoxin-insensitive spontaneous inhibitory postsynaptic currents we found that neuronal firing is vital for eCB release and LTD induction at GABAergic synapses, but not for short-term depression induced by CB1R agonist. The data presented here suggest that the level of neuronal firing regulates eCB signaling by modulating release from the postsynaptic cell, as well as interacting with presynaptic mechanisms to induce LTD at both glutamatergic and GABAergic synapses in the striatum.  相似文献   

6.
In mammals, the increased secretion of arginine-vasopressin (AVP) (antidiuretic hormone) and oxytocin (natriuretic hormone) is a key physiological response to hyperosmotic stress. In this study, we examined whether chronic hyperosmotic stress weakens GABA(A) receptor-mediated synaptic inhibition in rat hypothalamic magnocellular neurosecretory cells (MNCs) secreting these hormones. Gramicidin-perforated recordings of MNCs in acute hypothalamic slices prepared from control rats and ones subjected to the chronic hyperosmotic stress revealed that this challenge not only attenuated the GABAergic inhibition but actually converted it into excitation. The hyperosmotic stress caused a profound depolarizing shift in the reversal potential of GABAergic response (E(GABA)) in MNCs. This E(GABA) shift was associated with increased expression of Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) in MNCs and was blocked by the NKCC inhibitor bumetanide as well as by decreasing NKCC activity through a reduction of extracellular sodium. Blocking central oxytocin receptors during the hyperosmotic stress prevented the switch to GABAergic excitation. Finally, intravenous injection of the GABA(A) receptor antagonist bicuculline lowered the plasma levels of AVP and oxytocin in rats under the chronic hyperosmotic stress. We conclude that the GABAergic responses of MNCs switch between inhibition and excitation in response to physiological needs through the regulation of transmembrane Cl(-) gradients.  相似文献   

7.
Long-term potentiation (LTP) and long-term depression (LTD) are two main forms of activity-dependent synaptic plasticity that have been extensively studied as the putative mechanisms underlying learning and memory. Current studies have demonstrated that prior synaptic activity can influence the subsequent induction of LTP and LTD at Schaffer collateral-CA1 synapses. Here, we show that prior short-term synaptic disinhibition induced by type A gamma-aminobutyric acid (GABA) receptor antagonist picrotoxin exhibited a facilitation of LTP induction and an inhibition of LTD induction. This effect lasted between 10 and 30 min after washout of picrotoxin and was specifically inhibited by the L-type voltage-operated Ca2+ channel (VOCC) blocker nimodipine, but not by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphopentanoic acid (D-APV). Moreover, this picrotoxin-induced priming effect was mimicked by forskolin, an activator of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), and was blocked by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22536) and the PKA inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate (Rp-cAMPS). It was also found that following picrotoxin application, CA1 neurons have a higher probability of synchronous discharge in response to a population of excitatory postsynaptic potential (EPSP) of fixed slope (EPSP/spike potentiation). However, picrotoxin treatment did not significantly affect paired-pulse facilitation (PPF). These findings suggest that a brief of GABAergic disinhibition can act as a priming stimulus for the subsequent induction of LTP and LTD at Schaffer collateral-CA1 synapses. The increase in Ca2+ influx through L-type VOCCs in turn triggering a cAMP/PKA signalling pathway is a possible molecular mechanism underlying this priming effect.  相似文献   

8.
GABA, a major inhibitory neurotransmitter, depolarizes hippocampal pyramidal neurons during the first postnatal week. These depolarizations result from an efflux of Cl- through GABAA-gated anion channels. The outward Cl- gradient that provides the driving force for Cl- efflux might be generated and maintained by the Na+, K+, 2Cl- cotransporter (NKCC) that keeps intracellular Cl- concentration above electrochemical equilibrium. The developmental pattern of expression of the cotransporter in the hippocampus is not known. We studied the postnatal distribution pattern of NKCC in the hippocampus using a monoclonal antibody (T4) against a conserved epitope in the C-terminus of the cotransporter molecule. We also examined the temporal relationships between the developmental pattern of NKCC expression and the formation of perisomatic GABAergic synapses. This study was aimed at determining, with antivesicular inhibitory amino acid transporter (VIAAT) antibodies, whether perisomatic GABAergic synapses are formed preferentially at the time when GABA is depolarizing. During the first postnatal week, NKCC immunolabelling was restricted to cell bodies in the pyramidal cell layer and in the strata oriens and radiatum. In contrast, at postnatal day 21 (P21) and in adult animals little or no labelling occurred in cell bodies; instead, a prominent dendritic labelling appeared in both pyramidal and nonpyramidal neurons. The ultrastructural immunogold study in P21 rat hippocampi corroborated the light-microscopy results. In addition, this study revealed that a portion of the silver-intensified colloidal gold particles were located on neuronal plasmalemma, as expected for a functional cotransporter. The formation of inhibitory synapses on perikarya of the pyramidal cell layer was a late process. The density of VIAAT-immunoreactive puncta in the stratum pyramidale at P21 reached four times the P7 value in CA3, and six times the P7 value in CA1. Electron microscopy revealed that the number of synapses per neuronal perikaryal profile in the stratum pyramidale of the CA3 area at P21 was three times higher than at P7, even if a concomitant 20% increase in the area of these neuronal perikaryal profiles occurred. It is concluded that, in hippocampal pyramidal cells, there is a developmental shift in the NKCC localization from a predominantly somatic to a predominantly dendritic location. The presence of NKCC during the first postnatal week is consistent with the hypothesis that this transporter might be involved in the depolarizing effects of GABA. The depolarizing effects of GABA may not be required for the establishment of the majority of GABAergic synapses in the stratum pyramidale, because their number increases after the first postnatal week, when GABA action becomes hyperpolarizing.  相似文献   

9.
Intracellular Cl(-) concentration ([Cl(-)](i)) in immature neurons is higher than that expected for a passive distribution, therefore the equilibrium potential for chloride is more positive than the resting membrane potential, and the resulting GABA renders immature neurons depolarization. The higher [Cl(-)](i) in immature neurons is thought to be attributed to the uptake of Cl(-) mediated by NKCC1 (Na(+), K(+)-2Cl(-) cotransporter). Thus, a dysfunction of this transporter could affect synaptic development through a GABA(A) receptor-mediated pathway. To test this possibility, we examined the effects of a Cl(-)-uptake inhibitor on the development of synaptic activities of rat neocortical neurons in culture. Chronic treatment with bumetanide at 10 microM during the culture diminished the amplitude of synaptically-driven rhythmic depolarizing potentials (RDPs) in neurons and also decreased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) but not of spontaneous excitatory postsynaptic currents (sEPSCs). Chronic treatment with bumetanide decreased vesicular GABA transporter (VGAT)-immunopositive particles without affecting paired-pulse ratio of evoked IPSCs (eIPSCs), indicating decrease in the number of functional GABAergic synapses. Acute treatment with bumetanide (10 microM) decreased neuronal [Cl(-)](i), the amplitude of RDPs, and neuronal excitability, while bumetanide had no effect on RDPs and neuronal excitability in the presence of bicuculline. These results suggest that the uptake of Cl(-) by NKCC1 affects the development of inhibitory synapses by promoting a depolarizing GABA-mediated response.  相似文献   

10.
The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole‐cell recordings from POm relay neurons. Consistent with their function as drivers, we found large‐amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage‐gated T‐type calcium channels were probed by virus‐mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of ?70 mV. However, when depolarizing the membrane potential to ?60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav3.1 expression is essential to establish the driver function of L5B‐POm synapses at hyperpolarized membrane potentials.  相似文献   

11.
GABA is the main inhibitory neurotransmitter in the adult brain, which causes Cl- influx into the cell via GABAA receptors. The direction of Cl- inflow is dependent on the Cl- gradient across the membrane. Cation-Cl- cotransporters have been considered to play pivotal roles in controlling intracellular Cl- concentration ([Cl-]i) of neurons; hence, they modulate the GABAergic function. To elucidate how these cotransporters are distributed in the trigeminal nuclei, we investigated the expressions of K+-Cl- cotransporters (KCC1 and KCC2) and Na+-K+-2Cl- cotransporter (NKCC1) mRNAs by using in situ hybridization histochemistry. KCC2 mRNA was expressed in the motor trigeminal nucleus (Mo5), the principal trigeminal nucleus (Pr5), and the spinal trigeminal nucleus (Sp5), but not in the trigeminal ganglion (TG) and the mesencephalic trigeminal nucleus (Me5). On the other hand, KCC1 and NKCC1 mRNAs were expressed in all the trigeminal nuclei. The resting [Cl-]i of Me5 neurons was significantly higher than that of Mo5 neurons. Thus, in primary sensory neurons such as the TG and the Me5, [Cl-]i would be higher than those in the other trigeminal nuclei because of the lack of KCC2 mRNA expression. Since Me5 neurons, but not Mo5 neurons, responded to GABA by depolarization, GABA would have differential physiological functions among trigeminal nuclei and TG.  相似文献   

12.
The developmental refinement of excitatory synapses is often influenced by neuronal activity, and underlying synaptic mechanisms have been suggested. In contrast, few studies have asked whether inhibitory synapses are reorganized during development and whether this is accompanied by use-dependent changes of inhibitory synaptic strength. The topographic inhibitory projection from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) undergoes synapse elimination during development (Sanes and Takács, 1993). To determine whether there is an associated period of synaptic plasticity, whole-cell recordings were obtained from developing LSO neurons of gerbils in a brain slice preparation. In current-clamp recordings, low-frequency stimulation of the MNTB led to a decline in IPSP amplitude by 43%. In voltage-clamp recordings, hyperpolarized LSO neurons also exhibited a long-lasting depression of MNTB-evoked inhibitory synaptic currents (34%) after low-frequency stimulation. When LSO neurons were depolarized, low-frequency stimulation of the MNTB produced a significantly larger inhibitory synaptic depression (59%). This synaptic plasticity declined dramatically by postnatal days 17-19. Similar to well studied forms of excitatory synaptic plasticity, inhibitory depression depended on postsynaptic calcium. We propose that such activity-dependent synaptic depression may support the developmental rearrangement of inhibitory terminals as they compete with neighboring excitatory and/or inhibitory inputs.  相似文献   

13.
Golgi cells, together with granule cells and mossy fibers, form a neuronal microcircuit regulating information transfer at the cerebellum input stage. Despite theoretical predictions, little was known about long-term synaptic plasticity at Golgi cell synapses. Here, we have used whole-cell patch-clamp recordings and calcium imaging to investigate long-term synaptic plasticity at excitatory synapses impinging on Golgi cells. In acute mouse cerebellar slices, mossy fiber theta-burst stimulation (TBS) could induce either long-term potentiation (LTP) or long-term depression (LTD) at mossy fiber-Golgi cell and granule cell-Golgi cell synapses. This synaptic plasticity showed a peculiar voltage dependence, with LTD or LTP being favored when TBS induction occurred at depolarized or hyperpolarized potentials, respectively. LTP required, in addition to NMDA channels, activation of T-type Ca2+ channels, while LTD required uniquely activation of L-type Ca2+ channels. Notably, the voltage dependence of plasticity at the mossy fiber-Golgi cell synapses was inverted with respect to pure NMDA receptor-dependent plasticity at the neighboring mossy fiber-granule cell synapse, implying that the mossy fiber presynaptic terminal can activate different induction mechanisms depending on the target cell. In aggregate, this result shows that Golgi cells show cell-specific forms of long-term plasticity at their excitatory synapses, that could play a crucial role in sculpting the response patterns of the cerebellar granular layer.SIGNIFICANCE STATEMENT This article shows for the first time a novel form of Ca2+ channel-dependent synaptic plasticity at the excitatory synapses impinging on cerebellar Golgi cells. This plasticity is bidirectional and inverted with respect to NMDA receptor-dependent paradigms, with long-term depression (LTD) and long-term potentiation (LTP) being favored at depolarized and hyperpolarized potentials, respectively. Furthermore, LTP and LTD induction requires differential involvement of T-type and L-type voltage-gated Ca2+ channels rather than the NMDA receptors alone. These results, along with recent computational predictions, support the idea that Golgi cell plasticity could play a crucial role in controlling information flow through the granular layer along with cerebellar learning and memory.  相似文献   

14.
Axonal varicosities and dendritic spines at excitatory synapses are dynamic structures essential for synaptic plasticity, whereas the behavior of inhibitory synapses during development and plasticity remains largely unknown. To investigate the morphology and dynamics of inhibitory synapses, we used two distinct pre- and postsynaptic fluorescent probes: one is a yellow fluorescent protein, Venus, incorporated into vesicular GABA transporter (VGAT) gene as a specific marker of presynaptic inhibitory neurons and the other red fluorescent protein (mCherry)-tagged gephyrin, a postsynaptic scaffolding protein, as a postsynaptic marker. Using primary culture of mouse hippocampal neurons and confocal laser-scanning microscopy, we established a system by which close contacts of Venus-positive axonal varicosities with mCherry-labeled gephyrin clusters in the dendritic shafts of dissociated hippocampal pyramidal neurons could be clearly visualized. Time-lapse imaging revealed that: (1) the presynaptic varicosities actively moved with marked changes in their shapes, and the postsynaptic scaffolding protein gephyrin clusters underwent coordinated movements in a tight association with the presynaptic varicosities, (2) the extents of morphological changes and movements depended on the developmental stages, reaching a stable level as the inhibitory synaptic connections matured, and (3) the motility indexes of the varicosity and its counterpart gephyrin cluster were well correlated. Furthermore, action potential blockade with tetrodotoxin treatment reduced the varicosity size, gephyrin cluster mobility as well as the amplitude of GABAergic synaptic currents in pyramidal neurons. Such a neural activity-dependent dynamic change in GABAergic synaptic morphology is likely to play a critical role in the regulatory mechanism underlying the formation and plasticity of inhibitory synapses.  相似文献   

15.
To understand principles of synaptic integration, it is necessary to define the types of synapses on a particular neuron and their distribution. Thin sectioning and double replica freeze-fracture techniques were employed to characterize the small vesicle bouton (SVB) synapses on the distal half of the Mauthner (M) cell lateral dendrite, which probably mediate a remote dendritic inhibition. Three morphologically distinct SVB synapses, types A, B, and C, were found. These three SVB synapses form roughly 90% of the synapses on the distal half of the lateral dendrite, with types A and B being most common. The SVB A synapse is characterized by mostly oval and round synaptic vesicles, a discrete presynaptic active zone with a highly variable shape, and a postsynaptic active zone with no apparent particle aggregate in either the E or P face. At the SVB B synapse, most of the synaptic vesicles are flat. A very high particle density is present throughout the presynaptic P face, and vesicle attachment sites are dispersed over much of the presynaptic membrane. Postsynaptic P face particle aggregates are subjacent to the presynaptic vesicle attachment sites, and are often large and anastomosing. The SVB C synapse is characterized by synaptic vesicle profiles that vary from flattened to round. The SVB C cytoplasm was unclouded by the flocculent material that characterized SVBs A and B. The presynaptic active zones at the SVB C synapse are discrete, and macular or oblong. No particle aggregates are apparent in the postsynaptic active zone. Small, macular particle aggregates were found in nonactive zone regions of the postsynaptic E face of all three types of SVBs. Small subsurface cisterns were also observed underlying the M cell membrane at all three types of SVB synapses. Neither the postsynaptic E face aggregates nor the subsurface cisterns were ever observed directly subjacent to presynaptic active zones, but were often seen adjacent to active zones. Short, straight rows of particles and short cylinders were often seen in both pre- and postsynaptic surrounding zone regions of SVB A and C synapses. These structures are thought to represent tight junctions.  相似文献   

16.
Primary afferent neurons maintain depolarizing responses to GABA into adulthood. The molecular basis for this GABAergic response appears to be the Na+K+2Cl- cotransporter NKCC1 that contributes to the maintenance of a high intracellular chloride concentration. Recently, a role for NKCC1 has been proposed in nociceptive processing which makes it timely to gain a better understanding of the distribution of NKCC1 in sensory ganglia. Here, we describe that, in the rat, NKCC1 mRNA is predominately expressed by small and medium diameter dorsal root (DRG) and trigeminal (TG) ganglion neurons. The colocalization of NKCC1 mRNA with sensory neuron population markers was assessed. In the DRG, many NKCC1 mRNA-expressing neurons colocalized peripherin (57.0+/-2.5%), calcitonin-gene-related peptide (CGRP, 39.2+/-4.4%) or TRPV1 immunoreactivity (50.0+/-1.9%) whereas only 8.7+/-1.2% were co-labeled with a marker for large diameter afferents (N52). Similarly, in the TG, NKCC1 mRNA-expressing neurons frequently colocalized peripherin (50.0+/-3.0%), CGRP (35.4+/-2.6%) or TRPV1 immunoreactivity (44.7+/-1.2%) while 14.8+/-1.3% were co-labeled with the N52 antibody. NKCC1 mRNA was also detected in satellite glial (SGCs) in both the DRG and TG. Colocalization of NKCC1 protein with the SGC marker NG2 confirmed the phenotype of these NKCC1-expressing glial cells. In contrast to in situ hybridization experiments, we did not observe NKCC1 immunoreactivity in primary afferent somata. These findings suggest that NKCC1 is expressed in anatomically appropriate cells in order to modulate GABAergic responses in nociceptive neurons. Moreover, these results suggest the possibility of a functional role of NKCC1 in the glial cells closely apposed to primary sensory afferents.  相似文献   

17.
Spontaneous transients of correlated activity are a characteristic feature of immature brain structures, where they are thought to be crucial for the establishment of precise neuronal connectivity. Studies on experimental animals have shown that this kind of early activity in cortical structures is composed of long-lasting, intermittent network events, which undergo a developmental decline that is closely paralleled by the maturation of GABAergic inhibition. In order to examine whether similar events occur in the immature human cortex, we performed direct current-coupled electroencephalography (EEG) recordings from sleeping preterm babies. We show now that much of the preterm EEG activity is confined to spontaneous, slow activity transients. These transients are characterized by a large voltage deflection that nests prominent oscillatory activity in several frequency bands covering the whole frequency spectrum of the preterm EEG (<0.1-30 Hz). The slow voltage deflections had an amplitude of up to 800 microV. Most of these 'giant' events originated in the temporo-occipital areas, with a maximum rate of about 8/min, and their occurrence as well as amplitude showed a decline by the time of normal birth. In age-matched fetal brain tissue, this decrease in the spontaneous activity transients was associated with a developmental up-regulation of the neuronal chloride extruder K+-Cl- cotransporter 2, a crucial molecule for the generation of inhibitory GABAergic Cl- currents. Our work indicates that slow endogenous activity transients in the immature human neocortex are mostly confined to the prenatal stage and appear to be terminated in parallel with the maturation of functional GABAergic inhibition.  相似文献   

18.
The formation of GABAergic synapses in dispersed cell cultures of the rat cerebellum was followed from 7 to 21 days in vitro (DIV). The majority of GABAergic synapses appeared between 10 and 14 DIV, and apparently no additional GABAergic synapses formed after 14 DIV.The first step in the development of a GABAergic synapse appeared to be the formation of a large diameter swelling in a GABAergic neuronal process. After the initial contact between the pre- and postsynaptic elements was established, both the number of synaptic vesicles and the thickness of the postsynaptic density increased, while the cross-sectional area of the presynaptic element decreased. The length of the postsynaptic density showed some increase, but no changes were noted in the synaptic cleft thickness, size of the synaptic vesicles or the shape of the synaptic vesicles.Our findings indicate that the formation of GABAergic synapses was not preceded by the formation of other types of junctions or preformed synaptic elements. In addition, the timing and the rate of formation of GABAergic synapses appears not to depend on contact with a single type of postsynaptic neuron, but rather to depend upon intrinsic properties of the development of the GABAergic neuron.  相似文献   

19.
Extracellular pH changes may constitute significant signals for neuronal communication. During synaptic transmission, changes in pH in the synaptic cleft take place. Its role in the regulation of presynaptic Ca2+ currents through multivesicular release in ribbon‐type synapses is a proven phenomenon. In recent years, protons have been recognized as neurotransmitters that participate in neuronal communication in synapses of several regions of the CNS such as amygdala, nucleus accumbens, and brainstem. Protons are released by nerve stimulation and activate postsynaptic acid‐sensing ion channels (ASICs). Several types of ASIC channels are expressed in the peripheral and central nervous system. The influx of Ca2+ through some subtypes of ASICs, as a result of synaptic transmission, agrees with the participation of ASICs in synaptic plasticity. Pharmacological and genetical inhibition of ASIC1a results in alterations in learning, memory, and phenomena like fear and cocaine‐seeking behavior. The recognition of endogenous molecules, such as arachidonic acid, cytokines, histamine, spermine, lactate, and neuropeptides, capable of inhibiting or potentiating ASICs suggests the existence of mechanisms of synaptic modulation that have not yet been fully identified and that could be tuned by new emerging pharmacological compounds with potential therapeutic benefits.  相似文献   

20.
Retinoic acid (RA), a developmental morphogen, has emerged in recent studies as a novel synaptic signaling molecule that acts in mature hippocampal neurons to modulate excitatory and inhibitory synaptic transmission in the context of homeostatic synaptic plasticity. However, it is unclear whether RA is capable of modulating neural circuits outside of the hippocampus, and if so, whether the mode of RA's action at synapses is similar to that within the hippocampal network. Here we explore for the first time RA's synaptic function outside the hippocampus and uncover a novel function of all‐trans retinoic acid at inhibitory synapses. Acute RA treatment increases spontaneous inhibitory synaptic transmission in L2/3 pyramidal neurons of the somatosensory cortex, and this effect requires expression of RA's receptor RARα both pre‐ and post‐synaptically. Intriguingly, RA does not seem to affect evoked inhibitory transmission assayed with either extracellular stimulation or direct activation of action potentials in presynaptic interneurons at connected pairs of interneurons and pyramidal neurons. Taken together, these results suggest that RA's action at synapses is not monotonous, but is diverse depending on the type of synaptic connection (excitatory versus inhibitory) and circuit (hippocampal versus cortical). Thus, synaptic signaling of RA may mediate multi‐faceted regulation of synaptic plasticity. In addition to its classic roles in brain development, retinoic acid (RA) has recently been shown to regulate excitatory and inhibitory transmission in the adult brain. Here, the authors show that in layer 2/3 (L2/3) of the somatosensory cortex (S1), acute RA induces increases in spontaneous but not action‐potential evoked transmission, and that this requires retinoic acid receptor (RARα) both in presynaptic PV‐positive interneurons and postsynaptic pyramidal (PN) neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号