首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.  相似文献   

2.
3.
Celiac Disease (CeD) is a chronic intestinal disease which occurs in 0.7–1.4% of the global population. Since the discovery of gluten as its disease-inducing antigen, CeD patients are treated with a gluten-free diet which is effective but has limitations for certain groups of patients. Accordingly, over the past few years, there is a growing interest in alternative treatment options. This review summarizes emerging pharmacological approaches, including tolerance induction strategies, tissue transglutaminase inhibition, gluten degradation, and inhibition of interleukin (IL)-15.  相似文献   

4.
IntroductionAllogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens.MethodsTwo different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded.ResultsrATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells.ConclusionsATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.  相似文献   

5.
Metabotropic glutamate receptors (mGlu) are a family of class C G protein-coupled receptors (GPCRs) with important biological functions and widespread expression. The mechanisms of mGlu activation and the development of allosteric modulators for these dimeric proteins have attracted singular attention including the use of light regulated ligands. Photopharmacology involves the integration of a photoactive moiety into the ligand structure that following specific illumination undergoes a structural rearrangement and changes its biological activity. The use of light-regulated allosteric ligands offers the opportunity to manipulate mGlu signalling with spatiotemporal precision, unattainable with classical pharmacological approaches. In this review, we will discuss some of the innovations that have been made in the allosteric photopharmacology of mGlu receptors to date. We discuss the prospects of these molecular tools in the control of mGluRs and the new perspectives in understanding mGlu mechanisms, pharmacology and (patho)physiology that can ultimately result in innovative drug discovery concepts.  相似文献   

6.
7.
《Farmacia hospitalaria》2023,47(3):T127-T132
ObjectiveCapecitabine, an antineoplastic drug used in the treatment of breast and colon cancer, can cause severe, even fatal toxicity in some patients. The interindividual variability of this toxicity is largely due to genetic variations in target genes and enzymes of metabolism of this drug, such as Thymidylate Synthase (TS) and Dihydropyrimidine Dehydrogenase (DPD). The enzyme Cytidine Deaminase (CDA), involved in the activation of capecitabine, also has several variants associated with an increased risk of toxicity to treatment, although its role as a biomarker is not yet clearly defined.Therefore, our main objective is to study the association between the presence of genetic variants in CDA gen, CDA enzymatic activity and the development of severe toxicity in patients treated with capecitabine whose initial dose was adjusted based on the genetic profile of the DPD gen (DPYD).MethodProspective multicenter observational cohort study, focused on the analysis of the genotype–phenotype association of the CDA enzyme.After the experimental phase, an algorithm will be developed to determine the dose adjustment needed to reduce the risk of treatment toxicity according to CDA genotype, developing a Clinical Guide for capecitabine dosing according to genetic variants in DPYD and CDA. Based on this guide, a Bioinformatics Tool will be created to generate the pharmacotherapeutic report automatically, facilitating the implementation of pharmacogenetic advice in clinical practice. This tool will be a great support in making pharmacotherapeutic decisions based on the patient's genetic profile, incorporating precision medicine into clinical routine. Once the usefulness of this tool has been validated, it will be offered free of charge to facilitate the implementation of pharmacogenetics in hospital centers and equitably benefit all patients on capecitabine treatment.  相似文献   

8.
5-Fluorouracil (5FUra) is the third most popular chemotherapeutic component employed to treat solid tumors. In the present study, we aimed to appraise the silymarin (SM) and silymarin nanoemulsion (SMN) effect on 5FUra-induced gastrointestinal toxicity in adult male rats. A total of 30 male Wistar rats were divided into 6 groups including the control (Crl) group, and groups treated with SMN (5 mg.kg−1), SM (5 mg.kg−1), 5FUra + SMN (5 mg.kg−1), and 5FUra + SM (5 mg.kg−1) by IP injection for 14 days. And gastrointestinal toxicity was induced by a single intraperitoneal (IP) injection of 5FUra (100 mg.kg−1) for the last group in the study. Treating rats with SM and SMN diminished elevating malondialdehyde (MDA) levels, and improved total antioxidant capacity (TAC) levels. Also, the intensity of mRNA expression of interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-α) caused by 5FUra in the gastrointestinal tissue tract, and macroscopic oral ulcerations decreased, ass well as weight loss was prevented, particularly in the SMN group. Moreover, in the microscopic scope, there were significant improvements in the levels of hyperemia, hyaline, and inflammatory cell infiltration in the tongue, esophagus, and intestinal tissues in the FUra + SMN and FUra + SM groups compared to 5FUra. Hence, treatment with SM and SMN reduced oxidative stress, histopathological degeneration, and gene expression of inflammatory markers in the gastrointestinal tract. According to the results, treatment with SM and SMN markedly decreases the gastrointestinal toxicity caused by 5FUra.  相似文献   

9.
Antigen stimulation induces adenosine triphosphate (ATP) release from naïve lymphocytes in lymphoid tissues. However, previous studies indicated that the non-lytic release of ATP also occurs in most tissues and cell types under physiological conditions. Here, we show that extracellular ATP (eATP) is indeed constitutively produced by naïve T cells in response to lymphoid chemokines in uninflamed lymph nodes and is involved in the regulation of immune cell migration. In this review, we briefly summarize the homeostatic role of extracellular ATP in immune cell migration in vivo.  相似文献   

10.
11.
Freezing is a common process applied in the pharmaceutical industry to store and transport biotherapeutics. Herewith, multi-scale molecular dynamics simulations of Lactate dehydrogenase (LDH) protein in phosphate buffer with/without ice formation performed to uncover the still poorly understood mechanisms and molecular details of protein destabilization upon freezing. Both fast and slow ice growing conditions were simulated at 243 K from one or two-side of the simulation box, respectively. The rate of ice formation at all-atom simulations was crucial to LDH stability, as faster freezing rates resulted in enhanced structural stability maintained by a higher number of intramolecular hydrogen bonds, less flexible protein's residues, lower solvent accessibility and greater structural compactness. Further, protein aggregation investigated by coarse-grained simulations was verified to be initiated by extended protein structures and retained by electrostatic interactions of the salt bridges between charged residues and hydrogen bonds between polar residues of the protein. Lastly, the study of free energy of dissociation through steered molecular dynamics simulation revealed LDH was destabilized by the solvation of the hydrophobic core and the loss of hydrophobic interactions. For the first time, experimentally validated molecular simulations revealed the detailed mechanisms of LDH destabilization upon ice formation and cryoconcentration of solutes.  相似文献   

12.
《药学学报(英文版)》2022,12(3):1447-1459
Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π?π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.  相似文献   

13.
14.
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.  相似文献   

15.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

16.
Defects of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein affect the homeostasis of chloride, bicarbonate, sodium, and water in the airway surface liquid, influencing the mucus composition and viscosity, which induces a severe condition of infection and inflammation along the whole life of CF patients. The introduction of CFTR modulators, novel drugs directly intervening to rescue the function of CFTR protein, opens a new era of experimental research. The review summarizes the most recent advancements to understand the characteristics of the infective and inflammatory pathology of CF lungs.  相似文献   

17.
18.
MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.  相似文献   

19.
《药学学报(英文版)》2020,10(8):1414-1425
HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.  相似文献   

20.
《药学学报(英文版)》2020,10(9):1669-1679
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号