首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stomatogastric nervous system (STNS) of the embryonic lobster is rhythmically active prior to hatching, before the network is needed for feeding. In the adult lobster, two rhythms are typically observed: the slow gastric mill rhythm and the more rapid pyloric rhythm. In the embryo, rhythmic activity in both embryonic gastric mill and pyloric neurons occurs at a similar frequency, which is slightly slower than the adult pyloric frequency. However, embryonic motor patterns are highly irregular, making traditional burst quantification difficult. Consequently, we used spectral analysis to analyze long stretches of simultaneous recordings from muscles innervated by gastric and pyloric neurons in the embryo. This analysis revealed that embryonic gastric mill neurons intermittently produced pauses and periods of slower activity not seen in the recordings of the output from embryonic pyloric neurons. The slow activity in the embryonic gastric mill neurons increased in response to the exogenous application of Cancer borealis tachykinin-related peptide 1a (CabTRP), a modulatory peptide that appears in the inputs to the stomatogastric ganglion (STG) late in larval development. These results suggest that the STG network can express adult-like rhythmic behavior before fully differentiated adult motor patterns are observed, and that the maturation of the neuromodulatory inputs is likely to play a role in the eventual establishment of the adult motor patterns.  相似文献   

2.
Corticothalamic resonance, states of vigilance and mentation   总被引:26,自引:0,他引:26  
Steriade M 《Neuroscience》2000,101(2):243-276
During various states of vigilance, brain oscillations are grouped together through reciprocal connections between the neocortex and thalamus. The coherent activity in corticothalamic networks, under the control of brainstem and forebrain modulatory systems, requires investigations in intact-brain animals. During behavioral states associated with brain disconnection from the external world, the large-scale synchronization of low-frequency oscillations is accompanied by the inhibition of synaptic transmission through thalamocortical neurons. Despite the coherent oscillatory activity, on the functional side there is dissociation between the thalamus and neocortex during slow-wave sleep. While dorsal thalamic neurons undergo inhibitory processes due to the prolonged spike-bursts of thalamic reticular neurons, the cortex displays, periodically, a rich spontaneous activity and preserves the capacity to process internally generated signals that dominate the state of sleep. In vivo experiments using simultaneous intracellular recordings from thalamic and cortical neurons show that short-term plasticity processes occur after prolonged and rhythmic spike-bursts fired by thalamic and cortical neurons during slow-wave sleep oscillations. This may serve to support resonant phenomena and reorganize corticothalamic circuitry, determine which synaptic modifications, formed during the waking state, are to be consolidated and generate a peculiar kind of dreaming mentation. In contrast to the long-range coherent oscillations that occur at low frequencies during slow-wave sleep, the sustained fast oscillations that characterize alert states are synchronized over restricted territories and are associated with discrete and differentiated patterns of conscious events.  相似文献   

3.
Inferior olivary (IO) neurons are electrically coupled through gap junctions and generate synchronous subthreshold oscillations of their membrane potential at a frequency of 1-10 Hz. Whereas the ionic mechanisms of these oscillatory responses are well understood, their origin and ensemble properties remain controversial. Here, the role of gap junctions in generating and synchronizing IO oscillations was examined by combining intracellular recordings with high-speed voltage-sensitive dye imaging in rat brain stem slices. Single cell responses and ensemble synchronized responses of IO neurons were compared in control conditions and in the presence of 18beta-glycyrrhetinic acid (18beta-GA), a pharmacological gap junction blocker. Under our experimental conditions, 18beta-GA had no adverse effects on intrinsic electroresponsive properties of IO neurons, other than the block of gap junction-dependent dye coupling and the resulting change in cells' passive properties. Application of 18beta-GA did not abolish single cell oscillations. Pharmacologically uncoupled IO neurons continued to oscillate with a frequency and amplitude that were similar to those recorded in control conditions. However, these oscillations were no longer synchronized across a population of IO neurons. Our optical recordings did not detect any clusters of synchronous oscillatory activity in the presence of the blocker. These results indicate that gap junctions are not necessary for generating subthreshold oscillations, rather, they are required for clustering of coherent oscillatory activity in the IO. The findings support the view that oscillatory properties of single IO neurons endow the system with important reset dynamics, while gap junctions are mainly required for synchronized neuronal ensemble activity.  相似文献   

4.
Neurons exhibit long-term excitability changes necessary for maintaining proper cell and network activity in response to various inputs and perturbations. For instance, the adult crustacean pyloric network can spontaneously recover rhythmic activity after complete shutdown resulting from permanent removal of neuromodulatory inputs. Dissociated lobster stomatogastric ganglion (STG) neurons have been shown to spontaneously develop oscillatory activity via excitability changes. Rhythmic electrical stimulation can eliminate these oscillatory patterns in some cells. The ionic mechanisms underlying these changes are only partially understood. We used dissociated crab STG neurons to study the ionic mechanisms underlying spontaneous recovery of rhythmic activity and stimulation-induced activity changes. Similar to lobster neurons, rhythmic activity spontaneously develops in crab STG neurons. Rhythmic hyperpolarizing stimulation can eliminate, but more commonly accelerate, the emergence of stable oscillatory activity depending on Ca(2+) influx at hyperpolarized voltages. Our main finding is that upregulation of a Ca(2+) current and downregulation of a high-threshold K(+) current underlies the spontaneous homeostatic development of oscillatory activity. However, because of a nonlinear dependence on stimulus frequency, hyperpolarization-induced oscillations appear to be inconsistent with a homeostatic regulation of activity. We find no difference in the activity patterns or the underlying ionic currents involved between neurons of the fast pyloric and the slow gastric mill networks during the first 10 days in isolation. Dynamic-clamp experiments confirm that these conductance modifications can explain the observed activity changes. We conclude that spontaneous and stimulation-induced excitability changes in STG neurons can both result in intrinsic oscillatory activity via regulation of the same two conductances.  相似文献   

5.
The phasing of neuronal activity in a rhythmic motor network is determined by a neuron's intrinsic firing properties and synaptic inputs; these could vary in their relative importance under different modulatory conditions. In the lobster pyloric network, the firing of eight follower pyloric (PY) neurons is shaped by their intrinsic rebound after pacemaker inhibition and by synaptic input from the lateral pyloric (LP) neuron, which inhibits all PY neurons and is electrically coupled to a subset of them. Under control conditions, LP inhibition is weak and has little influence on PY firing. We examined modulation that could theoretically enhance the LP's synaptic contribution to PY firing. We measured the effects of dopamine (DA) on LP-->PY synapses, driving the LP neuron with trains of realistic waveforms constructed from prerecorded control and DA LP oscillations, which differed in shape and duration. Under control conditions, chemical inhibition underwent severe depression and disappeared; in the mixed synapses, electrical coupling dominated. Switching between control and DA LP waveforms (with or without DA present) caused only subtle changes in synaptic transmission. DA markedly enhanced synaptic inhibition, reduced synaptic depression and weakened electrical coupling, reversing the sign of the mixed synapses. Despite this, removal of the LP from the intact network still had only weak effects on PY firing. DA also enhances PY intrinsic rebound properties, which still control the onset of PY firing. Thus in a rhythmic network, the functional importance of synaptic modulation can only be understood in the context of parallel modulation of intrinsic properties.  相似文献   

6.
Repeated motor activities like locomotion, mastication and respiration need rhythmic discharges of functionally connected neurons termed central pattern generators (CPGs) that cyclically activate motoneurons even in the absence of descending commands from higher centres. For motor pattern generation, CPGs require integration of multiple processes including activation of ion channels and transmitter receptors at strategic locations within motor networks. One emerging mechanism is activation of glutamate metabotropic receptors (mGluRs) belonging to group I, while group II and III mGluRs appear to play an inhibitory function on sensory inputs. Group I mGluRs generate neuronal membrane depolarization with input resistance increase and rapid fluctuations in intracellular Ca2+, leading to enhanced excitability and rhythmicity. While synchronicity is probably due to modulation of inhibitory synaptic transmission, these oscillations occurring in coincidence with strong afferent stimuli or application of excitatory agents can trigger locomotor-like patterns. Hence, mGluR-sensitive spinal oscillators play a role in accessory networks for locomotor CPG activation. In brainstem networks supplying tongue muscle motoneurons, group I receptors facilitate excitatory synaptic inputs and evoke synchronous oscillations which stabilize motoneuron firing at regular, low frequency necessary for rhythmic tongue contractions. In this case, synchronicity depends on the strong electrical coupling amongst motoneurons rather than inhibitory transmission, while cyclic activation of KATP conductances sets its periodicity. Activation of mGluRs is therefore a powerful strategy to trigger and recruit patterned discharges of motoneurons.  相似文献   

7.
We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4-3.5 s; frequency = 9-16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K(+) channel blocker 4-aminopyridine (0.5-1 microM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid receptor antagonist kynurenic acid in VB (n = 6). By contrast, cortical application of kynurenic acid (n = 4) abolished spindle-like oscillations at this site, but not those recorded in VB, where their frequency was higher than under control conditions. Our findings demonstrate the preservation of reciprocally interconnected cortical and thalamic neuron networks that generate thalamocortical spindle-like oscillations in an in vitro rat brain slice. As shown in intact animals, these oscillations originate in the thalamus where they are presumably caused by interactions between RTN and VB neurons. We propose that this preparation may help to analyze thalamocortical synchronization and to understand the physiopathogenesis of absence attacks.  相似文献   

8.
A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated lamprey spinal cord in which the left and right sides of each myotome display rhythmic alternating activity. We sectioned the spinal cord along the midline and tested whether rhythmic motor activity could be induced in the hemicord with bath-applied D-glutamate or N-methyl-D-aspartate (NMDA) as in the intact spinal cord or by brief trains of electrical stimuli. Fast rhythmic bursting (2-12 Hz), coordinated across ventral roots, was observed with all three methods. Furthermore, to diminish gradually the crossed glycinergic inhibition, a progressive surgical lesioning of axons crossing the midline was implemented. This resulted in a gradual increase in burst frequency, linking firmly the fast hemicord rhythm [6.6 +/- 1.7 (SD) Hz] to fictive swimming in the intact cord (2.4 +/- 0.7 Hz). Ipsilateral glycinergic inhibition was not required for the hemicord burst pattern generation, suggesting that an interaction between excitatory glutamatergic neurons suffices to produce the unilateral burst pattern. In NMDA, burst activity at a much lower rate (0.1-0.4 Hz) was also encountered, which required the voltage-dependent properties of NMDA receptors in contrast to the fast rhythm. Swimming is thus produced by pairs of unilateral burst generating networks with reciprocal inhibitory connections that not only ensure left/right alternation but also downregulate frequency.  相似文献   

9.
Rhythmic electrical activity is ubiquitous in neuronal networks of the brain and is implicated in a multitude of different processes. A prominent example in the healthy brain is electrical oscillations in the gamma-frequency band (20–80 Hz) in hippocampal and neocortical networks, which play an important role in learning, memory and cognition. An example in the pathological brain is electrographic seizures observed in certain types of epilepsy. Interestingly the activation of kainate receptors (KARs) plays an important role in synaptic physiology and plasticity, and can generate both gamma oscillations and electrographic seizures. Electrophysiological recordings of extracellular gamma oscillations and intracellular currents in a hippocampal slice combined with computer modelling can shed light on the expression loci of KAR subunits on single neurones and the distinct roles subunits play in rhythmic activity in the healthy and the pathologicalal brain. Using this approach in wild-type (WT) and KAR knockout mice it has been shown that KAR subunits GluR5 and GluR6 have similar functions during gamma oscillations and epileptiform bursts and that small changes in the overall activity in the hippocampal area CA3 can tilt the balance between excitation and inhibition and cause the neuronal network to switch from gamma oscillations to epileptiform bursts.  相似文献   

10.
Single-unit and multiunit activities were recorded from dorsal column nuclei of anesthetized rats in order to study the characteristics of the oscillatory activity expressed by these cells and their neuronal interactions. On the basis of their firing rate characteristics in spontaneous conditions, two types of dorsal column nuclei cell have been identified. Low-frequency cells (74%) were silent or displayed a low firing rate (1.9+/-0.48 spikes/s), and were identified as thalamic-projecting neurons because they were activated antidromically by medial lemniscus stimulation. High-frequency cells (26%) were characterized by higher discharge rates (27.2+/-5.1 spikes/s). None of them was antidromically activated by medial lemniscus stimulation. Low-frequency neurons showed a non-rhythmic discharge pattern spontaneously which became rhythmic under sensory stimulation of their receptive fields (48% of cases; 4.8+/-0.23Hz). All high-frequency neurons showed a rhythmic discharge pattern at 13.8+/- 0.68Hz either spontaneously or during sensory stimulation of their receptive fields. The shift predictor analysis indicated that oscillatory activity is not phase-locked to the stimulus onset in either type of cell, although the stimulus can reset the phase of the rhythmic activity of high-frequency cells. Cross-correlograms between pairs of low-frequency neurons typically revealed synchronized rhythmic activity when the overlapping receptive fields were stimulated. Rhythmic synchronization of high-frequency discharges was rarely observed spontaneously or under sensory stimulation. High-frequency neuronal firing could be correlated with the low-frequency neuronal activity or more often with the multiunit activity during sensory stimulation. Moreover, the presence of oscillatory activity modulated the sensory responses of dorsal column nuclei cells, favoring their responses.These findings indicate that thalamic-projecting and non-projecting neurons in dorsal column nuclei exhibited distinct oscillatory characteristics. However, both types of neuron may be entrained into an oscillatory rhythmic pattern when their overlapping receptive fields are stimulated, suggesting that in those conditions the dorsal column nuclei generate a populational oscillatory output to the somatosensory thalamus which could modulate and amplify the effectiveness of the somatosensory transmission.  相似文献   

11.
This study investigated the role of electrical and chemical synapses in sustaining 4-aminopyridine (4-AP)-evoked network activity recorded extracellularly from substantia gelatinosa (SG) of young rat spinal cord in vitro . Superfusion of 4-AP (50 μ m ) induced two types of activity, the first was observed as large amplitude field population spiking activity and the second manifested within the inter-spike interval as low amplitude rhythmic oscillations in the 4–12 Hz frequency range (mean peak of 8.0 ± 0.1 Hz). The AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μ m ) abolished field population spiking and disrupted 4–12 Hz rhythmic oscillatory activity whereas the NMDA receptor antagonist d -AP5 (50 μ m ) had no significant effect on either activity component. The glycine receptor antagonist strychnine (4 μ m ) and the GABAA receptor antagonist bicuculline (10 μ m ) diminished and abolished, respectively, field population spiking and both antagonists reduced the power of 4–12 Hz oscillations. The non-specific gap junction blockers carbenoxolone (100 μ m ) and octanol (1 m m ) attenuated both types of 4-AP-induced activity. By comparison, the neuronal-specific gap junction uncouplers quinine (250 μ m ) and mefloquine (500 n m ) both disrupted 4–12 Hz oscillations but only quinine reduced the frequency of field population spiking. These data demonstrate the existence of 4-AP-sensitive neuronal networks within SG that can generate rhythmic activity, are differentially modulated by excitatory and inhibitory ionotropic neurotransmission and are at least partly reliant on neuronal and/or glial-mediated electrical connectivity. The physiological significance of these putative intrinsic SG networks and the implications in the context of processing of nociceptive inputs are discussed.  相似文献   

12.
Odor perception depends on a constellation of molecular, cellular, and network interactions in olfactory brain areas. Recently, there has been better understanding of the cellular and molecular mechanisms underlying the odor responses of neurons in the olfactory epithelium, the first-order olfactory area. In higher order sensory areas, synchronized activity in networks of neurons is known to be a prominent feature of odor processing. The perception and discrimination of odorants is associated with fast (20-70 Hz) electroencephalographic oscillations. The cellular mechanisms underlying these fast network oscillations have not been defined. In this study, we show that synchronous fast oscillations can be evoked by brief electrical stimulation in the rat olfactory bulb in vitro, partially mimicking the natural response of this brain region to sensory input. Stimulation induces periodic inhibitory synaptic potentials in mitral cells and prolonged spiking in GABAergic granule cells. Repeated stimulation leads to the persistent enhancement in both granule cell activity and mitral cell inhibition. Prominent oscillations in field recordings indicate that stimulation induces high-frequency activity throughout networks of olfactory bulb neurons. Network synchronization results from chemical and electrical synaptic interactions since both glutamate-receptor antagonists and gap junction inhibitors block oscillatory intracellular and field responses. Our results demonstrate that the olfactory bulb can generate fast oscillations autonomously through the persistent activation of networks of inhibitory interneurons. These local circuit interactions may be critically involved in odor processing in vivo.  相似文献   

13.
《Neuroscience》1999,95(3):657-673
This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (<1 Hz), δ (1–4 Hz), spindle (5–15 Hz) and higher frequencies, with seven cells having the δ rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50–100 Hz/1–2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical “spike” on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal “spike” in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation–inhibition (18%) also time-locked to the cortical paroxysmal “spike”. Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus.The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as δ waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies that the cerebral cortex probably imposes its rhythmicity on the cuneate by matching the intrinsic preferred oscillatory frequency of cuneate neurons.  相似文献   

14.
Marino J  Canedo A  Aguilar J 《Neuroscience》2000,95(3):657-673
This work aimed to study whether the sensorimotor cerebral cortex spreads down its rhythmic patterns of activity to the dorsal column nuclei. Extracellular and intracellular recordings were obtained from the cuneate nucleus of chloralose-anesthetized cats. From a total of 140 neurons tested (106 cuneolemniscal), 72 showed spontaneous rhythmic activity within the slow (< 1 Hz), delta (1-4 Hz), spindle (5-15 Hz) and higher frequencies, with seven cells having the delta rhythm coupled to slow oscillations. The spindle activity recorded in the cuneate was tightly coupled to the thalamo-cortico-thalamic spindle rhythmicity. Bilateral or contralateral removal of the frontoparietal cortex abolished the cuneate slow and spindle oscillations. Oscillatory paroxysmal activity generated by fast electrical stimulation (50-100 Hz/1-2 s) of the sensorimotor cortex induced burst firing synchronized with the paroxysmal cortical "spike" on all the non-lemniscal neurons, and inhibitory responses also coincident with the cortical paroxysmal "spike" in the majority (71%) of the cuneolemniscal cells. The remaining lemniscal-projecting neurons showed bursting activity (11%) or sequences of excitation-inhibition (18%) also time-locked to the cortical paroxysmal "spike". Additionally, the cerebral cortex induced coherent oscillatory activity between thalamic ventroposterolateral and cuneate neurons. Electrolytic lesion of the pyramidal tract abolished the cortically induced effects on the contralateral cuneate nucleus, as well as on the ipsilateral medial lemniscus. The results demonstrate that the sensorimotor cortex imposes its rhythmic patterns on the cuneate nucleus through the pyramidal tract, and that the corticocuneate network can generate normal and abnormal patterns of synchronized activity, such as delta waves, spindles and spike-and-wave complexes. The cuneate neurons, however, are able to generate oscillatory activity above 1 Hz in the absence of cortical input, which implies that the cerebral cortex probably imposes its rhythmicity on the cuneate by matching the intrinsic preferred oscillatory frequency of cuneate neurons.  相似文献   

15.
1. The discharge of individual neurons in the visual cortex and lateral geniculate nucleus (LGN) of anesthetized and paralyzed cats and kittens was examined for the presence of oscillatory activity. Neural firing was evoked through the monoptic or dichoptic presentation of drifting gratings and random sequences of flashed bars. The degree to which different oscillatory frequencies were present in neural discharge was quantified by computation of the power spectra of impulse train responses. 2. Action potentials from single cells were recorded extracellularly and isolated on the basis of amplitude. Receptive-field properties of the neurons under study were characterized initially by their discharge in response to gratings of sinusoidal luminance. By varying orientation and spatial frequency, optimal stimulus characteristics were determined. Oscillation analysis was performed on spike trains acquired during repeated presentations of the optimal stimulus by identification of power spectra peaks in the frequency range of rhythmic potentials observed in electroencephalograph studies (30-80 Hz). The amplitude and frequency of the largest peak in this range was used to characterize oscillatory strength and frequency. All discharge in which the peak amplitude exceeded the high-frequency noise by a factor > 1.5 was classified as oscillatory. 3. Of the 342 cortical cells examined, 147 cells displayed oscillatory activity in the 30 to 80-Hz range during portions of their visual response. Sixty out of 169 simple cells, 82 out of 166 complex cells, and 5 out of 7 special complex cells exhibited oscillations. There was no laminar bias in the distribution of oscillatory cells; the proportions of oscillatory cells were similar in all layers. All oscillatory discharge was variable with respect to frequency and strength between successive presentations of the same optimal stimulus. In as little as 10 s, for example, peak frequencies shifted by a factor of two. For many cells, these trial-to-trial variations obscured detectable oscillations when all trials were averaged together. 4. The potential role of neuronal maturation in the generation of oscillatory activity was investigated by studying neuronal responses from kittens at 4 wk postnatal. Of the 80 kitten cells studied, 27 exhibited oscillatory discharge. Although oscillations in the kitten visual cortex spanned the same frequency range as that seen in the adult, oscillations in the midfrequency range (36-44 Hz) are more common in the adult cortex. 5. To explore the possibility that oscillations might play a functional role in vision, we investigated the dependence of oscillations on different stimulus parameters.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Neurochemically induced membrane voltage oscillations and firing episodes in spinal excitatory interneurons expressing the HB9 protein (Hb9 INs) are synchronous with locomotor-like rhythmic motor outputs, suggesting that they contribute to the excitatory drive of motoneurons during locomotion. Similar to central pattern generator neurons in other systems, Hb9 INs are interconnected via electrical coupling, and their rhythmic activity does not depend on fast glutamatergic synaptic transmission. The primary objective of this study was to determine the contribution of fast excitatory and inhibitory synaptic transmission and subthreshold voltage-dependent currents to the induced membrane oscillations in Hb9 INs in the postnatal mouse spinal cord. The non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced the amplitude of voltage oscillations but did not alter their frequency. CNQX suppressed rhythmic motor activity. Blocking glycine and GABAA receptor-mediated inhibitory synapses as well as cholinergic transmission did not change the properties of CNQX-resistant membrane oscillations. However, disinhibition triggered new episodes of slow motor bursting that were not correlated with induced locomotor-like rhythms in Hb9 INs. Our observations indicated that fast excitatory and inhibitory synaptic inputs did not control the frequency of induced rhythmic activity in Hb9 INs. We next examined the contribution of persistent sodium current (INaP) to subthreshold membrane oscillations in the absence of primary glutamatergic, GABAergic and glycinergic synaptic drive to Hb9 INs. Low concentrations of riluzole that blocked the slow-inactivating component of sodium current gradually suppressed the amplitude and reduced the frequency of voltage oscillations. Our finding that INaP regulates locomotor-related rhythmic activity in Hb9 INs independently of primary synaptic transmission supports the concept that these neurons constitute an integral component of the rhythmogenic locomotor network in the mouse spinal cord.  相似文献   

17.
The patch-clamp technique was used to measure the effect of N-methyl-D-aspartate (NMDA) on Xenopus embryonic neurons in an isolated, but intact spinal cord. Whole cell recordings were done at external calcium concentrations of 1 mM. NMDA alone (50-200 microM) or in association with 10 microM serotonin or glycine induced oscillatory activity in most presumed motoneurons, which were therefore considered part of rhythm generating networks. In the presence of TTX, one-half of these neurons maintained this activity. The oscillations fell into two main categories: voltage-dependent, low-frequency (0.3-0.5 Hz) and voltage-independent, high-frequency (3-8 Hz) oscillations. NMDA alone induced TTX-insensitive oscillations in one-third of the neurons; however, the percentage of neurons showing oscillations was greater in the presence of exogenous 5-hydroxytryptamine (5-HT) or glycine. Because these observations were made at embryonic stages where little or no serotonergic innervation exists, it is likely that NMDA-induced intrinsic oscillatory activity in Xenopus embryonic neurons does not require 5-HT.  相似文献   

18.
Sakata S  Yamamori T  Sakurai Y 《Neuroscience》2005,134(4):1099-1111
7-12 Hz Oscillations, characterized by spindle-like high-voltage rhythmic spike components, appear in quiet immobile states of rats. However, it remains unclear what their relationships with preceding behavioral activities are and how prefrontal neuronal dynamics during these oscillations is. In the present study, we first determined the relationship of 7-12 Hz oscillations with the wake-sleep cycle and preceding behavioral activities in several normal rat strains by recording electroencephalograms from the multiple cortical regions. Prolonged awake period transiently enhanced the following appearance of 7-12 Hz oscillations, which were frequently followed by slow-wave sleep. The degree of transient enhancement under the task condition was similar to that by prolonged wakefulness under the no-task condition. In addition, by recording local-field potential and multi-unit activities in the medial prefrontal cortex, we determined the temporal dynamics of prefrontal neuronal activities in relation to 7-12 Hz oscillations. Collective neuronal activities in medial prefrontal cortex were gradually organized into phase-locked patterns and showed highly synchronization during these oscillations. These dynamics were in temporal proximity to those of slow-wave activities (<4 Hz). Since slow-wave activities are thought to synchronize large spatial domains, these results suggest that 7-12 Hz oscillations are involved in the transition from the awake to sleep states by oscillatory entrainment of global cortical networks including the prefrontal neurons.  相似文献   

19.
Gap junctions are known to be important for many network functions such as synchronization of activity and the generation of waves and oscillations. Gap junctions have also been proposed to be essential for the generation of early embryonic activity. We have previously shown that the amplitude of electrical signals propagating across gap-junctionally coupled passive cables is maximized at a unique diameter. This suggests that threshold-dependent signals may propagate through gap junctions for a finite range of diameters around this optimal value. Here we examine the diameter dependence of action potential propagation across model networks of dendro-dendritically coupled neurons. The neurons in these models have passive soma and dendrites and an action potential-generating axon. We show that propagation of action potentials across gap junctions occurs only over a finite range of dendritic diameters and that propagation delay depends on this diameter. Additionally, in networks of gap-junctionally coupled neurons, rhythmic activity can emerge when closed loops (re-entrant paths) occur but again only for a finite range of dendrite diameters. The frequency of such rhythmic activity depends on the length of the path and the dendrite diameter. For large networks of randomly coupled neurons, we find that the re-entrant paths that underlie rhythmic activity also depend on dendrite diameter. These results underline the potential importance of dendrite diameter as a determinant of network activity in gap-junctionally coupled networks, such as network rhythms that are observed during early nervous system development.  相似文献   

20.
Synchronised oscillatory population events (35–80 Hz; 60–300 ms) can be induced in the visual cortex of cats by specific visual stimulation. The oscillatory events are most prominent in local slow wave field potentials (LFP) and multiple unit spikes (MUA). We investigated how and when single cortical neurons are involved in such oscillatory population events. Simultaneous recordings of single cell spikes, LFP and MUA were made with up to seven microelectrodes. Three states of single cell participation in oscillations were distinguished in spike triggered averages of LFP or MUA from the same electrode: (1) Rhythmic states were characterised by the presence of rhythmicity in single cell spike patterns (35–80 Hz). These rhythms were correlated with LFP and MUA oscillations. (2) Lock-in states lacked rhythmic components in single cell spike patterns, while spikes were phase-coupled with LFP or MUA oscillations. (3) During non-participation states LFP or MUA oscillations were present, but single cell spike trains were neither rhythmic nor phase coupled to these oscillations. Stimulus manipulations (from optimal to suboptimal for the generation of oscillations) often led to systematic transitions between these states (from rhythmic to lock-in to non-participation). Single cell spike coupling was generally associated with negative peaks in LFP oscillations, irrespective of the cortical separation of single cell and population signals (0–6 mm). Our results suggest that oscillatory cortical population activities are not only supported by local and distant neurons with rhythmic spike patterns, but also by those with irregular patterns in which some spikes occur phase-locked to oscillatory events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号