首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
With the availability of the local lymph node assay, and the ability to evaluate effectively the relative skin sensitizing potency of contact allergens, a model for quantitative-risk-assessment (QRA) has been developed. This QRA process comprises: (a) determination of a no-expected-sensitisation-induction-level (NESIL), (b) incorporation of sensitization-assessment-factors (SAFs) reflecting variations between subjects, product use patterns and matrices, and (c) estimation of consumer-exposure-level (CEL). Based on these elements an acceptable-exposure-level (AEL) can be calculated by dividing the NESIL of the product by individual SAFs. Finally, the AEL is compared with the CEL to judge about risks to human health.We propose a simplified approach to risk assessment of hair dye ingredients by making use of precise experimental product exposure data. This data set provides firmly established dose/unit area concentrations under relevant consumer use conditions referred to as the measured-exposure-level (MEL). For that reason a direct comparison is possible between the NESIL with the MEL as a proof-of-concept quantification of the risk of skin sensitization. This is illustrated here by reference to two specific hair dye ingredients p-phenylenediamine and resorcinol. Comparison of these robust and toxicologically relevant values is therefore considered an improvement versus a hazard-based classification of hair dye ingredients.  相似文献   

2.
Based on chemical, cellular, and molecular understanding of dermal sensitization, an exposure-based quantitative risk assessment (QRA) can be conducted to determine safe use levels of fragrance ingredients in different consumer product types. The key steps are: (1) determination of benchmarks (no expected sensitization induction level (NESIL)); (2) application of sensitization assessment factors (SAF); and (3) consumer exposure (CEL) calculation through product use. Using these parameters, an acceptable exposure level (AEL) can be calculated and compared with the CEL. The ratio of AEL to CEL must be favorable to support safe use of the potential skin sensitizer. This ratio must be calculated for the fragrance ingredient in each product type. Based on the Research Institute for Fragrance Materials, Inc. (RIFM) Expert Panel's recommendation, RIFM and the International Fragrance Association (IFRA) have adopted the dermal sensitization QRA approach described in this review for fragrance ingredients identified as potential dermal sensitizers. This now forms the fragrance industry's core strategy for primary prevention of dermal sensitization to these materials in consumer products. This methodology is used to determine global fragrance industry product management practices (IFRA Standards) for fragrance ingredients that are potential dermal sensitizers. This paper describes the principles of the recommended approach, provides detailed review of all the information used in the dermal sensitization QRA approach for fragrance ingredients and presents key conclusions for its use now and refinement in the future.  相似文献   

3.
An interspecies sensitization assessment factor (SAF) is used in the quantitative risk assessment (QRA) for skin sensitization when a murine-based NESIL (No Expected Sensitization Induction Level) is taken as point of departure. Several studies showed that, on average, the murine sensitization threshold is in good correspondence with that determined in humans. However, on an individual level, the murine and human sensitization thresholds may differ considerably. In this study, the interspecies SAF was quantified by using a probabilistic approach, to be able to take these cases into account. As expected, the geometric means of the probability distributions of murine and human sensitization threshold ratios were close to one, but taking the 95 th percentile of these distributions resulted in an interspecies SAF of 15. By using this value, one is sure that with 95% probability, the sensitization threshold determined in mice does not underestimate the human threshold. It can be concluded that a murine-based NESIL requires the use of an interspecies SAF (of 15) in the QRA for skin sensitization, to correct for the differences between mice and humans. This empirically derived interspecies SAF contributes to refinement of the risk assessment methodology.  相似文献   

4.
The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.  相似文献   

5.
Significant developments have recently been incorporated in the way dermal sensitization risk assessments are conducted for fragrance ingredients. Based on the RIFM Expert Panel's recommendation, RIFM and IFRA have formally adopted the QRA approach, refined for fragrance ingredients identified as contact allergens, as the core strategy for primary prevention of dermal sensitization to these materials in consumer products. This new methodology is a major improvement over the former approach because it specifically addresses the elements of exposure-based risk assessment that are unique to the induction of dermal sensitization, while being consistent with the principles of toxicological risk assessment. This methodology will be used to determine global fragrance industry product management practices (IFRA Standards) for potentially sensitizing fragrance ingredients, the first of which was implemented in May 2006 with the 40th Amendment to the IFRA Code of Practice. It contained the first four IFRA Standards based on the QRA, limiting the use of the materials for 11 individual product categories. One of the first four IFRA Standards based on the QRA was on the fragrance material citral. The basis for the acceptable exposure limits are presented in this paper.  相似文献   

6.
The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its protein reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD.  相似文献   

7.
This study was performed to elucidate the anti-proliferative effects and the apoptotic mechanisms of extracts from Lethariella zahlbruckneri in HT-29 human colon cancer cells. Both the acetone extract (AEL) and methanolic extract (MEL) of L. zahlbruckneri decreased viable cell numbers in a dose- and time-dependent manner in HT-29 cells. The AEL showed stronger cytotoxicity than MEL. Cell death induced by AEL increased cell populations in the sub-G1 phase, as well as the formation of apoptotic bodies and nuclear condensation, whereas MEL did not. Therefore, the potential of AEL to induce apoptosis was examined. Apoptosis induced by AEL was associated with the activation of initiator caspases-8 and -9, as well as the effector caspase-3. AEL stimulated Bid cleavage. This indicated that the apoptotic action of caspase-8-mediated Bid cleavage leads to the activation of caspase-9. AEL increased the expression of the pro-apoptotic protein, Bax, and decreased the expression of the anti-apoptotic protein, Bcl-2. AEL also increased the expression of the caspase-independent mitochondrial apoptosis factor, AIF, in HT-29 cells. These results indicate that AEL inhibited HT-29 cell proliferation by inducing apoptosis, which might be mediated via both caspase-dependent and -independent pathways.  相似文献   

8.
Preservatives can be a frequent cause of allergic contact dermatitis (ACD). A quantitative risk assessment (QRA) method for identifying safe exposure levels has been suggested as a more effective tool for this purpose. This work assesses the validity of QRA by its retrospective application to the sensitizing preservative methyldibromoglutaronitrile (MDGN), which has recently been associated with unacceptable exposure levels in consumer products. Using a recently published QRA analysis of 4 preservatives in 5 consumer product types, the accuracy of the predictions for MDGN was assessed in light of what is known clinically about the nature and incidence of ACD to this material. Based on a local lymph node assay (LLNA) EC3 value (concentration of test chemical required to provoke a 3-fold increase in lymph node cell proliferation) of 0.9% in a weight-of-evidence approach to the identification of thresholds for the induction of skin sensitization, it can be determined that the acceptable levels of exposure to MDGN in a range of products range from as little as 25 ppm to in excess of 10,000 ppm. Thus, proactive use of QRA, used conservatively and in combination with expert judgment, would have limited the problem of ACD to this new preservative that is known to have caused problems on the consumer market.  相似文献   

9.
Characterisation of skin sensitisation potential is a key endpoint for the safety assessment of cosmetic ingredients especially when significant dermal exposure to an ingredient is expected. At present the mouse local lymph node assay (LLNA) remains the ‘gold standard’ test method for this purpose however non-animal test methods are under development that aim to replace the need for new animal test data. COLIPA (the European Cosmetics Association) funds an extensive programme of skin sensitisation research, method development and method evaluation and helped coordinate the early evaluation of the three test methods currently undergoing pre-validation. In May 2010, a COLIPA scientific meeting was held to analyse to what extent skin sensitisation safety assessments for cosmetic ingredients can be made in the absence of animal data. In order to propose guiding principles for the application and further development of non-animal safety assessment strategies it was evaluated how and when non-animal test methods, predictions based on physico-chemical properties (including in silico tools), threshold concepts and weight-of-evidence based hazard characterisation could be used to enable safety decisions. Generation and assessment of potency information from alternative tools which at present is predominantly derived from the LLNA is considered the future key research area.  相似文献   

10.
Skin sensitization is unique in the world of toxicology. There is a combination of reliable, validated predictive test methods for identification of skin sensitizing chemicals, a clearly documented and transparent approach to risk assessment, and effective feedback from dermatology clinics around the world delivering evidence of the success or failure of the hazard identification/risk assessment/management process. Recent epidemics of contact allergy, particularly to preservatives, have raised questions of whether the safety/risk assessment process is working in an optimal manner (or indeed is working at all!). This review has as its focus skin sensitization quantitative risk assessment (QRA). The core toxicological principles of QRA are reviewed, and evidence of use and misuse examined. What becomes clear is that skin sensitization QRA will only function adequately if two essential criteria are met. The first is that QRA is applied rigourously, and the second is that potential exposure to the sensitizing substance is assessed adequately. This conclusion will come as no surprise to any toxicologist who appreciates the basic premise that “risk = hazard x exposure”. Accordingly, use of skin sensitization QRA is encouraged, not least because the essential feedback from dermatology clinics can be used as a tool to refine QRA in situations where this risk assessment tool has not been properly used.  相似文献   

11.
Use of quantitative risk assessment (QRA) for assessing the skin sensitization potential of chemicals present in consumer products requires an understanding of hazard and product exposure. In the absence of data, consumer exposure is based on relevant habits and practices and assumes 100% skin uptake of the applied dose. To confirm and refine the exposure, a novel design for in vitro skin exposure measurements was conducted with the preservative, methylisothiazolinone (MI), in beauty care (BC) and household care (HHC) products using realistic consumer exposure conditions. A difference between measured exposure levels (MELs) for MI in leave-on versus rinse-off BC products, and lower MELs for MI in HHC rinse-off compared to BC products was demonstrated. For repeated product applications, the measured exposure was lower than estimations based on summation of applied amounts. Compared to rinse-off products, leave-on applications resulted in higher MELs, correlating with the higher incidences of allergic contact dermatitis associated with those product types. Lower MELs for MI in rinse-off products indicate a lower likelihood to induce skin sensitization, also after multiple daily applications. These in vitro skin exposure measurements indicate conservatism of default exposure estimates applied in skin sensitization QRA and might be helpful in future risk assessments.  相似文献   

12.
Generation of amorphous forms of a poorly soluble drug by solid dispersion techniques has been a subject of intensive research for decades. Apart from the stability of the dispersions, development of a suitable production technology is a major challenge to the successful commercialization of these products. Coprocessing of celecoxib (CEL), poly(vinyl pyrrolidone), and meglumine by spray drying resulted in an amorphous drug product that provided enhanced solubility and stability to an otherwise poorly soluble crystalline form of CEL. The spray-drying process parameters were optimized to provide an amorphous product with required characteristics. The product was stable for 3 months under the accelerated stability storage conditions. This technique can serve as a suitable means for generating a ready-to-formulate amorphous drug-additive(s) composite that can be directly filled into hard gelatin capsules.  相似文献   

13.
Generation of amorphous forms of a poorly soluble drug by solid dispersion techniques has been a subject of intensive research for decades. Apart from the stability of the dispersions, development of a suitable production technology is a major challenge to the successful commercialization of these products. Coprocessing of celecoxib (CEL), poly(vinyl pyrrolidone), and meglumine by spray drying resulted in an amorphous drug product that provided enhanced solubility and stability to an otherwise poorly soluble crystalline form of CEL. The spray-drying process parameters were optimized to provide an amorphous product with required characteristics. The product was stable for 3 months under the accelerated stability storage conditions. This technique can serve as a suitable means for generating a ready-to-formulate amorphous drug-additive(s) composite that can be directly filled into hard gelatin capsules.  相似文献   

14.
The European chemical legislation requires manufacturers and importers of chemicals to do consumer exposure assessment when the chemical has certain hazards associated to it (e.g. explosive, carcinogenicity, and hazardous to the aquatic environment), but the question is how this obligation can be met in light of the scientific uncertainty and technical challenges related to exposure assessment of nanomaterials. In this paper, we investigate to what extent the information and data in the literature can be used to perform consumer exposure assessment according to the REACH requirements and we identify and discuss the key data needs and provide recommendations for consumer exposure assessment of nanomaterials. In total, we identified 76 studies of relevance. Most studies have analyzed the release of Ag and TiO2 from textiles and paints, and CNT and SiO2 from nanocomposites. Less than half of the studies report their findings in a format that can be used for exposure assessment under REACH, and most do not include characterization of the released particles. Although inhalation, dermal, and oral exposures can be derived using the guidelines on how to complete consumer exposure assessments under REACH, it is clear that the equations are not developed to take the unique properties of nanomaterials into consideration. Future research is therefore needed on developing more generalized methods for representing nanomaterial release from different product groups at relevant environmental conditions. This includes improving the analytical methods for determining nanomaterial alteration and transformation, as well as quantification, which could subsequently lead to more nano-specific consumer exposure assessment models.  相似文献   

15.
In this study, we investigated the role of carbonyl stress in gentamicin (GM)-induced renal injury in rats. Carbonyl stress is represented by methylglyoxal (MGO) and its downstream advanced glycation end products, such as N?-(carboxyethyl)lysine (CEL). GM (150 mg /kg/day, i.p.) administration for 6 days significantly increased blood urea nitrogen (BUN) levels from 24.06 ± 0.55 to 85.04 ± 21.31 mg/dL and decreased creatinine clearance rate (Ccr) from 10.68 ± 0.76 to 2.53 ± 1.11 ml/min/kg B.W.; biopsy showed tubular injury. The kidney levels of MGO and CEL increased significantly from 9.56 ± 1.94 to 79.13 ± 17.96 μg/g of protein and from 0.03 ± 0.00 to 0.06 ± 0.00 μmol/μg of protein, respectively. Therefore, MGO and CEL appeared to be associated with GM-induced renal damage. Co-administration of metformin (50 or 100 mg/kg/day) and GM for 13 days effectively reversed GM-induced renal damage. The kidney levels of MGO and CEL decreased significantly from 24.95 ± 7.74 to 22.98 ± 17.74 μg/g of protein and from 0.04 ± 0.01 to 0.03 ± 0.01 μmol/μg of protein (both vs. the GM group), respectively. The identification of this new pathway may help prevent GM-induced nephrotoxicity.  相似文献   

16.
Guidance for determining the sensitizing potential of chemicals is available in EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances; REACH guidance from the European Chemicals Agency; and the United Nations Globally Harmonized System (GHS). We created decision trees for evaluating potential skin and respiratory sensitizers. Our approach (1) brings all the regulatory information into one brief document, providing a step-by-step method to evaluate evidence that individual chemicals or mixtures have sensitizing potential; (2) provides an efficient, uniform approach that promotes consistency when evaluations are done by different reviewers; (3) provides a standard way to convey the rationale and information used to classify chemicals. We applied this approach to more than 50 chemicals distributed among 11 evaluators with varying expertise. Evaluators found the decision trees easy to use and recipients (product stewards) of the analyses found that the resulting documentation was consistent across users and met their regulatory needs. Our approach allows for transparency, process management (e.g., documentation, change management, version control), as well as consistency in chemical hazard assessment for REACH, EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances and the GHS.  相似文献   

17.
Toxicological risk assessment informs exposure limits, so the potential for adverse effects to human health are minimised or avoided. For skin sensitisers, the situation is complicated by asymptomatic induction of contact allergy, a necessary prerequisite for expression of the disease allergic contact dermatitis (ACD). For fragrance skin sensitisers, the development of quantitative risk assessment (QRA) arose from the need to improve the extent to which contact allergy occurred. However, the perceived impact has been less than anticipated. Accordingly, the science and assumptions upon which QRA was founded have been scrutinised and proposals for refinement have been made. In addition, areas of uncertainty have been made explicit, e.g. inter-individual variability and the impact of concomitant disease, clarifying where numerical safety assessment factors are based on expert judgement. Also, the relatively small contribution of factors eg. age, gender, ethnic origin, vehicle matrix and skin permeability are highlighted by reference to the (now controversial) human experiments carried out in the second half of the last century. Adoption and widespread implementation of the current recommendations for QRA, taken in concert with improved assessment of aggregate exposure from multiple sources, should ensure that the frequency of contact allergy will decrease over the coming years.  相似文献   

18.
Four hundred and seventy-two pasta samples were collected from long retail distribution chain sales points located in North, Central and South Italy. Representative criteria in the sample collection were followed in terms of number of samples collected, market share, and types of pasta. Samples were analysed by an accredited HPLC-UV method of analysis. The mean contamination level (64.8 μg/kg) of deoxynivalenol (DON) was in the 95th percentile (239 μg/kg) and 99th percentile (337 μg/kg), far below the legal limit (750 μg/kg) set by Regulation EC/1126/2007, accounting for about one tenth, one third and half the legal limit, respectively. Ninety-nine percent of samples fell below half the legal limit. On the basis of the obtained occurrence levels and considering the consumption rates reported by the Italian official database, no health concern was assessed for all consumer groups, being that exposure was far below the Tolerable Daily Intake (TDI) of 1000 ng/kg b.w/day. Nevertheless, despite this, particular attention should be devoted to the exposure to DON by high consumers, such as children aged 3–5 years, who could reach the TDI even with very low levels of DON contamination.  相似文献   

19.
Abstract

Uniform mesoporous carbon spheres (UMCS) were used as a carrier to improve the bioavailability of the model drug, celecoxib (CEL). Furthermore, we investigated the mechanism responsible for the improved bioavailability of CEL. The association, adhesion and uptake of UMCS by intestinal epithelial cells were studied by transmission electron microscopy (TEM), fluorescence-activated cell sorting (FACS) and laser confocal scanning microscopy (LCSM). UMCS was found to promote cellular uptake of CEL. Drug transport in Caco-2 cell monolayers proved that UMCS can significantly reduce the rate of drug efflux and improve CEL permeability. The dissolution rate of CEL from drug-loaded samples was markedly improved compared with pure crystalline CEL; moreover, oral bioavailability of CEL loaded into UMCS was also markedly improved compared with that of commercially available capsules. UMCS indicates the advantages and potential of this method to achieve improved oral absorption by increasing the dissolution rate, cellular uptake and permeability of the drug.  相似文献   

20.
Fibrous ordered mesoporous carbon (FOMC) was developed as a new drug delivery system for loading an insoluble drug, designed to be orally administered, and then to enhance the drug loading capacity, improve the dissolution rate, enhance the oral bioavailability and reduce the gastric damage. Celecoxib (CEL) was chosen as a model drug. The nanostructures and effect of different pore sizes (4.4-7.0 nm) on drug loading and release properties were studied. The results showed that FOMC has a high drug loading capacity (0.599 g/g, drug weight/carrier weight) and the dissolution rate of CEL from FOMC was much faster than pure crystalline CEL using buffer (pH 6.8) as a dissolution medium. Moreover, the oral bioavailability of CEL loaded into FOMC was significantly improved compared with that of CEL capsules and the gastric damage caused by CEL which was loaded in FOMC was also reduced, demonstrating the protective effect of FOMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号