首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in synaptic strength on ventral tegmental area (VTA) dopamine neurons are thought to play a critical role in the development of addiction-related behaviors. However, it is unknown how a single injection of cocaine at different doses affects locomotor activity, behavioral sensitization, and glutamatergic synaptic strength on VTA dopamine neurons in mice. We observed that behavioral sensitization to a challenge cocaine injection scaled with the dose of cocaine received 1 day prior. Interestingly, the locomotor activity after the initial exposure to different doses of cocaine corresponded to the changes in glutamatergic strength on VTA dopamine neurons. These results in mice suggest that a single exposure to cocaine dose-dependently affects excitatory synapses on VTA dopamine neurons, and that this acute synaptic alteration is directly associated with the locomotor responses to cocaine and not to behavioral sensitization.  相似文献   

2.
Repetitive exposure to addictive drugs causes synaptic modification in the mesocorticolimbic dopamine (DA) system. Dopamine D1 receptors (D1R) or D2 receptors (D2R) expressed in the medium spiny neurons (MSNs) of the nucleus accumbens (NAc) play critical roles in the control of addictive behaviors. Optogenetic activation of D2R‐expressing MSNs (D2R‐MSNs) in the NAc previously demonstrated that these neurons play a key role in withdrawal‐induced plasticity. Here, we examined the effect of optogenetic inhibition of D2R‐MSNs in the NAc on cocaine‐induced behavioral sensitization. Adeno‐associated viral vectors encoding archaerhodopsin (ArchT) were delivered into the NAc of D2‐Cre transgenic mice. Activation of ArchT produced photoinhibition of D2R‐MSNs and caused disinhibition of neighboring MSNs in the NAc. However, such optogenetic silencing of D2R‐MSNs in the NAc in vivo affected neither the initiation nor the expression of cocaine‐induced behavioral sensitization. Similarly, photoinhibition of NAc D2R‐MSNs in the NAc during the drug withdrawal period did not affect the expression of cocaine‐induced behavioral sensitization. More detailed analysis of the effects of optogenetic activation of D2R‐MSNs suggests that D2R‐MSNs in the NAc exert important modulatory effects on neighboring MSN neurons, which may control the balanced output of NAc MSNs to control addictive behaviors.  相似文献   

3.
Dopamine (DA) is a potent neuromodulator known to influence glutamatergic transmission in striatal medium spiny neurons (MSNs). It acts on D1‐ and D2‐like DA receptors that are expressed on two distinct subpopulations. MSNs projecting to the substantia nigra express D1 receptors (D1Rs), while those projecting to the lateral globus pallidus express D2 receptors (D2Rs). D1R signalling in particular can increase excitatory transmission through varied protein kinase A‐dependent, cell‐autonomous pathways. Mechanisms by which D1R signalling could increase excitatory transmission in D2R‐bearing MSNs have been relatively less explored. Herein, the possibility is considered that D1R agonists increase levels of soluble factors that subsequently influence N‐methyl‐d ‐aspartate (NMDA)‐stimulated calcium flux in D2R neurons. This study focuses on matrix metalloproteinases (MMPs) and MMP‐generated integrin binding ligands, important soluble effectors of glutamatergic transmission that may be elevated in the setting of excess DA. It was observed that DA and a D1R agonist, SKF81297, increase MMP activity in extracts from striatal slices, as determined by cleavage of the substrate β‐dystroglycan. Using mice engineered to express the calcium indicator GCaMP3 in striatopallidal D2R‐bearing neurons, it was also observed that SKF81297 pretreatment of slices (60 min) potentiates NMDA‐stimulated calcium increases in this subpopulation. Effects are diminished by pretreatment with an antagonist of MMP activity or an inhibitor of integrin‐dependent signalling. Together, results suggest that DA signalling can increase excitatory transmission in D2R neurons through an MMP‐dependent mechanism. Future studies may be warranted to determine whether D1R‐stimulated MMP‐dependent processes contribute to behaviours in which increased activity in striatopallidal MSNs plays a role.  相似文献   

4.
Small fluctuations in striatal glutamate and dopamine are required to establish goal-directed behaviors and motor learning, while large changes appear to underlie many neuropsychological disorders, including drug dependence and Parkinson's disease. A better understanding of how variations in neurotransmitter availability can modify striatal circuitry will lead to new therapeutic targets for these disorders. Here, we examined dopamine-induced plasticity in prefrontal cortical projections to the nucleus accumbens (NAc) core. We combined behavioral measures of male mice, presynaptic optical studies of glutamate release kinetics from prefrontal cortical projections, and postsynaptic electrophysiological recordings of spiny projection neurons within the NAc core. Our data show that repeated amphetamine promotes long-lasting but reversible changes along the corticoaccumbal pathway. In saline-treated mice, coincident cortical stimulation and dopamine release promoted presynaptic filtering by depressing exocytosis from glutamatergic boutons with a low-probability of release. The repeated use of amphetamine caused a frequency-dependent, progressive, and long-lasting depression in corticoaccumbal activity during withdrawal. This chronic presynaptic depression was relieved by a drug challenge which potentiated glutamate release from synapses with a low-probability of release. D1 receptors generated this synaptic potentiation, which corresponded with the degree of locomotor sensitization in individual mice. By reversing the synaptic depression, drug reinstatement may promote allostasis by returning corticoaccumbal activity to a more stable and normalized state. Therefore, dopamine-induced synaptic filtering of excitatory signals entering the NAc core in novice mice and paradoxical excitation of the corticoaccumbal pathway during drug reinstatement may encode motor learning, habit formation, and dependence.  相似文献   

5.
Growing evidence indicates that the expression of synaptic plasticity in the central nervous system results in dendritic reorganization and spine remodeling. Although long-term potentiation of glutamatergic synapses after cocaine exposure in the ventral tegmental area (VTA) has been proposed as a cellular mechanism underlying addictive behaviors, the relationship between long-term potentiation and dendritic remodeling induced by cocaine on the dopaminergic neurons of the VTA has not been demonstrated. Here we report that rat VTA cells classified as type I and II showed distinct morphological responses to cocaine, as a single cocaine exposure significantly increased dendritic spine density in type I but not in type II cells. Further, only type I cells had a significant increase in the AMPA receptor:NMDA receptor ratio after a single cocaine exposure. Taken together, our data provide evidence that increased spine density and synaptic plasticity are coexpressed within the same VTA neuronal population and that only type I neurons are structurally and synaptically modified by cocaine.  相似文献   

6.
Dopamine shapes a wide variety of psychomotor functions. This is mainly accomplished by modulating cortical and thalamic glutamatergic signals impinging upon principal medium spiny neurons (MSNs) of the striatum. Several lines of evidence suggest that dopamine D1 receptor signaling enhances dendritic excitability and glutamatergic signaling in striatonigral MSNs, whereas D2 receptor signaling exerts the opposite effect in striatopallidal MSNs. The functional antagonism between these two major striatal dopamine receptors extends to the regulation of synaptic plasticity. Recent studies, using transgenic mice in which cells express D1 and D2 receptors, have uncovered unappreciated differences between MSNs that shape glutamatergic signaling and the influence of DA on synaptic plasticity. These studies have also shown that long-term alterations in dopamine signaling produce profound and cell-type-specific reshaping of corticostriatal connectivity and function.  相似文献   

7.
Experience-dependent changes in corticostriatal transmission efficacy are likely to support the role of the striatum in reinforcement-based motor learning. Whereas long-term depression at glutamatergic corticostriatal synapses has long been regarded as the normal form of striatal plasticity, recent work provides evidence that use-dependent potentiation can naturally occur at these connections through an increase in both synaptic efficacy and postsynaptic intrinsic excitability. By decreasing the weight of cortical inputs required to fire striatal output neurons, short-term and long-term potentiation at corticostriatal connections can jointly participate in the formation of sensorimotor links by which specific context-dependent patterns of cortical activity can engage selected motor programs.  相似文献   

8.
9.
Cerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell‐Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1. We first examined Cbln1 in thalamostriatal neurons and then determined if cbln1 knockout mice exhibit structural deficits in striatal neurons. Virtually all PF neurons express Cbln1‐immunoreactivity (‐ir). In contrast, only rare Cbln1‐ir neurons are present in the central medial complex, the other thalamic region that projects heavily to the dorsal striatum. In the striatum Cbln1‐ir processes are apposed to medium spiny neuron (MSN) dendrites; ultrastructural studies revealed that Cbln1‐ir axon terminals form axodendritic synapses with MSNs. Tract‐tracing studies found that all PF cells retrogradely labeled from the striatum express Cbln1‐ir. We then examined the dendritic structure of Golgi‐impregnated MSNs in adult cbln1 knockout mice. MSN dendritic spine density was markedly increased in cbln1−/− mice relative to wildtype littermates, but total dendritic length was unchanged. Ultrastructural examination revealed an increase in the density of MSN axospinous synapses in cbln1−/− mice, with no change in postsynaptic density length. Thus, Cbln1 determines the dendritic structure of striatal MSNs, with effects distinct from those seen in the cerebellum. J. Comp. Neurol. 518:2525–2537, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Dopamine‐dependent synaptic plasticity is a candidate mechanism for reinforcement learning. A silent eligibility trace – initiated by synaptic activity and transformed into synaptic strengthening by later action of dopamine – has been hypothesized to explain the retroactive effect of dopamine in reinforcing past behaviour. We tested this hypothesis by measuring time‐dependent modulation of synaptic plasticity by dopamine in adult mouse striatum, using whole‐cell recordings. Presynaptic activity followed by postsynaptic action potentials (pre–post) caused spike‐timing‐dependent long‐term depression in D1‐expressing neurons, but not in D2 neurons, and not if postsynaptic activity followed presynaptic activity. Subsequent experiments focused on D1 neurons. Applying a dopamine D1 receptor agonist during induction of pre–post plasticity caused long‐term potentiation. This long‐term potentiation was hidden by long‐term depression occurring concurrently and was unmasked when long‐term depression blocked an L‐type calcium channel antagonist. Long‐term potentiation was blocked by a Ca2+‐permeable AMPA receptor antagonist but not by an NMDA antagonist or an L‐type calcium channel antagonist. Pre–post stimulation caused transient elevation of rectification – a marker for expression of Ca2+‐permeable AMPA receptors – for 2–4‐s after stimulation. To test for an eligibility trace, dopamine was uncaged at specific time points before and after pre‐ and postsynaptic conjunction of activity. Dopamine caused potentiation selectively at synapses that were active 2‐s before dopamine release, but not at earlier or later times. Our results provide direct evidence for a silent eligibility trace in the synapses of striatal neurons. This dopamine‐timing‐dependent plasticity may play a central role in reinforcement learning.  相似文献   

11.
ObjectiveIn Parkinson's disease, chronic striatal dopamine depletion results in over-activity and under-activity of the indirect and direct striatal output pathways respectively. In this study, we investigated changes in the function of glutamatergic cortico-striatal synapses that contribute to abnormalities in striatal efferents.MethodsWhole-cell recordings were performed in striatal slices prepared from adult bacterial artificial chromosome mice, chronically lesioned with 6-hydroxydopamine (6-OHDA). Paired pulse facilitation, spontaneous synaptic activity, the ratio of AMPAR to NMDAR-mediated components of excitatory postsynaptic currents, AMPAR and NMDAR kinetics, current–voltage relationship and intrinsic membrane properties were assessed in indirect and direct pathway medium spiny neurons (MSNs), which were identified on the basis of expression of GFP, driven by the promoters of A2A or D1 receptor expression. The trajectory of striatal efferents, with respect to selective targeting of the globus pallidus and substantia nigra was also compared in sham-operated versus 6-OHDA-lesioned mice.ResultsDopamine depletion did not affect the number of pathway specific output neurons or the trajectory of striatal outputs. In sham-operated animals, cortico-striatal synapses of both striatal efferent populations exhibited paired pulse facilitation and similar ratios of AMPAR to NMDAR-mediated components of excitatory postsynaptic currents. Following striatal dopamine depletion, indirect pathway neurons exhibited decreased levels of paired pulse facilitation, enhanced sensitivity to presynaptic stimulation and an increase in the relative contribution of NMDAR to the EPSC but no change in spontaneous synaptic activity. In sham-operated mice, neurons of the direct pathway exhibited lower firing frequency compared to the indirect pathway following current injection. However, in 6-OHDA-lesioned mice, in the direct pathway, firing threshold was reduced, spike frequency adaptation developed and the frequency of spontaneous activity was also reduced. In addition, changes in the properties of NMDAR kinetics suggest that these receptors were desensitised.DiscussionIncreased synchronicity between pre and postsynaptic neurons, as indicated by decreased paired pulse facilitation, and increased sensitivity to extracellular stimulation, combined with an increase in the contribution of NMDARs to the EPSC at cortico-striatal synapses, may contribute to the over-activity of indirect pathway neurons in the parkinsonian striatum. In contrast, a decrease in spontaneous activity, postsynaptic desensitisation to excitatory stimuli and spike frequency adaptation of cortico-striatal synapses may underlie under-activity of the direct pathway.  相似文献   

12.
13.
14.
Information processing in the striatum is critical for basal ganglia function and strongly influenced by neuromodulators (e.g., dopamine). The striatum also receives modulatory afferents from the histaminergic neurons in the hypothalamus which exhibit a distinct diurnal rhythm with high activity during wakefulness, and little or no activity during sleep. In view of the fact that the striatum also expresses a high density of histamine receptors, we hypothesized that released histamine will affect striatal function. We studied the role of histamine on striatal microcircuit function by performing whole-cell patch-clamp recordings of neurochemically identified striatal neurons combined with electrical and optogenetic stimulation of striatal afferents in mouse brain slices. Bath applied histamine had many effects on striatal microcircuits. Histamine, acting at H(2) receptors, depolarized both the direct and indirect pathway medium spiny projection neurons (MSNs). Excitatory, glutamatergic input to both classes of MSNs from both the cortex and thalamus was negatively modulated by histamine acting at presynaptic H(3) receptors. The dynamics of thalamostriatal, but not corticostriatal, synapses were modulated by histamine leading to a facilitation of thalamic input. Furthermore, local inhibitory input to both classes of MSNs was negatively modulated by histamine. Subsequent dual whole-cell patch-clamp recordings of connected pairs of striatal neurons revealed that only lateral inhibition between MSNs is negatively modulated, whereas feedforward inhibition from fast-spiking GABAergic interneurons onto MSNs is unaffected by histamine. These findings suggest that the diurnal rhythm of histamine release entrains striatal function which, during wakefulness, is dominated by feedforward inhibition and a suppression of excitatory drive.  相似文献   

15.
The mesolimbic dopamine system is essential for reward-seeking behavior, and drugs of abuse perturb the normal functioning of this pathway. The nucleus accumbens (NAc) is a major terminal field of the mesolimbic dopamine neurons and modifications in neuronal structure and function in NAc accompany repeated exposure to psychomotor stimulants and other addictive drugs. Glutamatergic afferents to the NAc are thought to be crucial to the development of several aspects of addictive behavior, including behavioral sensitization and relapse to cocaine self-administration. Here we examine glutamatergic neurotransmission and synaptic plasticity in NAc neurons in vitro before and after repeated amphetamine treatment in vivo. We find that dopamine attenuates the response of NAc neurons to repetitive activation of glutamatergic afferents and thereby blocks long-term potentiation (LTP) induced by high-frequency afferent stimulation. Dopamine's effects are mimicked by dopamine receptor agonists and by amphetamine. In a second set of experiments, animals were treated with amphetamine daily for 6 days and brain slices were prepared after 8-10 days of withdrawal. In these slices, LTP in the NAc appears normal. However, acute exposure of such slices to amphetamine no longer modulates synaptic transmission or LTP induction. Thus, repeated exposure to amphetamine produces long-lasting changes in the modulation of glutamatergic synaptic transmission by amphetamine in the NAc. Our results support the notion that after psychostimulant exposure, excitatory synapses on NAc neurons alter their response to further psychostimulant for long periods of time.  相似文献   

16.
Theoretical and modeling studies demonstrate that heterosynaptic plasticity—changes at synapses inactive during induction—facilitates fine-grained discriminative learning in Hebbian-type systems, and helps to achieve a robust ability for repetitive learning. A dearth of tools for selective manipulation has hindered experimental analysis of the proposed role of heterosynaptic plasticity in behavior. Here we circumvent this obstacle by testing specific predictions about the behavioral consequences of the impairment of heterosynaptic plasticity by experimental manipulations to adenosine A1 receptors (A1Rs). Our prior work demonstrated that the blockade of adenosine A1 receptors impairs heterosynaptic plasticity in brain slices and, when implemented in computer models, selectively impairs repetitive learning on sequential tasks. Based on this work, we predict that A1R knock-out (KO) mice will express (1) impairment of heterosynaptic plasticity and (2) behavioral deficits in learning on sequential tasks. Using electrophysiological experiments in slices and behavioral testing of animals of both sexes, we show that, compared with wild-type controls, A1R KO mice have impaired synaptic plasticity in visual cortex neurons, coupled with significant deficits in visual discrimination learning. Deficits in A1R knockouts were seen specifically during relearning, becoming progressively more apparent with learning on sequential visual discrimination tasks of increasing complexity. These behavioral results confirm our model predictions and provide the first experimental evidence for a proposed role of heterosynaptic plasticity in organism-level learning. Moreover, these results identify heterosynaptic plasticity as a new potential target for interventions that may help to enhance new learning on a background of existing memories.SIGNIFICANCE STATEMENT Understanding how interacting forms of synaptic plasticity mediate learning is fundamental for neuroscience. Theory and modeling revealed that, in addition to Hebbian-type associative plasticity, heterosynaptic changes at synapses that were not active during induction are necessary for stable system operation and fine-grained discrimination learning. However, lacking tools for selective manipulation prevented behavioral analysis of heterosynaptic plasticity. Here we circumvent this barrier: from our prior experimental and computational work we predict differential behavioral consequences of the impairment of Hebbian-type versus heterosynaptic plasticity. We show that, in adenosine A1 receptor knock-out mice, impaired synaptic plasticity in visual cortex neurons is coupled with specific deficits in learning sequential, increasingly complex visual discrimination tasks. This provides the first evidence linking heterosynaptic plasticity to organism-level learning.  相似文献   

17.
Addictive drugs share the ability to increase dopamine (DA) levels and trigger synaptic adaptations in the mesocorticolimbic system, two cellular processes engaged in the early stages of drug seeking. Neurons located in the lateral habenula (LHb) modulate the activity of DA neurons and DA release, and adaptively tune goal-directed behaviors. Whether synaptic modifications in LHb neurons occur upon drug exposure remains, however, unknown. Here, we assessed the influence of cocaine experience on excitatory transmission onto subsets of LHb neurons using a combination of retrograde tracing and ex vivo patch-clamp recordings in mice. Recent evidence demonstrates that AMPA receptors lacking the GluA2 subunit mediate glutamatergic transmission in LHb neurons. We find that cocaine selectively potentiates AMPA receptor-mediated EPSCs in LHb neurons that send axons to the rostromedial tegmental nucleus, a GABAergic structure that modulates the activity of midbrain DA neurons. Cocaine induces a postsynaptic accumulation of AMPA receptors without modifying their subunit composition or single-channel conductance. As a consequence, a protocol pairing presynaptic glutamate release with somatic hyperpolarization, to increase the efficiency of GluA2-lacking AMPA receptors, elicited a long-term potentiation in neurons only from cocaine-treated mice. This suggests that cocaine resets the rules for the induction of synaptic long-term plasticity in the LHb. Our study unravels an early, projection-specific, cocaine-evoked synaptic potentiation in the LHb that may represent a permissive step for the functional reorganization of the mesolimbic system after drug exposure.  相似文献   

18.
The basal ganglia (BG) have been hypothesized to implement a reinforcement learning algorithm. However, it is not clear how information is processed along this network, thus enabling it to perform its functional role. Here we present three different encoding schemes of visual cues associated with rewarding, neutral, and aversive outcomes by BG neuronal populations. We studied the response profile and dynamical behavior of two populations of projection neurons [striatal medium spiny neurons (MSNs), and neurons in the external segment of the globus pallidus (GPe)], and one neuromodulator group [striatal tonically active neurons (TANs)] from behaving monkeys. MSNs and GPe neurons displayed sustained average activity to cue presentation. The population average response of MSNs was composed of three distinct response groups that were temporally differentiated and fired in serial episodes along the trial. In the GPe, the average sustained response was composed of two response groups that were primarily differentiated by their immediate change in firing rate direction. However, unlike MSNs, neurons in both GPe response groups displayed prolonged and temporally overlapping persistent activity. The putamen TANs stereotyped response was characterized by a single transient response group. Finally, the MSN and GPe response groups reorganized at the outcome epoch, as different task events were reflected in different response groups. Our results strengthen the functional separation between BG neuromodulators and main axis neurons. Furthermore, they reveal dynamically changing cell assemblies in the striatal network of behaving primates. Finally, they support the functional convergence of the MSN response groups onto GPe cells.  相似文献   

19.
Carta AR  Gerfen CR  Steiner H 《Neuroreport》2000,11(11):2395-2399
Central effects of psychostimulants such as cocaine are predominantly mediated by dopamine receptors. We have used mice with a targeted deletion of the D3 dopamine receptor subtype to investigate the role of this receptor in the regulation of gene expression in striatal neurons and behavior by acute and repeated treatment with cocaine (25 mg/kg). In mice lacking D3 receptors, acute administration of cocaine has more pronounced stimulatory effects on c-fos and dynorphin expression in the dorsal and ventral striatum. The behavioral response to cocaine is also increased in these mice. These findings indicate that the D3 receptor plays an inhibitory role in the action of cocaine on behavior and gene regulation in the striatum.  相似文献   

20.
Rho-associated kinases(ROCKs)are serinethreonine protein kinases that act downstream of small Rho GTPases to regulate the dynamics of the actin cytoskeleton.Two ROCK isoforms(ROCK1 and ROCK2)are expressed in the mammalian central nervous system.Although ROCK activity has been implicated in synapse formation,whether the distinct ROCK isoforms have different roles in synapse formation and function in vivo is not clear.Here,we used a genetic approach to address this long-standing question.Both Rock1~(+/-) and Rock2~(+/-) mice had impaired glutamatergic transmission,reduced spine density,and fewer excitatory synapses in hippocampal CA1 pyramidal neurons.In addition,both Rockl~(+/-) and Rock2~(+/-) mice showed deficits in long-term potentiation at hippocampal CA1 synapses and were impaired in spatial learning and memory based on the water maze and contextual fear conditioning tests.However,the spine morphology of CA1 pyramidal neurons was altered only in Rock2~(+/-) but not Rock1~(+/-) mice.In this study we compared the roles of ROCK1 and ROCK2 in synapse formation and function in vivo for the first time.Our results provide a better understanding of the functions of distinct ROCK isoforms in synapse formation and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号