首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sullivan  GW; Carper  HT; Mandell  GL 《Blood》1993,81(7):1863-1870
Hematopoietic growth factors not only modulate blood progenitor cell activity but also alter the function of mature phagocytes. Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF; 1 ng/mL for 60 min) did not stimulate luminol-enhanced chemiluminescence of polymorphonuclear leukocytes (PMNs) in suspension but primed PMN for as much as a 15-fold increase in chemiluminescence in response to f-met- leu-phe (fMLP). Mixed mononuclear leukocytes (monocytes [approximately 20%] and lymphocytes [approximately 80%]; MNL) chemiluminescence was very low even after rhGM-CSF priming, but MNLs added to the PMNs (PMN- MNL) resulted in near doubling of rhGM-CSF-primed PMN fMLP-stimulated chemiluminescence. The enhancing factor(s) from MNLs were inherent rather than induced by the GM-CSF, and purified lymphocytes increased GM-CSF-primed PMN chemiluminescence equal to mixed MNLs. We could not detect cell-free "enhancing factor(s)," but cell-to-cell contact further enhanced rhGM-CSF-primed fMLP-stimulated PMN-MNL oxidative activity by 40%. Polyclonal rabbit anti-tumor necrosis factor (TNF) (but not preimmune serum) decreased both fMLP-stimulated rhGM-CSF- primed PMNs and PMN-MNL chemiluminescence, suggesting that TNF on the PMN surface is enhancing GM-CSF-primed chemiluminescence. GM-CSF priming markedly increased PMN superoxide release (sevenfold), but PMN superoxide release was not further enhanced by the presence of MNLs. Recombinant human granulocyte colony-stimulating factor (rhG-CSF) and interleukin-3 (rhIL-3) displayed much smaller effects on pure PMNs and mixed PMN-MNL chemiluminescence and superoxide release than rhGM-CSF. rhGM-CSF primes PMNs for increased oxidative activity more than rhG-CSF and rhIL-3. Maximal oxidative activity was observed when mixed PMN-MNL were primed with GM-CSF in a cell pellet-promoting cell-to-cell contact. This enhanced activity can be attributed, in part, to both inherent enhancing factor(s) on lymphocytes and PMN-associated TNF induced by GM-CSF.  相似文献   

2.
The effect of recombinant human interleukin 6 (rhIL-6) on the in vitro growth of human bone marrow myeloid progenitors (granulocyte-macrophage colony-forming units, CFU-GM) was investigated. Recombinant human IL-6 by itself did not induce colony formation. When rhIL-6 at various concentrations was added to the CFU-GM colony cultures containing recombinant human granulocyte colony-stimulating factor (rhG-CSF) or recombinant human granulocyte-monocyte/macrophage colony-stimulating factor (rhGM-CSF), rhIL-6 significantly suppressed the colony formation induced by rhG-CSF, but not by rhGM-CSF. This suppressive effect of rhIL-6 on rhG-CSF-induced, but not rhGM-CSF-induced colony formation was confirmed by using an MY10(+)-cell-enriched population. Neither interleukin 3 nor interleukin 1 alpha suppressed the growth of myeloid progenitors. The preincubation of bone marrow cells with rhIL-6 for a short time (30 min) resulted in a reduction of colonies induced by rhG-CSF, but not by rhGM-CSF. The suppressive effect of rhIL-6 on rhG-CSF-induced colony formation was not observed when the cells were preincubated together with rhG-CSF at a high ratio of rhG-CSF to rhIL-6. The rhIL-6-mediated suppressive effect was further confirmed by blocking the effect by the anti-IL-6 antibody. These results suggest antagonistic interaction between IL-6 and G-CSF in the later differentiation of myeloid progenitors.  相似文献   

3.
We investigated the cytotoxic effect of the cell cycle-specific agent cytosine arabinoside (Ara-C) on clonogenic leukemic and normal bone marrow cells. To overcome kinetic resistance and to increase cytotoxicity, the cells were exposed to Ara-C in liquid culture medium for extended time periods, that is, 5 and 10 days. Subsequently the number of surviving clonogenic cells was determined in a semi-solid assay. All cultures were stimulated with the combination of recombinant human interleukin 3 (rhIL-3), granulocyte-macrophage colony-stimulating factor (rhGM-CSF), and granulocyte colony-stimulating factor (rhG-CSF) to induce optimal cell proliferation. In comparison to normal clonogenic bone marrow cells (granulocyte-macrophage colony-forming units, CFU-GM) 5-day Ara-C exposure resulted in an equal to a slightly more effective kill of leukemic colony-forming cells (CFU-L). The Ara-C dose resulting in 50% inhibition (ID50) was 1.6 +/- 1.6 x 10(-8) M for CFU-L (n = 9) and 6.7 +/- 4.3 x 10(-8) M for CFU-GM (n = 4, p = 0.096). Prolongation of the Ara-C exposure time from 5 to 10 days increased the cytotoxicity towards the majority of the leukemic clonogenic cells (ID50: 0.8 +/- 0.6 x 10(-8) M) but not towards CFU-GM (ID50: 5.7 +/- 2.8 x 10(-8) M). Overall, significantly more leukemic clonogenic cells than normal CFU-GM were killed after 10 days of exposure to Ara-C (p = 0.039). These results indicate that leukemic clonogenic cells can be eradicated preferentially by prolonged exposure to low dosages of Ara-C in the presence of hematopoietic growth factors with relative preservation of the normal hematopoietic progenitor cells.  相似文献   

4.
Summary The effects of rhEpo 1, rhG-CSF, rhGM-CSF and rhIl-3 on the growth of both CFU-GM and BFU-E from normal human adult peripheral blood have been studied in plasma clot cultures. Using optimal concentrations of all growth factors, alone and in combination with all other factors, rhIl-3 showed the highest activity in regard to growth of both CFU-GM and BFU-E, whereas rhGM-CSF treatment resulted only in half-maximal colony growth compared to rhIl-3. No synergism or additive effect was seen with the combination of rhIl-3 and rhGM-CSF. Treatment with rh-G-CSF had no additional effect with optimal concentrations of rhIl-3 and/or rhGM-CSF. When suboptimal concentrations of rhGM-CSF and rhIl-3 were applied, however, they showed a marked synergism on both BFU-E and CFU-GM. RhGCSF, added to a suboptimal concentration of rhGM-CSF, resulted in a marked growth increase of CFU-GM but had no effect on BFU-E.Abbreviations BFU-E Burst forming unit-erythroid - CFU-GEM Colony forming unit-granulocytic/erythroid/monocytic/megacaryocytic - CFU-GM Colony forming unit-granulocytic/monocytic - rhEpo Recombinant human erythropoietin - rhG-CSF Recombinant human granulocyte-colony stimulating factor - rhGM-CSF Recombinant human granulocyte/monocyte-colony stimulating factor - RhIl-3 Recombinant human Il-3  相似文献   

5.
The cDNA for human stem cell factor (hSCF) has been cloned and expressed in mammalian and bacterial hosts and recombinant protein purified. We have examined the stimulatory effect of recombinant human SCF (rhSCF) on human bone marrow cells alone and in combination with recombinant human colony stimulating factors (CSFs) and erythropoietin (rhEpo). RhSCF alone resulted in no significant colony formation, however, in the presence of rhGM-CSF, rhG-CSF or rhIL-3, rhSCF stimulated a synergistic increase in colony numbers. In addition, increased colony size was stimulated by all combinations. The morphology of cells in the colonies obtained with the CSFs plus rhSCF was identical to the morphology obtained with rhGM-CSF, rhG-CSF or rhIL-3 alone. RhEpo also synergised with rhSCF to stimulate the formation of large compact hemoglobinized colonies which stained positive for spectrin and transferrin receptor and had a morphological appearance consistent with normoblasts. RhSCF stimulation of low density non-adherent, antibody depleted, CD34+ cells suggests that rhSCF directly stimulates progenitor cells capable of myeloid and erythroid differentiation.  相似文献   

6.
Unlike bone marrow progenitor cells, human myeloid progenitors isolated from peripheral blood do not form colonies in semi-solid medium in the presence of rhG-CSF, rhM-CSF or rhIL-6, but do form colonies containing neutrophils, macrophages, eosinophils, basophils or mixed neutrophilic-macrophages colonies in the presence of rhIL-3 or rhGM-CSF. Priming of blood progenitors by culturing them for several days in the presence of rhGM-CSF resulted in a dramatic increase in the frequency of cells that proliferate in response to G-CSF and IL-6 and form neutrophilic granulocytic colonies. Suspension cultures maintained in the presence of IL-3 yielded increased numbers of clonogenic cells responsive to GM-CSF and G-CSF, but not to M-CSF or IL-6. rhIL-6 did not directly stimulate colony formation of peripheral blood progenitors but did prime them to respond to G-CSF. These results are consistent with a hierarchical model of granulocytic differentiation in which circulating progenitors proceed sequentially through a programme of changing growth factor sensitivity with the following sequence: IL-3, GM-CSF, IL-6 and/or G-CSF.  相似文献   

7.
Interleukin-8 (IL-8) is a major neutrophil chemoattractant and functional stimulant that is induced by IL-1, tumor necrosis factor alpha (TNF alpha), and lipopolysaccharide (LPS). We report that recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF) and rhIL-3 are also potent inducers of IL-8 messenger RNA (mRNA) accumulation and protein secretion by normal peripheral blood monocytes. Neutrophils produce IL-8 in response to GM-CSF but not to IL- 3. In contrast, recombinant human granulocyte-CSF (rhG-CSF), at concentrations as high as 100 ng/mL, does not induce IL-8 in either cell type. rhGM-CSF also induces IL-8 mRNA expression and IL-8 protein in the promonocytic cell line, U-937, whereas rhG-CSF does not. IL-8 secretion by monocytes was stimulated within 2 hours after incubation with rhGM-CSF or rhIL-3. Stimulation of neutrophils with rhGM-CSF resulted in an increase in cell-associated IL-8 at 4 hours. At 24 hours, cell-associated IL-8 levels declined, whereas secreted IL-8 levels increased. In contrast, virtually all IL-8 induced in monocytes appeared as secreted protein. Neither rhGM-CSF nor rhIL-3 induced detectable secretion of IL-1, TNF alpha, or IL-6 protein by monocytes. rhGM-CSF, and to a lesser degree rhIL-3, potently stimulated IL-8 secretion in cultures of heparinized whole blood, whereas rhG-CSF had no significant effect on IL-8 secretion. Induction of IL-8 by GM-CSF may be physiologically important in enhancing the acute inflammatory response.  相似文献   

8.
Kyoizumi  S; Murray  LJ; Namikawa  R 《Blood》1993,81(6):1479-1488
A severe combined immunodeficient (SCID)-hu mouse model implanted with human fetal bone was used to assess the effects of various recombinant human (rh) hematopoietic growth factors, administered either alone or in combination, on human hematopoiesis in vivo. Treatment with rh granulocyte colony-stimulating factor (G-CSF) elicited the expansion of mature neutrophilic granulocyte populations in human marrow. Administration of rh interleukin-3 (IL-3) induced significant increases of eosinophilic granulocyte and burst-forming unit, erythrocyte (BFU-E) activity. The rhIL-6 did not cause significant changes in the subpopulations of human hematopoietic cells within the grafts, but did increase the number of colony-forming unit, granulocyte-macrophage and BFU-E. Pretreatment with rhIL-3 followed by rh erythropoietin (Epo) administration enhanced Epo-induced human erythropoiesis significantly. No synergistic effects on myelopoiesis were observed using sequential treatment with rhIL-3 followed by rhG-CSF. Instead, these factors seemed to work independently, with rhG-CSF increasing the percentage of neutrophils and rhIL-3 increasing the percentage of eosinophils. When administered simultaneously with rhEpo, rhIL-6 showed dose-dependent inhibitory effects on in vivo Epo-induced human erythropoiesis. The rhIL-6 also caused a reduction in the percentage of human neutrophils induced by rhG-CSF. These results suggest that the SCID-hu mouse provides a useful small animal model to assess the in vivo effects of hematopoietic growth factors on human hematopoiesis.  相似文献   

9.
Cytokines play an important role in activating the immune system against malignant cells. One of these cytokines, interleukin-4 (IL-4) has entered clinical phase I trials because of its immunoregulatory potency. In the present study we report that recombinant human (rh) IL- 4 has major direct antiproliferative effects on one human lung cancer cell line (CCL 185) in vitro as measured by a human tumor cloning assay (HTCA), tritiated thymidine uptake, and counting cell numbers and marginal activity in a second cell line (HTB 56) in the HTCA. This activity could be abolished by neutralizing antibody against rhIL-4. The biological response of the tumor cells to the cytokine is correlated with expression of receptors for human IL-4 on both the mRNA level and the protein level. The responsive cell line, CCL 185, secretes IL-6 after being incubated with rhIL-4. On the other hand, neutralizing antibodies against IL-6 showed no influence on the growth modulatory efficacy of rhIL-4 in this cell line. Furthermore, CCL 185 does not show detectable production of IL-1, tumor necrosis factor alpha or interferon gamma after incubation with rhIL-4. Thus, the response to rhIL-4 is not mediated through autocrine production of these cytokines triggered by rhIL-4. In a next series of experiments some of the cell lines were xenotransplanted to BALB/c nu/nu mice. Subsequently, the mice were treated for 12 days with two doses of 0.5 mg/m2 rhIL-4 or control vehicle subcutaneously per day. Treatment with rhIL-4 yielded a significant inhibition of tumor growth versus control in two of the non-small cell lung cancer cell lines being responsive in vitro (CCL 185, HTB 56). Histology of the tumors in both groups showed no marked infiltration of the tumors with murine hematopoietic and lymphocytic cells consistent with the species specificity of IL-4. In contrast, no tumor growth inhibition was found in the small cell lung cancer cell lines (HTB 119, HTB 120) being nonresponsive in vitro. We conclude that rhIL-4 has direct antiproliferative effects on the growth of some human non-small cell lung cancer cell lines in vitro and in vivo, which together with its regulatory effects on various effector cell populations makes this cytokine an interesting candidate for further investigation in experimental cancer treatment.  相似文献   

10.
Caracciolo  D; Clark  SC; Rovera  G 《Blood》1989,73(3):666-670
Recombinant human (rh) interleukin-6 (IL-6), in a dose range of 1 to 10 U/mL, was able to induce a low number of neutrophilic-granulocytic colonies in a CFU-GM clonogenic assay, using T cells and adherent cells, depleted low density marrow cells. A synergistic increase in the number of granulocytic colonies was observed when rhGM-CSF at suboptimal doses and IL-6 at effective doses were both present in the assay; the increase was only additive when either rhIL-1 alpha or rhIL- 3 was used together with IL-6. To determine whether the increase in colony number reflects the interactions of these factors on the same hematopoietic progenitor target cells or, instead, represents activation of accessory cells, we analyzed the effect of IL-6 on the proliferation and differentiation of three growth factor-dependent leukemic cell lines that respond with continuous proliferation to the presence of GM-CSF and IL-3 in culture. One of the three cell lines (AML-193) showed limited proliferation in the presence of IL-6 followed by terminal differentiation after 14 days into basophilic-granulocytic- like cells. A synergistic proliferative response was observed on the same cells treated with both GM-CSF and IL-6. These data support the hypothesis that IL-6 may have a direct effect on myeloid hematopoietic progenitor cells, and that GM-CSF interacts synergistically with IL-6 by acting on the same target cells.  相似文献   

11.
Cyclic hematopoiesis in gray collie dogs is a stem cell disease in which abnormal regulation of cell production in the bone marrow causes cyclic fluctuations of blood cell counts. In vitro studies demonstrated that recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and granulocyte colony stimulating factor (G-CSF) all stimulated increases in colony formation by canine bone marrow progenitor cells. Based on these results, gray collie dogs were then treated with recombinant human (rh) GM-CSF, IL-3, or G-CSF subcutaneously to test the hypothesis that pharmacologic doses of one of these hematopoietic growth factors could alter cyclic production of cells. When recombinant canine G-CSF became available, it was tested over a range of doses. In vivo rhIL-3 had no effect on the recurrent neutropenia but was associated with eosinophilia, rhGM-CSF caused neutrophilia and eosinophilia but cycling of hematopoiesis persisted. However, rhG-CSF caused neutrophilia, prevented the recurrent neutropenia and, in the two animals not developing antibodies to rhG-CSF, obliterated periodic fluctuation of monocyte, eosinophil, reticulocyte, and platelet counts. Recombinant canine G-CSF increased the nadir neutrophil counts and amplitude of fluctuations at low doses (1 micrograms/kg/d) and eliminated all cycling of cell counts at high doses (5 and 10 micrograms/kg/d). These data suggest significant differences in the actions of these growth factors and imply a critical role for G-CSF in the homeostatic regulation of hematopoiesis.  相似文献   

12.
The cDNA for canine stem cell factor (cSCF, c-kit ligand) was cloned and expressed in Escherichia coli. The recombinant protein (rcSCF), 165 amino acids in length, is very similar structurally to the soluble form of previously cloned and sequenced rodent and human SCFs. The biological effects of rcSCF were studied in a day-10 granulocyte-macrophage colony-forming unit (CFU-GM) clonogenic assay and in long-term liquid bone marrow culture of non-adherent hematopoietic cells in the absence of a stromal underlayer. Synergism in the stimulation of growth of CFU-GM was demonstrated between rcSCF and both recombinant human (rh) granulocyte-macrophage colony-stimulating factor (GM-CSF) and naturally occurring colony-stimulating activity present in the serum of a neutropenic dog. Alone, rcSCF was nonstimulatory for committed marrow precursors in methylcellulose cultures and had minimal effect on hematopoietic progenitor cell survival in stromaless, liquid cultures. When rcSCF was combined with phytohemagglutinin-stimulated canine lymphocyte-conditioned medium (PHA-LCM) or rh interleukin 6 (IL-6), with or without rhGM-CSF, CFU-GM survived for up to 5 weeks. The combination of rcSCF and rhGM-CSF, without rhIL-6, led to an early increase in CFU-GM in liquid cultures that declined more rapidly than in flasks that included rhIL-6. Survival of progenitor cells was negligible beyond 1 week in flasks with growth factor combinations lacking rcSCF. Sustained production of nonadherent cells in long-term cultures also was dependent on rcSCF in combination with canine PHA-LCM or recombinant human growth factors. It appears that rcSCF, like that from rodent and primate species, has the ability to influence the survival and proliferation of CFU-GM, and perhaps earlier progenitor cells, in hematopoietic tissues. In a long-term liquid culture system in which growth factor production by stromal cells is limited, rcSCF possesses a unique ability to maintain the viability of progenitor cells for up to 5 weeks.  相似文献   

13.
The in vivo effect of recombinant human interleukin-3 (rhIL-3) on peripheral blood (PB) levels of hematopoietic progenitor cells was studied in nonhuman primates. Subcutaneous administration of 33 micrograms/kg/d of rhIL-3 for 11 to 14 days to rhesus monkeys slightly raised leukocyte counts (twofold) and substantially expanded the pool of circulating stem cells in the second week of treatment. At the end of rhIL-3 administration, PB levels of granulocyte/macrophage colony-forming units (CFU-GM) increased by a mean of 12-fold; burst-forming units-erythroid (BFU-E) by ninefold; CFU-mix, by 12-fold; and CFU-megakaryocyte (Mk), by 13-fold as compared with their respective pretreatment values. Subsequent administration of recombinant human granulocyte/macrophage colony-stimulating factor (rhGM-CSF; 5.5 micrograms/kg/d for 5 days) to rhIL-3-pretreated animals further expanded the PB stem cell compartment leading to maximum levels of CFU-GM that were in average much more increased (63-fold) than CFU-GM levels under rhIL-3 (14-fold) or rhGM-CSF (12-fold) alone. This hitherto unknown effect of rhIL-3 on the pool of circulating progenitors, particularly in synergy with rhGM-CSF, may facilitate harvest of hematopoietic progenitor cells from PB for stem cell transplantation.  相似文献   

14.
In a phase I study, the sequentially administered combination of recombinant human interleukin-3 (rhIL-3) and rhGM-CSF was compared with treatment with rhIL-3 alone in 15 patients with advanced tumors but normal hematopoiesis. Patients were initially treated with rhIL-3 for 15 days. After a treatment-free interval, the patients received a second 5-day cycle of rhIL-3 at an identical dosage, immediately followed by a 10-day course of rhGM-CSF, to assess the toxicity and biologic effects of this sequential rhIL-3/rhGM-CSF combination. rhIL-3 doses tested were 125, and 250 micrograms/m2, whereas rhGM-CSF was administered at a daily dosage of 250 micrograms/m2. Both cytokines were administered by subcutaneous (SC) bolus injection. rhIL-3/rhGM-CSF treatment was more effective than rhIL-3 but equally effective to each other in increasing peripheral leukocyte counts, especially neutrophilic and eosinophilic granulocyte counts. In contrast, both modes of cytokine therapy raised the platelet counts to the same degree. rhIL-3/GM-CSF treatment was more effective than rhIL-3 in increasing the number of circulating hematopoietic progenitor cells BFU-E and CFU-GM. High-dose rhIL-3, but not low-dose rhIL-3, was as effective as the rhIL-3/rhGM-CSF combinations in increasing the number of circulating CFU-GEMM. The increase in absolute neutrophil counts correlated with the increase in the number of circulating CFU-GM. Side effects, mainly fever, headache, flushing, and sweating, were generally mild, but in two patients the occurrence of chills, rigor, and dyspnea after initiation of GM-CSF treatment necessitated dose reduction and discontinuation, respectively. These results indicate that sequential treatment with rhIL-3 and rhGM-CSF is as effective as single-factor treatment with rhIL-3 in stimulating platelet counts, whereas the effect of combination therapy on neutrophil counts and circulating progenitor cells is superior.  相似文献   

15.
Abstract: The recently cloned cytotoxic lymphocyte maturation factor [CLMF] also called NK cell stimulatory factor [NKSF] or interleukin-12 [IL-12] has been described as a growth factor for mature lymphoid cells. The present study investigated whether purified recombinant human IL-12 could stimulate CFU colony growth. Source of progenitor cells were peripheral blood cells depleted of adherent, CD2- and CD56-positive cells. RhIL-12 was investigated either alone or in combination with rhIL-3, rhIL-6 and rhGM-CSF. RhIL-12 alone did not support colony formation of myeloid or erythroid progenitors. RhIL-12 in combination with rhIL-3 increased the numbers of BFU-E and CFU-GM. No synergism or additive effect was seen with the combination of rhIL-12 and rhGM-CSF or rhIL-12 and rhIL-6. An additive increase in the number of granulocytic colonies was observed when rhIL-3, rhIL-6 and rhGM-CSF were used together with rhIL-12. Our result therefore suggest that, in addition to being a potent lymphopoietic stimulator, IL-12 acts synergistically with IL-3 in enhancing the sensitivity of hemopoietic progenitors to IL-3.  相似文献   

16.
Chronic myeloid leukemia (CML) is a hematological neoplasia that results from the transformation of a hematopoietic stem cell. It is characterized by the expansion of the myeloid lineage, which results in the accumulation of mature and immature granulocytes in peripheral blood and bone marrow. However, when CML marrow cells are cultured in Dexter-type long-term cultures (LTMC) hematopoiesis is defective and can be sustained for only a few weeks. One possible explanation for the deficient growth of hematopoietic cells in CML LTMC is that some factors that act as key regulators of hematopoiesis are absent in this experimental system. Thus, we tested this hypothesis by adding recombinant cytokines to these cultures. As a first approach, we added recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF), rhGranulocyte-CSF (rhG-CSF) and rhErythropoietin (rhEPO); each factor was added individually once a week. Addition of rhGM-CSF and rhG-CSF resulted in a significant increase in the levels of nucleated cells and myeloid progenitors; the highest effects were seen in the presence of rhGM-CSF. Interestingly, such a cytokine also induced a significant decrease in the levels of erythroid progenitors. Recombinant hEPO had no significant effects on nucleated cells or myeloid progenitors, however, it induced a significant, although transient, increase in the levels of erythroid cells. The above results indicate that the hematopoietic regulators used here (rhGM-CSF, rhG-CSF and rhEPO) are capable of stimulating the growth of hematopoietic cells in LTMC from CML patients. Thus, this study demonstrates that it is, indeed, possible to manipulate CML LTMC by the addition of recombinant cytokines; this observation may be of particular relevance, since this in vitro experimental system has already been used as a method for purging of leukemic cells in autologous transplant settings. By using specific recombinant hematopoietic modulators it might be possible to make LTMC a more efficient system for such a clinical purpose.  相似文献   

17.
Hematopoiesis     
Chronic myeloid leukemia (CML) is a hematological neoplasia that results from the transformation of a hematopoietic stem cell. It is characterized by the expansion of the myeloid lineage, which results in the accumulation of mature and immature granulocytes in peripheral blood and bone marrow. However, when CML marrow cells are cultured in Dexter-type long-term cultures (LTMC) hematopoiesis is defective and can be sustained for only a few weeks. One possible explanation for the deficient growth of hematopoietic cells in CML LTMC is that some factors that act as key regulators of hematopoiesis are absent in this experimental system. Thus, we tested this hypothesis by adding recombinant cytokines to these cultures. As a first approach, we added recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF), rhGranulocyte-CSF (rhG-CSF) and rhErythropoietin (rhEPO); each factor was added individually once a week. Addition of rhGM-CSF and rhG-CSF resulted in a significant increase in the levels of nucleated cells and myeloid progenitors; the highest effects were seen in the presence of rhGM-CSF. Interestingly, such a cytokine also induced a significant decrease in the levels of erythroid progenitors. Recombinant hEPO had no significant effects on nucleated cells or myeloid progenitors, however, it induced a significant, although transient, increase in the levels of erythroid cells. The above results indicate that the hematopoietic regulators used here (rhGM-CSF, rhG-CSF and rhEPO) are capable of stimulating the growth of hematopoietic cells in LTMC from CML patients. Thus, this study demonstrates that it is, indeed, possible to manipulate CML LTMC by the addition of recombinant cytokines; this observation may be of particular relevance, since this in vitro experimental system has already been used as a method for purging of leukemic cells in autologous transplant settings. By using specific recombinant hematopoietic modulators it might be possible to make LTMC a more efficient system for such a clinical purpose.  相似文献   

18.
Human interleukin 6 (IL-6) produced by molecular cloning was administered to nonhuman primates to assess its biological activities in vivo. Rhesus monkeys were treated s.c. with recombinant human (rh) IL-6 at 3 and 30 micrograms/kg body weight/day for 11 days, followed by the administration of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) at 5.5 micrograms/kg/day for 5 days. Serum levels of positively regulated acute phase proteins (APP) (C-reactive protein, alpha 1-antitrypsin, haptoglobin, and ceruloplasmin) increased, whereas negatively regulated APP (prealbumin) decreased in response to rhIL-6 treatment in a dose-dependent manner. Platelet counts rose after a latent period of 4-5 days following the start of rhIL-6 treatment, resulting in a maximum twofold increase above normal levels 2-3 days after the termination of the rhIL-6 treatment. Recombinant human IL-6 treatment induced a two to threefold rise in myeloid progenitor blood cell levels. The subsequent administration of rhGM-CSF to rhIL-6-pretreated animals did not increase the progenitor cell levels in blood above those found with rhGM-CSF treatment alone, indicating that rhIL-6 compared to recombinant human interleukin 3 (rhIL-3) has a minor proliferative effect on hematopoietic precursors in vivo. In conclusion, rhIL-6 was shown to be a potent stimulator of APP and was able to increase the number of platelets in circulation in nonhuman primates.  相似文献   

19.
Preclinical studies of recombinant human interleukin-3 (rhIL-3) and granulocyte-macrophage colony-stimulating factor (rhGM-CSF) have shown enhancement of multilineage hematopoiesis when administered sequentially. This study was designed to evaluate the safety, tolerability, and biologic effects of sequential administration of rhIL- 3 and rhGM-CSF after marrow ablative cytotoxic therapy and autologous bone marrow transplantation (ABMT) for patients with malignant lymphoma. Thirty-seven patients (20 patients with non-Hodgkin's lymphoma and 17 patients with Hodgkin's disease) received one of four different treatment regimens before ABMT. Patients were entered in one of four study groups to receive rhIL-3 (2.5 or 5.0 micrograms/kg/day) administered by subcutaneous injection for either 5 or 10 days starting 4 hours after the marrow infusion. Twenty-four hours after the last dose of rhIL-3, rhGM-CSF (250 micrograms/m2/d as a 2-hour intravenous infusion) administration was initiated. rhGM-CSF was administered daily until the absolute neutrophil count (ANC) was > or = 1,500/microL for 3 consecutive days or until day 27 posttransplant. The most frequent adverse events in the trial included nausea, fever, diarrhea, mucositis, vomiting, rash, edema, chills, abdominal pain, and tachycardia. Three patients were removed from the study because of chest, skeletal, and abdominal pain felt to be probably related to study drug. Four patients died during the study period because of complications unrelated to either rhIL-3 or rhGM-CSF. The median time to recovery of neutrophils (ANC > or = 500/microL) and platelets (platelet count > or = 20,000/microL) was 14 and 15 days, respectively. There were fewer days of platelet transfusions than seen in historical control groups using rhGM-CSF, rhG-CSF, or rhIL-3 alone. In addition, there were fewer days of red blood cell transfusions compared with historical controls using no cytokines or rhGM-CSF. These data indicate that the sequential administration of rhIL-3 and rhGM-CSF after ABMT is safe and generally well-tolerated and results in rapid recovery of multilineage hematopoiesis.  相似文献   

20.
Human cord blood is a source of transplantable stem cells. These stem cells express the antigen CD34, are resistant to treatment with 4-hydroperoxycyclophosphamide (CD34+/4-HCres), and do not give rise to colonies when plated in clonogenic assays. We studied the number of CD34+ cells present in cord blood and developed a two-step assay for early precursors (pre-colony-forming units, pre-CFU) capable of giving rise to committed progenitors. In this assay CD34+/4-HCres cord blood cells were cultured in suspension with different growth factors. After 7 days in suspension the remaining cells were plated in clonogenic assays, for granulocyte-macrophage colony-forming units (CFU-GM), erythroid burst-forming units (BFU-E), and mixed lineage colony-forming units (CFU-MIX), in the presence of pure factors or a combination of recombinant human (rh) interleukin 3 (IL-3) and medium conditioned by the PU34 primate cell line. Pre-CFU for all precursors were identified. These pre-CFU developed into committed progenitors in response to rhIL-3. The combinations of rhIL-3 plus rh interleukin 1 (IL-1) or rhIL-3 plus rh interleukin 6 (IL-6) did not enhance recovery of progenitors. The developing CFU-GM were responsive to rh granulocyte-macrophage colony-stimulating factor (GM-CSF) and rh granulocyte colony-stimulating factor (G-CSF) but much less so to rhIL-3. BFU-E and CFU-MIX developed in suspension but could only be detected when cells were replated in the presence of a combination of rhIL-3 and PU34 but not rhIL-3 alone. This assay may be useful in evaluating the number of early hematopoietic precursors present in cord blood samples and in defining growth factor combinations that could enhance hematopoietic recovery after cord blood stem cell transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号