首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was (or was not) induced. After sciatic nerve injury, tacrolimus, an immunosup-pressant, was (or was not) intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus ex-hibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury.  相似文献   

2.
The magnitude of tensile stress and tensile strain at an anastomosis site under physiological stress is an important factor for the success of anastomosis following suturing in peripheral nerve injury treatment. Sciatic nerves from fresh adult cadavers were used to create models of sciatic nerve injury. The denervated specimens underwent epineurial and perineurial suturing. The elastic modulus (40.96 ± 2.59 MPa) and Poisson ratio (0.37 ± 0.02) of the normal sciatic nerve were measured by strain electrical measurement. A resistance strain gauge was pasted on the front, back, left, and right of the edge of the anastomosis site after suturing. Strain electrical measurement results showed that the stress and strain values of the sciatic nerve following perineurial suturing were lower than those following epineurial suturing. Scanning electron microscopy revealed that the sciatic nerve fibers were disordered following epineurial compared with perineurial suturing. These results indicate that the effect of perineurial suturing in sciatic nerve injury repair is better than that of epineurial suturing.  相似文献   

3.
The aim of the present study was to evaluate whether tissue levels of vitamin B complex and vitamin B12 were altered after crush-induced peripheral nerve injury in an experimental rat model. A total of 80 male Wistar rats were randomized into one control (n = 8) and six study groups (1, 6, 12, 24 hours, 3, and 7 days after experimental nerve injury;n = 12 for each group). Crush-induced peripheral nerve injury was per-formed on the sciatic nerves of rats in six study groups. Tissue samples from the sites of peripheral nerve injury were obtained at 1, 6, 12, 24 hours, 3 and 7 days after experimental nerve injury. Enzyme-linked immunosorbent assay results showed that tissue levels of vitamin B complex and vitamin B12 in the injured sciatic nerve were signiifcantly greater at 1 and 12 hours after experimental nerve injury, while they were signiifcantly lower at 7 days than in control group. Tissue level of vitamin B12 in the injured sciatic nerve was signiifcantly lower at 1, 6, 12 and 24 hours than in the control group. These results suggest that tissue levels of vitamin B complex and vitamin B12 vary with progression of crush-induced peripheral nerve injury, and supplementation of these vitamins in the acute period may be beneficial for acceleration of nerve regeneration.  相似文献   

4.
Nitric oxide(NO)has been shown to promote revascularization and nerve regeneration after peripheral nerve injury.However,in vivo application of NO remains challenging due to the lack of stable carrier materials capable of storing large amounts of NO molecules and releasing them on a clinically meaningful time scale.Recently,a silica nanoparticle system capable of reversible NO storage and release at a controlled and sustained rate was introduced.In this study,NO-releasing silica nanoparticles(NO-SNs)were delivered to the peripheral nerves in rats after acute crush injury,mixed with natural hydrogel,to ensure the effective application of NO to the lesion.Microangiography using a polymer dye and immunohistochemical staining for the detection of CD34(a marker for revascularization)results showed that NO-releasing silica nanoparticles increased revascularization at the crush site of the sciatic nerve.The sciatic functional index revealed that there was a significant improvement in sciatic nerve function in NO-treated animals.Histological and anatomical analyses showed that the number of myelinated axons in the crushed sciatic nerve and wet muscle weight excised from NO-treated rats were increased.Moreover,muscle function recovery was improved in rats treated with NO-SNs.Taken together,our results suggest that NO delivered to the injured sciatic nerve triggers enhanced revascularization at the lesion in the early phase after crushing injury,thereby promoting axonal regeneration and improving functional recovery.  相似文献   

5.
In this study,we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve.BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tuberosity.The successfully generated model mice were treated with 10,5,or 2.5 mg/kg ursolic acid via intraperitoneal injection.Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury,and significantly decreased at 8 weeks.As such,ursolic acid has the capacity to significantly increase S100 protein expression levels.Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment.In addition,the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid.Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid.10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid.Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.  相似文献   

6.
A sciatic nerve transection and repair model was established in Sprague-Dawley rats by transecting the tendon of obturator internus muscle in the greater sciatic foramen and suturing with nylon sutures. The models were treated with tacrolimus gavage (4 mg/kg per day) for 0, 2, 4 and 6 weeks. Specimens were harvested at 6 weeks of intragastric administration. Masson staining revealed that the collagen fiber content and scar area in the nerve anastomosis of the sciatic nerve injury rats were significantly reduced after tacrolimus administration. Hematoxylin-eosin staining showed that tacrolimus significantly increased myelinated nerve fiber density, average axon diameter and myelin sheath thickness. Intragastric administration of tacrolimus also led to a significant increase in the recovery rate of gastrocnemius muscle wet weight and the sciatic functional index after sciatic nerve injury. The above indices were most significantly improved at 6 weeks after of tacrolimus gavage. The myelinated nerve fiber density in the nerve anastomosis and the sciatic nerve functions had a significant negative correlation with the scar area, as detected by Spearman’s rank correlation analysis. These findings indicate that tacrolimus can promote peripheral nerve regeneration and accelerate the recovery of neurological function through the reduction of scar formation.  相似文献   

7.
8.
Peripheral nerve injuries with a poor prognosis are common. Evening primrose oil (EPO) has beneficial biological effects and immunomodulatory properties. Since electrical activity plays a major role in neural regeneration, the present study investigated the effects of electrical stimulation (ES), combined with evening primrose oil (EPO), on sciatic nerve function after a crush injury in rats. In anesthetized rats, the sciatic nerve was crushed using small haemostatic forceps followed by ES and/or EPO treatment for 4 weeks. Functional recovery of the sciatic nerve was assessed using the sciatic functional index. Histopathological changes of gas-trocnemius muscle atrophy were investigated by light microscopy. Electrophysiological changes were assessed by the nerve conduction velocity of sciatic nerves. Immunohistochemistry was used to determine the remy-elination of the sciatic nerve following the interventions. EPO + ES, EPO, and ES obviously improved sciatic nerve function assessed by the sciatic functional index and nerve conduction velocity of the sciatic nerve at 28 days after operation. Expression of the peripheral nerve remyelination marker, protein zero (P0), was in-creased in the treatment groups at 28 days after operation. Muscle atrophy severity was decreased significantly while the nerve conduction velocity was increased significantly in rats with sciatic nerve injury in the injury+ EPO + ES group than in the EPO or ES group. Totally speaking, the combined use of EPO and ES may pro-duce an improving effect on the function of sciatic nerves injured by a crush. The increased expression of P0 may have contributed to improving the functional effects of combination therapy with EPO and ES as well as the electrophysiological and histopathological features of the injured peripheral nerve.  相似文献   

9.
Studies have shown that myelin-associated glycoprotein(MAG)can inhibit axon regeneration after nerve injury.However,the effects of MAG on neuroma formation after peripheral nerve injury remain poorly understood.In this study,local injection of MAG combined with nerve cap made of chitin conduit was used to intervene with the formation of painful neuroma after sciatic nerve transfection in rats.After 8 weeks of combined treatment,the autotomy behaviors were reduced in rats subjected to sciatic nerve transfection,the mRNA expression of nerve growth factor,a pain marker,in the proximal nerve stump was decreased,the density of regenerated axons was decreased,the thickness of the myelin sheath was increased,and the ratio of unmyelinated to myelinated axons was reduced.Moereover,the percentage of collagen fiber area and the percentage of fibrosis marker alpha-smooth muscle actin positive staining area in the proximal nerve stump were decreased.The combined treatment exhibited superior effects in these measures to chitin conduit treatment alone.These findings suggest that MAG combined with chitin conduit synergistically inhibits the formation of painful neuroma after sciatic nerve transection and alleviates neuropathic pain.This study was approved by the Animal Ethics Committee of Peking University People’s Hospital(approval No.2019PHE027)on December 5,2019.  相似文献   

10.
Rat models of acute spinal cord injury and sciatic nerve injury were established.Apelin expression in spinal cord tissue was determined.In normal rat spinal cords,apelin expression was visible;however,2 hours post spinal cord injury,apelin expression peaked.Apelin expression increased 1 day post ligation of the sciatic nerve compared with normal rat spinal cords,and peaked at 3 days.Apelin expression was greater in the posterior horn compared with the anterior horn at each time point when compared with the normal group.The onset of neuronal apoptosis was significantly delayed following injection of apelin protein at the stump of the sciatic nerve,and the number of apoptotic cells after injury was reduced when compared with normal spinal cords.Our results indicate that apelin is expressed in the normal spinal cord and central nervous system after peripheral nerve injury.Apelin protein can reduce motor neuron apoptosis in the spinal cord anterior horn and delay the onset of apoptosis.  相似文献   

11.
12.
Propofol can inhibit the inflammatory response and reduce the secretion and harmful effects of astrocyte-derived proinflammatory cytokines.In this study,after propofol was injected into the injured sciatic nerve of mice,nuclear factor kappa B expression in the L4-6 segments of the spinal cord in the injured side was reduced,apoptosis was decreased,nerve myelin defects were alleviated,and the nerve conduction block was lessened.The experimental findings indicate that propofol inhibits the inflammatory and immune responses,decreases the expression of nuclear factor kappa B,and reduces apoptosis.These effects of propofol promote regeneration following sciatic nerve injury.  相似文献   

13.
The overwhelming use of rat models in nerve regeneration studies is likely to induce skewness in treatment outcomes.To address the problem,this study was conducted in 8 adult guinea pigs of either sex to investigate the suitability of guinea pig as an alternative model for nerve regeneration studies.A crush injury was inflicted to the sciatic nerve of the left limb,which led to significant decrease in the pain perception and neurorecovery up to the 4th weak.Lengthening of foot print and shortening of toe spread were observed in the paw after nerve injury.A 3.49 ± 0.35 fold increase in expression of neuropilin 1(NRP1) gene and 2.09 ± 0.51 fold increase in neuropilin 2(NRP2) gene were recorded 1 week after nerve injury as compared to the normal nerve.Ratios of gastrocnemius muscle weight and volume of the experimental limb to control limb showed more than 50% decrease on the 30 th day.Histopathologically,vacuolated appearance of the nerve was observed with presence of degenerated myelin debris in digestion chambers.Gastrocnemius muscle also showed degenerative changes.Scanning electron microscopy revealed loose and rough arrangement of connective tissue fibrils and presence of large spherical globules in crushed sciatic nerve.The findings suggest that guinea pigs could be used as an alternative animal model for nerve regeneration studies and might be preferred over rats due to their cooperative nature while recording different parameters.  相似文献   

14.
The neuropeptides, substance P and calcitonin gene-related peptide, have been shown to be involved in pain transmission and repair of sciatic nerve injury. A model of sciatic nerve defect was prepared by dissecting the sciatic nerve at the middle, left femur in female Sprague Dawley rats. The two ends of the nerve were encased in a silica gel tube. L5 dorsal root ganglia were harvested 7, 14 and 28 days post sciatic nerve injury for immunohistochemical staining. Results showed that substance P and cal- citonin gene-related peptide expression increased significantly in dorsal root ganglion of rats with sci- atic nerve injury. This increase peaked at 7 days, declined at 14 days, and reduced to normal levels by 28 days post injury. The findings indicate that the neuropeptides, substance P and calcitonin gene- related peptide, mainly increased in the early stages after sciatic nerve injury.  相似文献   

15.
In the present study, a mouse model of sciatic nerve injury was treated with intraperitoneal injection of 7, 8-dihydroxycoumarin (10, 5, or 2.5 mg/kg per day). Western blot and real-time PCR results showed that growth associated protein 43 expression was significantly increased in the L4-6 seg-ments of the spinal cord. The amplitude and velocity of motor nerve conduction in the sciatic nerve were significantly increased in model mice. In addition, the appearance of the myelin sheath in the injured sciatic nerve was regular, with an even thickness and clear outline, and the surrounding fi-broplasia was not obvious. Our results indicate that 7, 8-dihydroxycoumarin can promote the repair of injured nerve by upregulating growth associated protein 43 expression in the corresponding spinal cord segments of mice with sciatic nerve injury.  相似文献   

16.
Repetitive magnetic stimulation is effective for treating posttraumatic neuropathies following spinal or axonal injury.Neurotropin is a potential treatment for nerve injuries like demyelinating diseases.This study sought to observe the effects of high-frequency repetitive magnetic stimulation,neurotropin and their combined use in the treatment of peripheral nerve injury in 32 adult male Sprague-Dawley rats.To create a sciatic nerve injury model,a 10 mm-nerve segment of the left sciatic nerve was cut and rotated through 180°and each end restored continuously with interrupted sutures.The rats were randomly divided into four groups.The control group received only a reversed autograft in the left sciatic nerve with no treatment.In the high-frequency repetitive magnetic stimulation group,peripheral high-frequency repetitive magnetic stimulation treatment(20 Hz,20 min/d)was delivered for 10 consecutive days after auto-grafting.In the neurotropin group,neurotropin therapy(0.96 NU/kg per day)was administrated for 10 consecutive days after surgery.In the combined group,the combination of peripheral high-frequency repetitive magnetic stimulation(20 Hz,20 min/d)and neurotropin(0.96 NU/kg per day)was given for 10 consecutive days after the operation.The Basso-Beattie-Bresnahan locomotor rating scale was used to assess the behavioral recovery of the injured nerve.The sciatic functional index was used to evaluate the recovery of motor functions.Toluidine blue staining was performed to determine the number of myelinated fibers in the distal and proximal grafts.Immunohistochemistry staining was used to detect the length of axons marked by neurofilament 200.Our results reveal that the Basso-Beattie-Bresnahan locomotor rating scale scores,sciatic functional index,the number of myelinated fibers in distal and proximal grafts were higher and axon lengths were longer in the high-frequency repetitive magnetic stimulation,neurotropin and combined groups compared with the control group.These measures were not significantly different among the high-frequency repetitive magnetic stimulation,neurotropin and combined groups.Therefore,our results suggest that peripheral high-frequency repetitive magnetic stimulation or neurotropin can promote the repair of injured sciatic nerves,but their combined use seems to offer no significant advantage.This study was approved by the Animal Ethics Committee of the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University,China on December 23,2014(approval No.2014keyan002-01).  相似文献   

17.
Non-freezing cold injury is a prevalent cause of peripheral nerve damage, but its pathogenic mechanism is poorly understood, and treatment remains inadequate. Glucocorticoids have anti-inflammatory and lipid peroxidation-inhibiting properties. We therefore examined whether dexamethasone, a synthetic glucocorticoid compound, would alleviate early-stage non-freezing cold injury of the sciatic nerve. We established Wistar rat models of non-freezing cold injury by exposing the left sciatic nerve to cold(3–5°C) for 2 hours, then administered dexamethasone(3 mg/kg intraperitoneally) to half of the models. One day after injury, the concentration of Evans blue tracer in the injured sciatic nerve of rats that received dexamethasone was notably lower than that in the injured sciatic nerve of rats that did not receive dexamethasone; neither Evans blue dye nor capillary stenosis was observed in the endoneurium, but myelinated nerve fibers were markedly degenerated in the injured sciatic nerve of animals that received dexamethasone. After dexamethasone administration, however, endoneurial vasculopathy was markedly improved, although damage to the myelinated nerve fiber was not alleviated. These findings suggest that dexamethasone protects the blood-nerve barrier, but its benefit in non-freezing cold injury is limited to the vascular system.  相似文献   

18.
The experimental model of traumatic brain injury was established in Sprague-Dawley rats according to Feeney's free falling method. The brains were harvested at 2, 6 and 24 hours, and at 3 and 5 days after injury. Changes in brain water content were determined using the wet and dry weights. Our results showed that water content of tissue significantly increased after traumatic brain injury, and reached minimum at 24 hours. Hematoxylin-eosin staining revealed pathological impairment of brain tissue at each time point after injury, particularly at 3 days, with nerve cell edema, degenera- tion, and necrosis observed, and the apoptotic rate significantly increased. Immunohistochemistry and western blot analysis revealed that the expression of occludin at the injured site gradually de- creased as injury time advanced and reached a minimum at 3 days after injury; the expression of connexin 43 gradually increased as injury time advanced and reached a peak at 24 hours after in-jury. The experimental findings indicate that changes in occludin and connexin 43 expression were consistent with the development of brain edema, and may reflect the pathogenesis of brain injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号