首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites.  相似文献   

2.
Magnetic resonance spectroscopic imaging (MRSI) provides spatially resolved metabolite information that is invaluable for both neuroscience studies and clinical applications. However, lengthy data acquisition times, which are a result of time-consuming phase encoding, represent a major challenge for MRSI. Fast MRSI pulse sequences that use echo-planar readout gradients, such as proton echo-planar spectroscopic imaging (PEPSI), are capable of fast spectral-spatial encoding and thus enable acceleration of image acquisition times. Combining PEPSI with recent advances in parallel MRI utilizing RF coil arrays can further accelerate MRSI data acquisition. Here we investigate the feasibility of ultrafast spectroscopic imaging at high field (3T and 4T) by combining PEPSI with sensitivity-encoded (SENSE) MRI using eight-channel head coil arrays. We show that the acquisition of single-average SENSE-PEPSI data at a short TE (15 ms) can be accelerated to 32 s or less, depending on the field strength, to obtain metabolic images of choline (Cho), creatine (Cre), N-acetyl-aspartate (NAA), and J-coupled metabolites (e.g., glutamate (Glu) and inositol (Ino)) with acceptable spectral quality and localization. The experimentally measured reductions in signal-to-noise ratio (SNR) and Cramer-Rao lower bounds (CRLBs) of metabolite resonances were well explained by both the g-factor and reduced measurement times. Thus, this technology is a promising means of reducing the scan times of 3D acquisitions and time-resolved 2D measurements.  相似文献   

3.
A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton–echo‐planar‐spectroscopic‐imaging (PEPSI) is introduced that measures two‐dimensional metabolite maps in a single excitation. Echo‐planar spatial–spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k‐space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single‐shot MRSI at short TE was evaluated in phantoms and in vivo on a 3‐T whole‐body scanner equipped with a 12‐channel array coil. Four‐step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 × 16 spatial matrix with a 390‐Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g‐factor–related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N‐acetyl‐aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE‐accelerated PEPSI. Cramer–Rao lower bounds were comparable to those obtained with conventional SENSE‐accelerated PEPSI at the same voxel size and measurement time. This single‐shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. Magn Reson Med, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Prostate MR spectroscopic imaging (MRSI) at 3T may provide two-fold higher spatial resolution over 1.5T, but this can result in longer acquisition times to cover the entire gland using conventional phase-encoding. In this study, flyback echo-planar readout trajectories were incorporated into a Malcolm Levitt's composite-pulse decoupling sequence (MLEV)-point-resolved spectroscopy sequence (PRESS) to accelerate the acquisition of large array (16 x 16 x 8), high spatial (0.154 cm(3)) resolution MRSI data by eight-fold to just 8.5 minutes. Artifact free, high-quality MRSI data was obtained in nine prostate cancer patients. Easy data reconstruction and the robustness of the flyback echo-planar encoding make this technique particularly suitable for the clinical setting. The short acquisition time provided by this method reduces the 3T prostate MRI/MRSI exam time, allows longer repetition times, and/or allows the acquisition of additional MR acquisitions within the same exam.  相似文献   

5.
Long acquisition times, low resolution, and voxel contamination are major difficulties in the application of magnetic resonance spectroscopic imaging (MRSI). To overcome these difficulties, an online-optimized acquisition of k-space, termed sequential forward array selection (SFAS), was developed to reduce acquisition time without sacrificing spatial resolution. A 2D proton MRSI region of interest (ROI) was defined from a scout image and used to create a region of support (ROS) image. The ROS was then used to optimize and obtain a subset of k-space (i.e., a subset of nonuniform phase encodings) and hence reduce the acquisition time for MRSI. Reconstruction and processing software was developed in-house to process and reconstruct MRSI using the projections onto convex sets method. Phantom and in vivo studies showed that good-quality MRS images are obtainable with an approximately 80% reduction of data acquisition time. The reduction of the acquisition time depends on the area ratio of ROS to FOV (i.e., the smaller the ratio, the greater the time reduction). It is also possible to obtain higher-resolution MRS images within a reasonable time using this approach. MRSI with a resolution of 64 x 64 is possible with the acquisition time of the same as 24 x 24 using the traditional full k-space method.  相似文献   

6.
A reproducibility study of proton MR spectroscopic imaging (1H‐MRSI) of the human brain was conducted to evaluate the reliability of an automated 3D in vivo spectroscopic imaging acquisition and associated quantification algorithm. A PRESS‐based pulse sequence was implemented using dualband spectral‐spatial RF pulses designed to fully excite the singlet resonances of choline (Cho), creatine (Cre), and N‐acetyl aspartate (NAA) while simultaneously suppressing water and lipids; 1% of the water signal was left to be used as a reference signal for robust data processing, and additional lipid suppression was obtained using adiabatic inversion recovery. Spiral k‐space trajectories were used for fast spectral and spatial encoding yielding high‐quality spectra from 1 cc voxels throughout the brain with a 13‐min acquisition time. Data were acquired with an 8‐channel phased‐array coil and optimal signal‐to‐noise ratio (SNR) for the combined signals was achieved using a weighting based on the residual water signal. Automated quantification of the spectrum of each voxel was performed using LCModel. The complete study consisted of eight healthy adult subjects to assess intersubject variations and two subjects scanned six times each to assess intrasubject variations. The results demonstrate that reproducible whole‐brain 1H‐MRSI data can be robustly obtained with the proposed methods. Magn Reson Med 60:542–547, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension.  相似文献   

8.
PURPOSE: To combine the specific advantages of the generalized autocalibrating partially parallel acquisitions (GRAPPA) technique and sensitivity encoding (SENSE) with two-dimensional (2D) undersampling. MATERIALS AND METHODS: By splitting the 2D reconstruction process into multiple one-dimensional (1D) reconstructions, the normal 1D GRAPPA method can be used for image reconstruction. Due to this data-handling process, a GRAPPA reconstruction is performed along the phase-encoding (PE) direction and effectively a SENSE reconstruction is performed along the partition-encoding (PAE) direction. RESULTS: In vivo experiments demonstrate the successful implementation of the SENSE/GRAPPA combination. Experimental results with up to 9.6-fold acceleration using a prototype 32-channel receiver head coil array are presented. CONCLUSION: The proposed SENSE/GRAPPA combination for 3D imaging allows the GRAPPA method to be applied in combination with 2D undersampling. Because the SENSE/GRAPPA combination is not based on knowledge of spatial coil sensitivities, it should be the method of choice whenever it is difficult to extract the sensitivity information.  相似文献   

9.
The effect of different spatial-encoding (k-space) sampling distributions are evaluated for magnetic resonance spectroscopic imaging (MRSI) using Fourier reconstruction. Previously, most MRSI studies have used square or cubic k-space functions, symmetrically distributed. These studies examine the conventional k-space distribution with spherical distribution, and 1/2 k-space acquisition, using computer simulation studies of the MRSI acquisition for three spatial dimensions and experimental results. Results compare the spatial response function, Gibbs ringing effects, and signal contamination for different spatial-encoding distribution functions. Results indicate that spherical encoding, in comparison with cubic encoding, results in a modest improvement of the re sponse function with approximately equivalent spatial resolution for the same acquisition time. For spin-echo acquired data, reduced acquisition times can readily be obtained using 1/2 k-space methods, with a concomitant reduction in signal to noise ratio.  相似文献   

10.
The spatial resolution of conventional magnetic resonance spectroscopic imaging-(MRSI) is typically coarse, mainly due to SNR limitations. The increased signal available with higher field scanners and new array coils now permits higher spatial resolution, but conventional chemical shift imaging (phase encoding) limits the spatial coverage possible in a patient-acceptable acquisition time. The "flyback" echo-planar trajectory is particularly insensitive to errors and provides data that are simple to process. In this study, high-efficiency gradient waveforms for flyback echo-planar MRSI were designed and implemented. Normal volunteer studies at 3 T showed the feasibility of acquiring high spatial resolution with large coverage in a short scan time (2048 voxels in 2.3 min and 4096 voxels in 8.5 min). The trajectories were insensitive to errors in timing and require only a modest (10 to 30%) penalty in SNR relative to conventional phase encoding using the same acquisition time.  相似文献   

11.
The purpose of this work was to assess the feasibility and efficacy of using an array coil and parallel imaging in continuous arterial spin labeling (CASL) perfusion MRI. An 8-channel receive-only array head coil was used in conjunction with a surrounding detunable volume transmit coil. The signal to noise ratio (SNR), temporal stability, cerebral blood flow (CBF), and perfusion image coverage were measured from steady state CASL scans using: a standard volume coil, array coil, and array coil with 2- and 3-fold accelerated parallel imaging. Compared to the standard volume coil, the array coil provided 3 times the average SNR increase and higher temporal stability for the perfusion weighted images, even with threefold acceleration. Although perfusion images of the array coil were affected by the inhomogeneous coil sensitivities, this effect was invisible in the quantitative CBF images, which showed highly reproducible perfusion values compared to the standard volume coil. The unfolding distortions of parallel imaging were suppressed in the perfusion images by pairwise subtraction, though they sharply degraded the raw EPI images. Moreover, parallel imaging provided the potential of acquiring more slices due to the shortened acquisition time and improved coverage in brain regions with high static field inhomogeneity. Such results highlight the potential utility of array coils and parallel imaging in ASL perfusion MRI.  相似文献   

12.
Sensitivity-encoded spectroscopic imaging.   总被引:11,自引:0,他引:11  
Sensitivity encoding (SENSE) offers a new, highly effective approach to reducing the acquisition time in spectroscopic imaging (SI). In contrast to conventional fast SI techniques, which accelerate k-space sampling, this method permits reducing the number of phase encoding steps in each phase encoding dimension of conventional SI. Using a coil array for data acquisition, the missing encoding information is recovered exploiting knowledge of the distinct spatial sensitivities of the individual coil elements. In this work, SENSE is applied to 2D spectroscopic imaging. Fourfold reduction of scan time is achieved at preserved spectral and spatial resolution, maintaining a reasonable SNR. The basic properties of the proposed method are demonstrated by phantom experiments. The in vivo feasibility of SENSE-SI is verified by metabolic imaging of N-acetylaspartate, creatine, and choline in the human brain. These results are compared to conventional SI, with special attention to the spatial response and the SNR.  相似文献   

13.
Parallel imaging reconstruction has been successfully applied to magnetic resonance spectroscopic imaging (MRSI) to reduce scan times. For undersampled k‐space data on a Cartesian grid, the reconstruction can be achieved in image domain using a sensitivity encoding (SENSE) algorithm for each spectral data point. Alternative methods for reconstruction with undersampled Cartesian k‐space data are the SMASH and GRAPPA algorithms that do the reconstruction in the k‐space domain. To reconstruct undersampled MRSI data with arbitrary k‐space trajectories, image‐domain‐based iterative SENSE algorithm has been applied at the cost of long computing times. In this paper, a new k‐space domain‐based parallel spectroscopic imaging reconstruction with arbitrary k‐space trajectories using k‐space sparse matrices is applied to MRSI with spiral k‐space trajectories. The algorithm achieves MRSI reconstruction with reduced memory requirements and computing times. The results are demonstrated in both phantom and in vivo studies. Spectroscopic images very similar to that reconstructed with fully sampled spiral k‐space data are obtained at different reduction factors. Magn Reson Med 61:267–272, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Partially parallel imaging (PPI) achieves imaging acceleration by replacing partial phase encoding (PE) with the spatially localized sensitivity encoding of a receiver surface coil array. Further accelerations can be achieved through 2D PPI along two PE directions in 3D MRI. This paper is to explore the k-space-based PPI acquisition and reconstruction strategies for 3D MRI. A surrounding neighbors-based autocalibrating PPI (SNAPPI) was first presented by generalizing the 2D multicolumn multiline interpolation method. Several 2D PPI reconstruction methods were then provided by applying SNAPPI to recover the partially skipped k-space data along two PE directions separately or nonseparately, in k-space or in the hybrid k and image space. An optimal 2D PPI sampling-based reconstruction approach was also presented for applying PPI along certain spatial direction along which the array coil has not sufficient sensitivity variation for a valid PPI reconstruction. Both simulated and in vivo 2D PPI data were used to evaluate the proposed methods.  相似文献   

15.
A 64-channel array coil for magnetic resonance imaging (MRI) has been designed and constructed. The coil was built to enable the testing of a new imaging method, single echo acquisition (SEA) MRI, in which an independent full image is acquired with every echo. This is accomplished by entirely eliminating phase encoding and instead using the spatial information obtained from an array of very narrow, long, parallel coils. The planar pair element design proved to be key in achieving well-localized field sensitivity patterns and isolated elements, the crucial requirements for performing SEA. The matching and tuning of the array elements were accomplished on the coil array printed circuit board using varactor diodes biased over the RF lines. The array was successfully used to obtain SEA images as well as conventional partially parallel images at unprecedented acceleration factors.  相似文献   

16.
Parallel imaging presents a promising approach for MRI of hyperpolarized nuclei, as the penalty in signal‐to‐noise ratio typically encountered with 1H MRI due to a reduction in acquisition time can be offset by an increase in flip angle. The signal‐to‐noise ratio of hyperpolarized MRI generally exhibits a strong dependence on flip angle, which makes a homogeneous B1+ transmit field desirable. This paper presents a flexible 32‐channel receive array for 3He human lung imaging at 1.5T designed for insertion into an asymmetric birdcage transmit coil. While the 32‐channel array allows parallel imaging at high acceleration factors, the birdcage transmit coil provides a homogeneous B1+ field. Decoupling between array elements is achieved by using a concentric shielding approach together with preamplifier decoupling. Coupling between transmit coil and array elements is low by virtue of a low geometric coupling coefficient, which is reduced further by the concentric shields in the array. The combination of the 32‐channel array and birdcage transmit coil provides 3He ventilation images of excellent quality with similar signal‐to‐noise ratio at acceleration factors R = 2 and R = 4, while maintaining a homogeneous B1+. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
The improvement of MRI speed with parallel acquisition is ultimately an SNR-limited process. To offset acquisition- and reconstruction-related SNR losses, practical parallel imaging at high accelerations should include the use of a many-element array with a high intrinsic signal-to-noise ratio (SNR) and spatial-encoding capability, and an advantageous imaging paradigm. We present a 32-element receive-coil array and a volumetric paradigm that address the SNR challenge at high accelerations by maximally exploiting multidimensional acceleration in conjunction with noise averaging. Geometric details beyond an initial design concept for the array were determined with the guidance of simulations. Imaging with the support of 32-channel data acquisition systems produced in vivo results with up to 16-fold acceleration, including images from rapid abdominal and MRA studies.  相似文献   

18.
With standard spectroscopic imaging, high spatial resolution is achieved at the price of a large number of phase-encoding steps, leading to long acquisition times. Fast spatial encoding methods reduce the minimum total acquisition time. In this article, a k-space scanning scheme using a continuous series of growing and shrinking, or "out-and-in," spiral trajectories is implemented and the feasibility of spiral spectroscopic imaging for animal models at high B(0) field is demonstrated. This method was applied to rat brain at 7 T. With a voxel size of about 8.7 microl (as calculated from the point-spread function), a 30 x 30 matrix, and a spectral bandwidth of 11 kHz, the minimum scan time was 9 min 20 sec for a signal-to-noise ratio of 7.1 measured on the N-acetylaspartate peak.  相似文献   

19.
In MRI applications where short acquisition time is necessary, the increase of acquisition speed is often at the expense of image resolution and SNR. In such cases, the newly developed parallel acquisition techniques could provide images without mentioned limitations and in reasonably shortened measurement time. A newly designed eight-channel head coil array (i-PAT coil) allowing for parallel acquisition of independently reconstructed images (GRAPPA mode) has been tested for its applicability in neuroradiology. Image homogeneity was tested in standard phantom and healthy volunteers. BOLD signal changes were studied in a group of six volunteers using finger tapping stimulation. Phantom studies revealed an important drop of signal even after the use of a normalization filter in the center of the image and an important increase of artifact power with reduction of measurement time strongly depending on the combination of acceleration parameters. The additional application of a parallel acquisition technique such as GRAPPA decreases measurement time in the range of about 30%, but further reduction is often possible only at the expense of SNR. This technique performs best in conditions in which imaging speed is important, such as CE MRA, but time resolution still does not allow the acquisition of angiograms separating the arterial and venous phase. Significantly larger areas of BOLD activation were found using the i-PAT coil compared to the standard head coil. Being an eight-channel surface coil array, peripheral cortical structures profit from high SNR as high-resolution imaging of small cortical dysplasias and functional activation of cortical areas imaged by BOLD contrast. In BOLD contrast imaging, susceptibility artifacts are reduced, but only if an appropriate combination of acceleration parameters is used.  相似文献   

20.
A new approach to high‐speed magnetic resonance imaging (MRI) that uses all the data acquired in a multiscan imaging session is presented. This approach accelerates MRI data acquisition by statistically estimating correlation functions from images with different contrast and/or resolution. In multiscan MRI with parallel data acquisition, the estimation of correlation functions is dynamically improved as imaging proceeds. This allows imaging acceleration factors to be increased in subsequent scans, thereby reducing the total time of a multiscan MRI protocol. Furthermore, the correlation function estimates bring information about both coil sensitivity and anatomical structure into image reconstruction, thereby offering the ability to speed up MRI beyond the parallel imaging acceleration limit posed by a coil array alone. In this study, the feasibility of correlation imaging is demonstrated experimentally using brain and spine imaging protocols. The ability of correlation imaging to achieve an aggregate acceleration factor in excess of the number of coil elements in the phase encoding direction is also demonstrated. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号