首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two experiments we compared intermanual interactions in discrete and periodic movements with same and different amplitudes. In the first experiment there was only a weak amplitude assimilation in first cycles of movements with 1, 3, and 10 cycles, but a strong assimilation in later cycles. Whereas movement times of concurrent short-amplitude and long-amplitude movements were different in first cycles, in the later cycles they were essentially identical. In the second experiment the timed-response procedure was used to study the specification of same and different amplitudes of discrete reversal movements and periodic movements with three cycles. Differences in the time courses of amplitude specifications were only small. In periodic movements a dependence of amplitudes on the preparation interval was seen not only in the first cycles, but also in the later ones. However, in the later cycles the characteristic dependence of assimilation effects and intermanual correlations on the preparation interval was absent. Taken together, these findings strongly suggest that intermanual interactions arise transiently in the specification of both discrete and periodic movements, and that additional kinds of interactions become effective during execution of periodic movements.  相似文献   

2.
In the present study we investigated motor programming constraints implied by the Generalized Motor Program (GMP) view. A response precuing task was used in which participants performed aiming movements of either short or long duration to either a near or a far target position. Precues provided either no advance information or partial information about extent or duration or fully specified the aiming movement. Reaction time (RT) decreased and late Contingent Negative Variation (CNV) amplitude increased with the amount of advance information. In contrast to predictions of the GMP view, the extent precue led to faster responses and larger CNV amplitude than the duration precue. We conclude that late CNV amplitude reflects independent parameter specification processes at an abstract level at which GMP's motor programming constraints do not apply.  相似文献   

3.
Interactions between bimanual movements may occur at two different levels: at a visually based level, where movement trajectories are programmed within the visually perceived external space, and at the executional level, through crosstalk of sensorimotor signals arising during movement execution. In order to distinguish between these sources of interactions, we investigated bimanual reversal movements under different conditions of visual feedback. A visuomotor transformation dissociated movement execution from visual appearance on a computer screen. The transformation we used made movements of the same amplitude evoke different excursions, and made movements of different amplitudes entail matched excursions on the screen. The transformed conditions allowed us to study which parameters of bimanual coupling were related to the way movements were executed and which correlated with the visual movement display. We found a clear dissociation between execution-related and visually related bimanual interactions. The assimilation of movement amplitudes was completely execution-related. Whenever movements of different amplitudes were generated, the shorter movement was lengthened, irrespective of how the movements appeared on the feedback screen. In contrast, temporal coordination at the point of movement reversal, as well as trial-by-trial correlations of movement amplitudes, also showed significant effects of the visuomotor transformation, suggesting that these parameters are influenced by visually perceived effects of movements. This dissociation confirms the idea of separate pathways for bimanual interactions and shows that a specific set of bimanual interactions occur at least partly within a visually based external reference frame. Electronic Publication  相似文献   

4.
 We have previously demonstrated that, in preparing themselves to aim voluntary impulses of isometric elbow force to unpredictable targets, subjects selected default values for amplitude and direction according the range of targets that they expected. Once a specific target appeared, subjects specified amplitude and direction through parallel processes. Amplitude was specified continuously from an average or central default; direction was specified stochastically from one of the target directions. Using the same timed response paradigm, we now report three experiments to examine how the time available for processing target information influences trajectory characteristics in two-degree-of-freedom forces and multijoint movements. We first sought to determine whether the specification of force direction could also take the form of a discrete stochastic process in pulses of wrist muscle force, where direction can vary continuously. With four equiprobable targets (two force amplitudes in each of two directions separated by 22° or 90°), amplitude was specified from a central default value for both narrow and wide target separations as a continuous variable. Direction, however, remained specified as a discrete variable for wide target separations. For narrow target separations, the directional distribution of default responses suggested the presence of both discrete and central values. We next examined point-to-point movements in a multijoint planar hand movement task with targets at two distances and two directions but at five directional separations (from 30° to 150° separation). We found that extent was again specified continuously from a central default. Direction was specified discretely from alternative default directions when target separation was wide and continuously from a central default when separation was narrow. The specification of both extent and direction evolved over a 200-ms time period beginning about 100 ms after target presentation. As in elbow force pulses, extent was specified progressively in both correct and wrong direction responses through a progressive improvement in the scaling of acceleration and velocity peaks to the target. On the other hand, movement time and hand path straightness did not change significantly in the course of specification. Thus, the specification of movement time and linearity, global features of the trajectories, are given priority over the specific values of extent and direction. In a third experiment, we varied the distances between unidirectional target pairs and found that movement extent is specified discretely, like direction, when the disparity in distances is large. The implications of these findings for contextual effects on trajectory planning are discussed. The independence of extent and direction specification and the prior setting of response duration and straightness provide critical support for the hypothesis that point-to-point movements are planned vectorially. Received: 6 August 1996 / Accepted: 18 December 1996  相似文献   

5.
Summary The preceding study of this series (Hening, Favilla and Ghez 1988) examined the time course of the processes by which human subjects use information from a target to set the amplitude of an impulse of isometric elbow force. In that study, subjects were provided with separate cues to time response initiation and to inform them of the required amplitude of the response. When the time between target presentation and response initiation was too brief for them to incorporate information from the target, subjects produced default responses whose amplitudes reflected their prior experience. At longer latencies, subjects specified response amplitude with a gradual time course, starting earlier and ending later than an average reaction time. The present study now examines how two distinct response features, amplitude and direction, are specified following presentation of a target. We sought to answer three main questions. What are the features of responses that are produced before target information is available? Are direction and amplitude specified serially or in parallel? Does the specification of one response feature interfere with the specification of the other? Six normal subjects were studied. They were trained to initiate impulses of isometric elbow force in synchrony with the last of a predictable series of regular tones. The amplitudes and directions were to match those of visual targets requiring flexions or extensions with one of three amplitudes. The targets were presented at random times (0–400 ms) before the last tone. Target directions and amplitudes were either predictable (simple condition) or unpredictable (choice condition). In the simple condition, response amplitudes and directions were independent of the interval between target presentation and response onset (S-R interval). In the choice condition, both amplitude and direction varied with the S-R interval. At short S-R intervals (< 100 ms), the direction of the subjects' responses was not related to that of the target. The amplitudes of the responses were near the centers of the two target ranges. With increasing S-R intervals, the proportion of correct direction responses gradually increased. Over the same range of S-R intervals, the amplitudes of both right and wrong direction responses to the different targets separated and converged on their respective target amplitudes. Specification of both direction and amplitude was complete at S-R intervals greater than 300 ms. The time course of amplitude specification in this bidirectional paradigm was prolonged over that in a paradigm where response direction was predictable. As in our previous reports, subjects varied response amplitude by adjusting the time derivatives of force rather than force rise time. Response trajectories were similar for flexor, extensor, right and wrong direction responses. We conclude first, that the amplitudes of impulsive responses to unpredictable targets are specified from an initial default value even when both amplitude and direction are unpredictable; second, the amplitude and direction of such response are specified gradually by separate processing channels operating in parallel; third, the processing of the two response features is not, however, fully independent. It is suggested that the two processes share a common neural resource.  相似文献   

6.
The time course of amplitude specification in brief interceptive actions   总被引:3,自引:2,他引:1  
The interception of fast moving objects typically allows the object to be seen for only a short period of time. This limits the time available to prepare the movement. To deal with short preparation intervals, performers are likely to prepare a motor program in advance. Although motor preparation may begin before the target is seen, accuracy requires that certain program parameters are determined from observations of the target. In the experiments reported here we sought to determine the last moment at which information about the distance to move (amplitude) can be incorporated into a program. We employed an empirical protocol that allowed us to examine whether new amplitude information is incorporated discretely or continuously into the program during short intervals prior to movement onset (MO)—the preparation interval. Participants were trained to hit targets at two different distances with movements of a specific duration (180 ms): targets were moving in “Experiment 1” and stationary in “Experiment 2”. This method permitted an estimate of MO time. Preparation intervals were manipulated by delivering a stimulus cue for movement amplitude at varying times prior to the estimated MO. Results demonstrated that amplitude information could be effectively incorporated into the program provided the preparation interval was greater than about 200 ms. In addition, the results indicated that amplitude was specified predominantly in a discrete manner, though the number of responses directed towards a central default amplitude suggest that the distance between targets was near to a threshold for continuous specification.  相似文献   

7.
Summary This study was undertaken in order to determine the time course of the process by which information derived from a visual target is used to accurately set the amplitude of a simple motor response. We refer to this process as response specification. Separate auditory and visual cues were given to the subjects in order to independently control the moment of response initiation and the time available for processing amplitude information from the target. Six subjects initiated impulses of isometric force in synchrony with the last of predictable series of regular tones. Response amplitudes were to match one of three visual target steps occurring at random times between 0 and 400 ms before the response-synchronizing tone. Using these separate auditory and visual cues, we were able to systematically vary the time interval between target presentation and response onset, termed here Stimulus-Response or S-R interval. Target steps were presented in blocks of either predictable (simple condition) or unpredictable (choice condition) amplitudes. The peak forces and the peaks of their time derivatives were analyzed to determine how subjects achieved accuracy under the different conditions and at different S-R intervals. The trajectories of responses produced in the simple condition were independent of the S-R interval. In contrast, when targets were presented in unpredictable order, the distribution of the peak forces of the subjects' responses depended on the S-R interval. At short S-R intervals (<125 ms), subjects made responses whose peak forces were distributed around the center of the range of target steps. These responses formed a unimodal, but broad distribution which was independent of actual target amplitude. With increasing S-R interval (>125 ms), the distributions of peak forces gradually shifted toward the correct target amplitudes, with the means reaching the appropriate amplitudes at S-R intervals of 250–400 ms. At S-R intervals comparable to a reaction time, the range of peak forces was constricted to a similar extent as previously observed in a reaction time task (Hening et al. 1988). We found that the gradual improvement of accuracy was not achieved through changes in trajectory control: at all S-R intervals, subjects utilized a pulse-height control policy (Gordon and Ghez 1987a). Different peak forces were achieved by varying the rate of rise of force, while force rise time was held relatively invariant. We did find, however, that within the constraints imposed by rise time regulation, compensatory adjustments to the force trajectories (Gordon and Ghez 1987b) were greatest during the period of specification. We conclude that (1) subjects can initiate their responses independent of the degree of specification achieved and that the normal process of specification of amplitude begins earlier and continues longer than the latency of responses in a reaction time task; (2) before target presentation, subjects prepare a default response whose amplitude is biased by prior experience with the targets presented in the task. We hypothesize that the central mechanisms that specify response amplitude do so by a progressive adjustment of the default parameters.  相似文献   

8.
Summary In rapid goal-directed elbow flexion movements the influence of both movement amplitude and inertial load on the three-burst pattern and the consequences on movement time were studied. Subjects performed visually guided, self-paced movements as rapidly and as accurately as possible. An increase of both the movement amplitude and the inertial load were found to be interacting factors for the modulation of the three-burst-pattern and movement time. The first biceps burst progressively increased in duration and amplitude for larger movements, resulting in prolonged movement times. Surplus inertial loads further prolonged the agonist burst for large, but not for small movement amplitudes. The activity of the antagonist burst, in contrast, was largest in small movements and successively decreased at increasing movement amplitudes. Its duration, however, remained fairly constant. As was similarly observed for the agonist burst, surplus inertial loads lead to a prolongation of antagonist burst duration and an increase of the activity integral for large, but not for small movement amplitudes. It is suggested that in elbow flexion movements the programming of fastest goal-directed movements must take into account neural constraints and biomechanical characteristics of the agonist muscle and the antagonist muscle. Due to neural constraints of the biceps muscle, in contrast to finger movements, the concept of movement time invariance does not hold for elbow movements. Furthermore, neural constraints of the antagonist muscle lead to a limited force production of the agonist muscle at small movement amplitudes in order to avoid an overload of the braking process. The complexity of the relationship between neural and mechanical factors indicate that the size and timing of the three-burst-pattern has to be subtly adjusted to the precise nature of the task and its biomechanical characteristics.Supported by the Deutsche Forschungsgemeinschaft (SFB 33)  相似文献   

9.
Human subjects can pre-program movements on the basis of visual cues. Experience in a particular task leads to the storage of appropriate control parameters which are used in programming subsequent movements, via a short-term motor memory. The form, duration and usage of this memory are, however, uncertain. Repetitive wrist flexion and extension movements were measured in four subjects. Three were neurologically normal men; the fourth subject had a peripheral large-fibre sensory neuropathy, depriving him of proprioceptive information about wrist movement. Subjects made alternating 45° wrist movements between two visual targets; visual feedback of wrist position was provided for the first part of each trial. After 10 s of tracking, the subjects paused for an interval of 0–24 s before resuming tracking without visual feedback of wrist position. The positional accuracy of subsequent movements was analysed with respect to pause interval. Movement accuracy was reduced by the removal of visual feedback in all four subjects: movements after the pause interval were less accurate than those before the pause. Errors also accumulated within each sequence of movements made without visual feedback. Analysis of the first movement in each trial after the pause indicated a clear relationship between movement accuracy and pause interval. In all four subjects, movement accuracy decayed with longer pause intervals. In the deafferented subject, manipulation of the visual inputs (requiring visual fixation, rather than normal pursuit of the target; or direct viewing of the hand instead of viewing a cursor on a computer screen) affected the relationship between pause interval and subsequent movement accuracy. We propose that the memory used when producing these movements is a short-lasting visuo-motor signal, lasting a few seconds, which is derived from visual knowledge of previous movements, rather than a memory of a particular motor output. This visuo-motor signal is used to scale the amplitude of subsequent wrist movements. The brevity of the visuo-motor memory and the resultant inaccuracy of this deafferented subject and of our neurologically normal subjects implies that human feedforward control of the amplitude and position of wrist movements is severely limited.  相似文献   

10.
Subjects made a fast elbow extension movement to designated target in response to a go signal. In 45% of trials a stop signal was presented after the go signal, to which subjects were asked to stop the movement as rapidly as possible. The interstimulus interval (ISI), or time interval between the go and stop signals, was randomly varied between 0 and 200 ms. Electromyographic (EMG) activity was recorded from biceps brachii and triceps brachii. Subjects could sometimes completely inhibit initiation of the movements when the ISI was 0 ms, but could rarely do so when the ISI exceeded 100 ms. For responses that were initiated but stopped on the way, the amplitude of the movement decreased linearly as the time interval (=modification time) from the stop signal to EMG onset increased. The peak velocity increased linearly as the movement amplitude increased. This tendency was similar to those previously reported in step-tracking movements with various amplitudes. In spite of the similarity in the kinematics of the movement, the EMG pattern was different from that of step-tracking movement. While the initial agonist burst (AG1) decreased linearly after the modification time exceeded 100 ms, the antagonist burst (ANT) increased compared with the go trial for the modification time from 0 to 200 ms and decreased after the modification time exceeded 300 ms. This change of activation is analogous to functional modification of middle-latency reflex EMG response to load, or cutaneous perturbation. In conclusion, it is suggested that adaptive mechanisms, which would functionally modify the reflex responses, are also continuously working during voluntary movements in response to sudden changes in environmental information. Received: 3 November 1997 / Accepted: 3 February 1998  相似文献   

11.
Dynamic model of the octopus arm. II. Control of reaching movements   总被引:1,自引:0,他引:1  
The dynamic model of the octopus arm described in the first paper of this 2-part series was used here to investigate the neural strategies used for controlling the reaching movements of the octopus arm. These are stereotypical extension movements used to reach toward an object. In the dynamic model, sending a simple propagating neural activation signal to contract all muscles along the arm produced an arm extension with kinematic properties similar to those of natural movements. Control of only 2 parameters fully specified the extension movement: the amplitude of the activation signal (leading to the generation of muscle force) and the activation traveling time (the time the activation wave takes to travel along the arm). We found that the same kinematics could be achieved by applying activation signals with different activation amplitudes all exceeding some minimal level. This suggests that the octopus arm could use minimal amplitudes of activation to generate the minimal muscle forces required for the production of the desired kinematics. Larger-amplitude signals would generate larger forces that increase the arm's stability against perturbations without changing the kinematic characteristics. The robustness of this phenomenon was demonstrated by examining activation signals with either a constant or a bell-shaped velocity profile. Our modeling suggests that the octopus arm biomechanics may allow independent control of kinematics and resistance to perturbation during arm extension movements.  相似文献   

12.
When the head is free to move, changes in the direction of the line of sight (gaze shifts) can be accomplished using coordinated movements of the eyes and head. During repeated gaze shifts between the same two targets, the amplitudes of the saccadic eye movements and movements of the head vary inversely as a function of the starting positions of the eyes in the orbits. In addition, as head-movement amplitudes and velocities increase, saccade velocities decline. Taken together these observations lead to a reversal in the expected correlation between saccade duration and amplitude: small-amplitude saccades associated with large head movements can have longer durations than larger-amplitude saccades associated with small head movements. The data in this report indicate that this reversal occurs during gaze shifts along the horizontal meridian and also when considering the horizontal component of oblique saccades made when the eyes begin deviated only along the horizontal meridian. Under these conditions, it is possible to determine whether the variability in the duration of the constant amplitude vertical component of oblique saccades is accounted for better by increases in horizontal saccade amplitude or increases in horizontal saccade duration. Results show that vertical saccade duration can be inversely related to horizontal saccade amplitude (or unrelated to it) but that horizontal saccade duration is an excellent predictor of vertical saccade duration. Modifications to existing hypotheses of gaze control are assessed based on these new observations and a mechanism is proposed that can account for these data.  相似文献   

13.
This paper describes a new method for processing of continuous pressure signals. Continuous intracranial pressure (ICP) signals were sampled at 100 Hz, converted into digital data and processed during 6s time windows. According to a new algorithm, cardiac beat-induced single ICP waves were identified; pressure waves caused by noise in the signal were rejected for further analysis. The amplitude and latency values of the accepted single ICP waves were determined. For accepted 6s time windows, the mean ICP wave was computed as mean ICP wave amplitude and mean ICP wave latency. Mean ICP for every time window was computed according to current practice as sum of pressure levels divided by number of samples. The mean ICP wave parameters provide information about the single ICP waves that is not given by mean ICP. The method has been implemented in software to be used during online ICP monitoring, revealing mean ICP wave amplitude, mean ICP wave latency and mean ICP as numerical values every 6s. The values are presented in trend plots. Verification of correct single ICP wave identification can be done during online ICP monitoring. The clinical significance of the method was illustrated in four patients by observations that mean wave amplitudes corresponded better to the acute clinical state than the mean ICP; mean wave amplitudes could be elevated despite a normal mean ICP. In one patient with ICP and arterial blood pressure (ABP) signals monitored simultaneously with identical time reference, there was a weak correlation between mean ICP and ABP wave amplitudes. It is tentatively suggested that the mean ICP wave parameters are related to intracranial pressure-volume compensatory reserve capacity (compliance).  相似文献   

14.
To investigate how the sensorimotor systems of eye and hand use position, velocity, and timing information of moving targets, we conducted a series of three experiments. Subjects performed combined eye-hand catch-up movements toward visual targets that moved with step-ramp-like velocity profiles. Visual feedback of the hand was prevented by blanking the target at the onset of the hand movement. A multiple regression was used to determine the effects of position, velocity, and timing accessed before each movement on the movement amplitudes of eye and hand. The following results were obtained: 1.The predictive strategy of eye movements could be modeled by a linear regression on the basis of the position error and the target velocity. This was not the case for hand movements, for which there was a significant partial correlation between the movement amplitude and the product of target velocity and movement duration. This correlation was not observed for eye movements suggesting that the predictive strategy of hand movements takes movement duration into account, in contrast to the strategy used in eye movements. 2.To determine whether the movement amplitudes of eye and hand depend on a categorical classification between a discrete number of movement types, we compared an experiment in which target position and velocity were distributed continuously with an experiment using only four different combinations of target position and velocity. No systematic differences between these experiments were observed. This shows that the system output is a function of continuous, interval-scaled variables rather than a function of discrete categorical variables. 3.We also analyzed the component of the movement amplitudes not explained by the regression, i.e., the residual error. The residual errors between subsequent trials were correlated more strongly for eye than for hand movements, suggesting that short-term temporal fluctuations of the predictive strategy were stronger for the eye than for the hand.  相似文献   

15.
The tonic stretch reflex was investigated using small-amplitude displacements (<4.2°) of the wrist while subjects maintained average contraction levels of 25% of maximum in flexor carpi radialis. The wrist displacements were designed to preclude voluntary following but at the same time were confined to the frequency range most relevant to voluntary movements. They included a broad-frequency band (0–12 Hz) signal as well as sets of narrow-band signals spanning the range from 0 to 10 Hz. The maximum frequency was set so as to remain within the linear encoding bandwidth of the reflex system and thereby minimize distortion. The effects of frequency bandwidth and amplitude of the displacement perturbations were tested in separate experiments. The coherence square, gain and phase between the EMG and angular displacement were calculated in order to characterize the stretch reflex under these conditions. It was found that the phase of the reflex response was dependent on both bandwidth and amplitude. For narrow-band displacements, the phase advance was about 30° greater over the frequency range tested than for broad-band displacements, suggesting that the reflex response may be influenced by the predictability of the perturbation. At the smallest amplitude of 0.3°, the peak phase advance was about 20° greater than at the largest amplitude of 4.2°. The gain was also higher and rose more steeply with frequency at smaller amplitudes. In the frequency range up to 12 Hz, the tonic stretch reflex responds most effectively to smaller-amplitude, more regular, higher-frequency inputs and this is consistent with a role for the reflex in counteracting small-amplitude oscillations, tremors and errors of voluntary movement. Received: 19 October 1998 / Accepted: 23 May 1999  相似文献   

16.
Rapid movements with reversals in direction   总被引:2,自引:1,他引:1  
Modifications to the underlying motor control of rapid reversal movements (flexion-extension of the elbow) to accommodate experimentally induced changes in the movement time (MT) with constant movement amplitude were examined in man. MT was altered between conditions via instructions and feedback, resulting in seven distinct MT levels (from 100 to 250 ms to the reversal point) with essentially constant movement amplitude. As MT was decreased, the large increases in acceleration were met by two changes in motor control: (a) two- to three-fold increases in the peak accelerations and peak amplitudes of the agonist and antagonist EMGs, and (b) a systematic "compression" of the temporal structure of the entire acceleration-time and EMG-time patterns. This temporal "compression" with increased velocity caused by shifts in MT (distance constant) are considerably different from the constant-duration EMG bursts found when velocity is altered by changing movement distance (where MT is nearly constant). Our findings indicate that MT is a determiner of the temporal structure of rapid actions, and suggest that MT should be regarded as an important controlled variable, and not simply as an emergent property of variations in velocity.  相似文献   

17.
Lid-eye coordination during vertical gaze changes in man and monkey   总被引:1,自引:0,他引:1  
1. To investigate the coordination between the upper lid and the eye during vertical gaze changes, the movements of the lid and the eye were measured by the electromagnetic search-coil technique in three humans and two monkeys. 2. In both man and monkey, there was a close correspondence between the metrics of the lid movement and those of the concomitant eye movement during vertical fixation, smooth pursuit, and saccades. 3. During steady fixation, the eye and lid assumed essentially equal average positions; however, in man the lid would often undergo small idiosyncratic movements of up to 5 degrees when the eye was completely stationary. 4. During sinusoidal smooth pursuit between 0.2 and 1.0 Hz, the gain and phase shift of eye and lid movements were remarkably similar. The smaller gain and larger phase lag for downward smooth pursuit eye movements was mirrored in a similar reduced gain and increased phase lag for downward lid movements. 5. The time course of vertical lid movements associated with saccades was generally a faithful replica of the time course of the concomitant saccade; the similarity was especially impressive when the details of the velocity profiles were compared. Consequently, lid movements associated with vertical eye saccades are called lid saccades. 6. On average, lid saccades start some 5 ms later than the concomitant eye saccades but reach peak velocity at about the same time as the eye saccade. Concurrent lid and eye saccades in the downward direction have similar amplitudes and velocities. Lid saccades in the upward direction are often smaller and slower than the concomitant eye saccades. The relation of peak velocity versus amplitude and of duration versus amplitude are similar for lid and eye saccades. 7. To investigate the neural signal responsible for lid saccades, isometric tension and EMG activity were recorded from the lids of the two authors. 8. The isometric tensions during upward lid saccades exceeded the tensions required to hold the lid in its final position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The role of sensorimotor (S-M) areas in the specification of kinematic parameters for aiming movements was studied by comparing the performance of six subjects with unilateral stroke to that of matched control subjects. Rapid arm movements were made to one of four targets by rotating the forearm in a short (20 degrees) or long (45 degrees) arc of motion. Thus, the four targets represented two directions (flexion or extension) and two extents (short or long). Subjects with stroke used the arm ipsilateral to the side of the lesion. A timed-response paradigm was used to dissociate response initiation and specification. Subjects initiated movements in concert with the last of four regularly timed tones. A visual cue of the designated target was presented during the preparation interval (400-0 ms) before the last tone. Targets were presented in a fixed sequence (predictable condition) or a random sequence (unpredictable condition). No significant differences in performance were found between stroke and control groups in the predictable condition. In the unpredictable condition, subjects with stroke produced more direction errors and were less accurate in extent than the control subjects. As specification time increased to 400 ms, the frequency of direction errors attenuated less for stroke than for control groups, but the reduction in magnitude of extent errors was similar for the two groups. When specification was minimal (i.e., <100 ms), default responses were distributed equally between directions and clustered around the short extent. Further, wrong direction responses did not converge on the designated extent as specification time increased. This pattern of findings is consistent with a view of parameterization of planning and executing movements, in which direction and extent can be specified in parallel. Our results suggest that ipsilateral S-M areas contribute to the specification of an optimal motor program, particularly when imperative programming of unimanual goal-directed aiming movements is required.  相似文献   

19.
Both optokinetic nystagmus (OKN) and smooth-pursuit eye movements (SPEM) are subclasses of so-called slow eye movements. However, optokinetic responses are reflexive whereas smooth pursuit requires the voluntary tracking of a moving target. We used functional magnetic resonance imaging (fMRI) to determine the neural basis of OKN and SPEM, and to uncover whether the two underlying neural systems overlap or are independent at the cortical level. The results showed a largely overlapping neural circuitry. A direct comparison between activity during the execution of OKN and SPEM yielded no oculomotor-related area exclusively dedicated to one or the other eye movement type. Furthermore, the performance of SPEM evoked a bilateral deactivation of the human equivalent of the parietoinsular vestibular cortex. This finding might indicate that the reciprocally inhibitory visual–vestibular interaction involves not only OKN but also SPEM, which are both linked with the encoding of object-motion and self-motion. Moreover, we could show differential activation patterns elicited by look-nystagmus and stare-nystagmus. Look-nystagmus is characterized by large amplitudes and low-frequency resetting eye movements rather resembling SPEM. Look-nystagmus evoked activity in cortical oculomotor centers. By contrast, stare-nystagmus is usually characterized as being more reflexive in nature and as showing smaller amplitudes and higher frequency resetting eye movements. Stare-nystagmus failed to elicit significant signal changes in the same regions as look-nystagmus/SPEM. Thus, less reflexive eye movements correlated with more pronounced signal intensity. Finally, on the basis of a general investigation of slow eye movements, we were interested in a cortical differentiation between subtypes of SPEM. We compared activity associated with predictable and unpredictable SPEM as indicated by appropriate visual cues. In general, predictable and unpredictable SPEM share the same neural network, yet information about the direction of an upcoming target movement reduced the cerebral activity level.  相似文献   

20.
Summary The initial burst of EMG activity associated with arm movements made by normal human subjects was studied. Subjects made visually guided, steptracking movements of different amplitudes and speeds. The duration of the initial agonist burst was greater for large than for small amplitude movements. The burst duration was not continuously graded but was either short (70 ms) for small amplitude movements (less than 20 deg) or long (140 ms) for large amplitude ones (greater than 50 deg). Movements of intermediate amplitudes (30–40 deg) were made with both short and long duration bursts. The increase in the duration of the initial agonist burst for large movements was produced by the appearance of a second component in the burst. Both components were of the same duration and occurred before movement peak velocity was reached. Intramuscular recording showed that both components originate from the same muscle. Similar observations were made in both fast and slow movements and in both the biceps and triceps muscles when they were being used as agonists. The data show that the central nervous system has two mechanisms for generation of large amplitude movements: modulation of the magnitude of the initial agonist burst and generation of a second component or pulse of agonist activity at the start of movement.Supported by the Medical Research Council of Canada (Grant MA6699)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号