首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The daily stress stimulus theory of bone adaptation was formulated to describe the loading conditions necessary to maintain bone mass. This theory identifies stress/strain magnitude and loading cycle number as sufficient to define an appropriate maintenance loading signal. Here, we extend the range over which loading cycle number has been evaluated to determine whether the daily stress stimulus theory can be applied to conditions of very high numbers of loading cycles at very low strain magnitudes. The ability of a relatively high-frequency (30-Hz) and moderate-duration (60-minute) loading regimen to maintain bone mass in a turkey ulna model of disuse osteopenia was evaluated by correlating the applied strain distributions to site-specific remodeling activity. Changes in morphology were investigated following 8 weeks of disuse compared with disuse plus daily exposure to 108,000 applied loading cycles sufficient to induce peak strains of approximately 100 microstrain. A strong correlation was observed between the preservation of bone mass and longitudinal normal strain (R = 0.91) (p < 0.01). The results confirm the strong antiresorptive influence of mechanical loading and identify a threshold near 70 microstrain for a daily loading cycle regimen of approximately 100,000 strain cycles. These results are not consistent with the daily stress stimulus theory and suggest that the frequency or strain rate associated with the loading stimulus must also play a critical role in the mechanism by which bone responds to mechanical strain.  相似文献   

2.
Failure of bone adaptation to protect the skeleton from fatigue fracture is common, and site-specific accumulation and coalescence of microcracking in regions of high strain during cyclic loading is considered a key factor that decreases the resistance of whole bones to fracture. We investigated the effect of cyclic fatigue loading on the monotonic structural properties of the rat ulna during accumulation and coalescence of microcracks. Cyclic end-loading of the ulna was performed at 4 Hz ex vivo at an initial peak strain of -6000 muepsilon to 20% loss of stiffness (n = 7) or 40% loss of stiffness (n = 7) bilaterally. A 0% loss of stiffness monotonically loaded control group (n = 7) was also included. Volumetric bone mineral density (vBMD), ultimate strength (F(u)), stiffness (S), and energy-to-failure (U) were determined in one ulna and in the contralateral ulna vBMD, cortical bone area (B.Ar), maximum and minimum second moments of inertia (I(MAX) and I(MIN)), microcrack density (Cr.Dn), microcrack mean length (Cr.Le), and microcrack surface density (Cr.S.Dn) were determined. In two additional groups of rats, cyclic end-loading of the ulna was also performed ex vivo unilaterally to 20% loss of stiffness (n = 10) and 40% loss of stiffness (n = 10) and then vBMD, F(u), S, U, B.Ar, I(MAX), and I(MIN) were determined bilaterally. Fatigue loading had incremental degradative effects on ulna structural properties. This decreased resistance to fracture was associated with accumulation and coalescence of branching arrays of microcracks within the cortex of the ulna. Microcracking was most prominent in the middiaphysis and corresponded to the region of the bone that fractured during monotonic structural testing. Fatigue loading influenced the relationship between bone cross-sectional geometry and vBMD and ulna structural properties. At 40% loss of stiffness, F(u), S, and U were all significantly correlated with cross-sectional bone geometry and vBMD, whereas this was not the case at 20% loss of stiffness and with the 0% loss of stiffness monotonic control ulnae. We also found a biologically significant individual animal effect. Larger ulnae required a higher number of load cycles for fatigue to develop, retained higher strength, and accumulated a greater amount of microcracking at the end of the cyclic fatigue testing. Small increases in bone size and density can substantially improve the resistance of whole bones to fracture as microcracking accumulates and coalesces during cyclic fatigue loading.  相似文献   

3.
Regulation of load‐induced bone formation is considered a local phenomenon controlled by osteocytes, although it has also been hypothesized that functional adaptation may be neuronally regulated. The aim of this study was to examine bone formation in multiple bones, in response to loading of a single bone, and to determine whether adaptation may be neuronally regulated. Load‐induced responses in the left and right ulnas and humeri were determined after loading of the right ulna in male Sprague‐Dawley rats (69 ± 16 days of age). After a single period of loading at ?760‐, ?2000‐, or ?3750‐μ? initial peak strain, rats were given calcein to label new bone formation. Bone formation and bone neuropeptide concentrations were determined at 10 days. In one group, temporary neuronal blocking was achieved by perineural anesthesia of the brachial plexus with bupivicaine during loading. We found right ulna loading induces adaptive responses in other bones in both thoracic limbs compared with Sham controls and that neuronal blocking during loading abrogated bone formation in the loaded ulna and other thoracic limb bones. Skeletal adaptation was more evident in distal long bones compared with proximal long bones. We also found that the single period of loading modulated bone neuropeptide concentrations persistently for 10 days. We conclude that functional adaptation to loading of a single bone in young rapidly growing rats is neuronally regulated and involves multiple bones. Persistent changes in bone neuropeptide concentrations after a single loading period suggest that plasticity exists in the innervation of bone.  相似文献   

4.
Conditions of disuse in bed rest patients, as well as microgravity experienced by astronauts are accompanied by reduced mechanical loading, reduced calcium absorption, and lower serum levels of 1,25(OH)2D3 (1,25-D), the active metabolite of vitamin D, all contributing to bone loss. To determine whether 1,25-D or a less calcemic analog, Seocalcitol or EB1089 (1 alpha,25-dihydroxy-22,24-diene-24,26,27-trihomovitamin D3) can alleviate bone loss in a rat hindlimb unloading model of disuse osteopenia, mature male rats originally on a vitamin D replete diet containing 1.01% calcium were transferred to a vitamin D-deficient diet containing 0.48% calcium and then tail suspended and treated for 28 days with vehicle, 0.05 microg/kg 1,25-D, or 0.05 microg/kg EB1089. The vitamin D-deficient diet caused a substantial decrease in bone mineral density (-8%), which may be compounded by hindlimb unloading (-10%). Exogenous 1,25-D not only prevented the bone loss but also increased the bone mineral density to greater than the baseline level (+7%). EB1089 was less effective in preventing bone loss. Analysis of site and cell-specific effects of 1,25-D and EB1089 revealed that 1,25-D was more active than EB1089 in the intestine, the site of calcium absorption, and in inducing osteoclastogenesis and bone resorption whereas EB1089 was more effective in inducing osteoblast differentiation. These studies suggest that elevating circulating 1,25-D levels presumably increasing calcium absorption can counteract bone loss induced by disuse or microgravity with its associated reductions in circulating 1,25-D and decreased calcium absorption.  相似文献   

5.
The effect of pulsed electromagnetic fields (PEMFs) on bone loss associated with disuse was investigated by applying 1.5 Hz repetitions of 30 ms bursts of asymmetric pulses, varying from +2.5 to -135 mV, to bones deprived of their normal functional loading. The proximal portion of one fibula in each of a group of ovariectomised adult female beagle dogs was isolated from functional loading in vivo by proximal and distal osteotomies. Comparison of these prepared bones with their intact contralateral controls after 12 weeks, showed a 23% reduction in cross-sectional area. In similarly prepared bones exposed to PEMFs for 1 h per day, 5 days per week, this bone loss was substantially and significantly reduced to 9% (p = 0.029). There was no evidence of any new bone formation on the periosteal surface of prepared fibulae in treated or untreated situations. PEMF treatment was not associated with any significant change in number of osteons per mm2 formed within the cortex of the bones, their radial closure rate, or their degree of closure. The modulation in loss of bone area associated with exposure to PEMFs can, therefore, be inferred to be due to a reduction in resorption on the bone surface.  相似文献   

6.
The presence of estrogen receptor alpha (ER alpha) in osteocytes was identified immunocytochemically in transverse sections from 560 to 860 microm distal to the midshaft of normal neonatal and adult male and female rat ulnas (n = 3 of each) and from adult male rat ulnas that had been exposed to 10 days of in vivo daily 10-minute periods of cyclic loading producing peak strains of either -3000 (n = 3) or -4000 microstrain (n = 5). Each animal ambulated normally between loading periods, and its contralateral ulna was used as a control. In animals in which limbs were subject to normal locomotor loading alone, 14 +/- 1.2% SEM of all osteocytes in each bone section were ER alpha positive. There was no influence of either gender (p = 0.725) or age (p = 0.577) and no interaction between them (p = 0.658). In bones in which normal locomotion was supplemented by short periods of artificial loading, fewer osteocytes expressed ER alpha (7.5 +/- 0.91% SEM) than in contralateral control limbs, which received locomotor loading alone (14 +/- 1.68% SEM; p = 0.01; median difference, 6.43; 95% CI, 2.60, 10.25). The distribution of osteocytes expressing ER alpha was uniform across all sections and thus did not reflect local peak strain magnitude. This suggests that osteocytes respond to strain as a population, rather than as individual strain-responsive cells. These data are consistent with the hypothesis that ER alpha is involved in bone cells' responses to mechanical strain. High strains appear to decrease ER alpha expression. In osteoporotic bone, the high strains assumed to accompany postmenopausal bone loss may reduce ER alpha levels and therefore impair the capacity for appropriate adaptive remodeling.  相似文献   

7.
Prostaglandin E2 prevents disuse-induced cortical bone loss.   总被引:2,自引:0,他引:2  
W S Jee  T Akamine  H Z Ke  X J Li  L Y Tang  Q Q Zeng 《BONE》1992,13(2):153-159
The object of this study was to determine whether prostaglandin E2 (PGE2) can prevent disuse (underloaded)-induced cortical bone loss as well as add extra bone to underloaded bones. Thirteen-month-old retired female Sprague-Dawley breeders served as controls or were subjected to simultaneous right hindlimb immobilization by bandaging and daily subcutaneous doses of 0, 1, 3, or 6 mg PGE2/kg/d for two and six weeks. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified tibial shaft sections (proximal to the tibiofibular junction). Disuse-induced cortical bone loss occurred by enlarging the marrow cavity and increasing intracortical porosity. PGE2 treatment of disuse shafts further increased intracortical porosity above that in disuse alone controls. This bone loss was counteracted by enhancement of periosteal and corticoendosteal bone formation. Stimulation of periosteal and corticoendosteal bone formation slightly enlarged the total tissue (cross-sectional) area and inhibited marrow cavity enlargement. These PGE2-induced activities netted the same percentage of cortical bone with a different distribution than the beginning and age-related controls. These findings indicate the PGE2-induced increase in bone formation compensated for the disuse and PGE2-induced bone loss, and thus prevented immobilization-induced bone loss.  相似文献   

8.
One hundred radiographs of the left hand and wrist from 40 children with chronic renal insufficiency or end-stage renal disease were examined to determine which method of bone age estimation provided the most useful information in these children. The Tanner and Whitehouse method showed better repeatability than the Greulich and Pyle atlas or the Buckler handbook when a sample of the radiographs were assessed twice by the same observer. The Tanner and Witehouse 20 (TW20) bone age showed less inter-observer bias than the radius, ulna and short bone age or the carpal bone age when three observers independently assessed the same sample of radiographs. TW20 was the most useful method of bone age assessment in this study of British children. An unexpected finding was that the carpal bones were significantly more retarded than the radius, ulna and short bones. Separate assessment of the carpal bone age may provide extra information of clinical relevance.  相似文献   

9.
The benefits of impact exercise and dietary calcium on bone development are controversial. We used inbred rats under highly controlled conditions to test the independent and combined effects of impact exercise and physiological levels of calcium intakes on the growing skeleton. Forty growing F-344 female rats were fed diets containing either 100% (Ca+; 0.5% Ca) or 40% (Ca(-); 0.2% Ca) of their calcium requirements. Half of each dietary group was subjected to either 10 impacts per day from 45 cm freefall drops (Impact+), or no impact (Impact(-)). All rats received a free choice of physical activity period daily. After 8 weeks, the mechanical strength, volumetric density, geometry, and microarchitecture of their ulnae were measured. Body weight and bone length did not differ among groups. On both diets, freefall impact resulted in greater bone strength, cross-sectional moments of inertia, and endosteal and periosteal circumferences in the shaft. Only Ca+ resulted in greater shaft volumetric bone mineral density (vBMD) but that did not affect shaft breaking strength. In the bone ends, both Impact+ and Ca+ positively affected density and structure of both cortical and trabecular bone but the effects of Impact+ were more pervasive. In the proximal end, Impact+ resulted in greater bone volume fraction (BV/TV) in the trabecular bone due to greater trabecular thickness, and cortical thickness was greater due to a smaller endosteal circumference. Impact+ exerted a compensatory effect on vBMD and BV/TV in Ca(-) rats at the proximal site. In Impact(-) rats only, Ca+ resulted in greater total and cortical vBMD and BV/TV in the proximal ulna. Impact+ and Ca+ exerted additive effects on cortical bone area (BA) in the proximal ulna and on total BA, periosteal circumference, and trabecular vBMD in the distal ulna. In conclusion, impact exercise was more beneficial than adequate dietary calcium to growing bones, although sufficient dietary calcium was beneficial in rats not subjected to impact exercise.  相似文献   

10.
Bone tissue responds to elevated mechanical loading with increased bone formation, which is triggered either directly or indirectly by the mechanical strain engendered in the bone tissue. Previous studies have shown that mechanical strain magnitude must surpass a threshold before bone formation is initiated. The objective of this study was to estimate the strain thresholds at three different locations along the ulna of adult rats. We hypothesized that the strain threshold would be greater in regions of the ulna habitually subjected to larger mechanical strains. New bone formation was measured on the periosteal and endocortical surfaces of the ulnar diaphysis in adult female rats exposed to controlled dynamic loading. Axial, compressive loading was applied daily at five different magnitudes for a period of 2 weeks. Bone formation rate (BFR) was measured, using double-label histomorphometry at the ulnar middiaphysis and at locations 3 mm proximal and 3 mm distal to the middiaphysis. Loading induced lamellar bone formation on the periosteal surface that was greater at the distal ulnar location and lower at the proximal location when compared with the middiaphysis. Likewise, peak strains on the periosteal surface were greatest distally and less proximally. There was a significant dose-response relationship between peak strain magnitude and periosteal new bone formation when the mechanically induced strain surpassed a threshold. The strain threshold varied from 1343 microstrain (mu strain) proximally to 2284 mu strain at the midshaft to 3074 mu strain distally. Unlike the periosteal response to mechanical loading, there was not a clear dose-response relationship between applied load and bone formation on the endocortical surface. Endocortical strains were estimated to be < 20% of periosteal strains and may not have been sufficient to initiate a bone formation response. Our results show that the osteogenic response on the periosteal surface of the ulna depends on peak strain level once a strain threshold is surpassed. The threshold strain is largest distally, where locomotor bone strains are typically higher and smallest proximally where locomotor bone strains are lower.  相似文献   

11.
Appositional and longitudinal growth of long bones are influenced by mechanical stimuli. Using the noninvasive rat ulna loading model, we tested the hypothesis that brief-duration (10 min/day) static loads have an inhibitory effect on appositional bone formation in the middiaphysis of growing rat ulnae. Several reports have shown that ulnar loading, when applied to growing rats, results in suppressed longitudinal growth. We tested a second hypothesis that load-induced longitudinal growth suppression in the growing rat ulna is proportional to time-averaged load, and that growth plate dimensions and chondrocyte populations are reduced in the loaded limbs. Growing male rats were divided into one of three groups receiving daily 10 min bouts of static loading at 17 N, static loading at 8.5 N, or dynamic loading at 17 N. Periosteal bone formation rates, measured 3 mm distal to the ulnar midshaft, were suppressed significantly (by 28-41%) by the brief static loading sessions despite normal (dynamic) limb use between the daily loading bouts. Static loading neither suppressed nor enhanced endocortical bone formation. Dynamic loading increased osteogenesis significantly on both surfaces. At the end of the 2 week loading experiment, loaded ulnae were approximately 4% shorter than the contralateral controls in the 17 N static and dynamic groups, and approximately 2% shorter than the control side in the 8.5 N static group, suggesting that growth suppression was proportional to peak load magnitude, regardless of whether the load was static or dynamic. The suppressed growth in loaded limbs was associated with thicker distal growth plates, particularly in the hypertrophic zone, and a concurrent retention of hypertrophic cell lacunae. Negligible effects were observed in the proximal growth plate. The results demonstrate that, in growing animals, even short periods of static loading can significantly suppress appositional growth; that dynamic loads trigger the adaptive response in bone; and that longitudinal growth suppression resulting from compressive end-loads is proportional to load magnitude and not average load.  相似文献   

12.
Functional skeletal adaptation is thought to be a local phenomenon controlled by osteoctyes. However, the nervous system also may have regulatory effects on adaptation. The aim of this study was to determine the effects of loading of a single bone on adaptation of other appendicular long bones and whether these responses were neuronally regulated. Young male Sprague‐Dawley rats were used. The right ulna was loaded to induce a modeling response. In other rats, a second regimen was used to induce bone fatigue with a mixed modeling/remodeling response; a proportion of rats from each group received brachial plexus anesthesia to induce temporary neuronal blocking during bone loading. Sham groups were included. Left and right long bones (ulna, humerus, tibia, and femur) from each rat were examined histologically 10 days after loading. In fatigue‐ and sham‐loaded animals, blood plasma concentrations of TNF‐α, RANKL, OPG, and TRAP5b were determined. We found that loading the right ulna induced an increase in bone formation in distant long bones that were not loaded and that this effect was neuronally regulated. Distant effects were most evident in the rats that received loading without bone fatigue. In the fatigue‐loaded animals, neuronal blocking induced a significant decrease in plasma TRAP5b at 10 days. Histologically, bone resorption was increased in both loaded and contralateral ulnas in fatigue‐loaded rats and was not significantly blocked by brachial plexus anesthesia. In young, growing male rats we conclude that ulna loading induced increased bone formation in multiple bones. Systemic adaptation effects were, at least in part, neuronally regulated. © 2010 American Society for Bone and Mineral Research.  相似文献   

13.
Adaptive changes in bone modeling in response to noninvasive, cyclic axial loading of the rat ulna were compared with those using 4-point bending of the tibia. Twenty cycles daily of 4-point bending for 10 days were applied to rat tibiae through loading points 23 and 11 mm apart. Control bones received nonbending loads through loading points 11 mm apart. As woven bone was produced in both situations, any strain-related response was confounded by the response to direct periosteal pressure. Four-point bending is not, therefore, an ideal mode of loading for the investigation of strain-related adaptive modeling. The ulna's adaptive response to daily axial loading over 9 days was investigated in 30 rats. Groups 1–3 were loaded for 1200 cycles: Group 1 at 10 Hz and 20 N, Group 2 at 10 Hz and 15 N, and Group 3 at 20 Hz and 15 N. Groups 4 and 5 received 12,000 cycles of 20 N and 15 N at 10 Hz. Groups 1 and 4 showed a similar amount of new bone formation. Group 4 showed the same pattern of response but in reduced amount. The responses in Groups 2 and 3 were either small or absent. Strains were measured with single-element, miniature strain gauges bonded around the circumference of dissected bones. The 20 N loading induced peak strains of 3500–4500 strain. The width of the periosteal new bone response was proportional to the longitudinal strain at each point around the bone's circumference. It appears that when a bone is loaded in a normal strain distribution, an osteogenic response occurs when peak physiological strains are exceeded. In this situation the amount of new bone formed at each location is proportional to the local surface strain. Cycle numbers between 1200 and 12,000, and cycle frequencies between 10 and 20 Hz have no effect on the bone's adaptive response.  相似文献   

14.
Functional adaptation of bone to cyclic fatigue involves a complex physiological response that is targeted to sites of microdamage. The mechanisms that regulate this process are not understood, although lacunocanalicular interstitial fluid flow is likely important. We investigated the effect of a single period of cyclic fatigue on bone blood flow and interstitial fluid flow. The ulnae of 69 rats were subjected to cyclic fatigue unilaterally using an initial peak strain of -6000 muepsilon until 40% loss of stiffness developed. Groups of rats (n=23 per group) were euthanized immediately after loading, at 5 days, and at 14 days. The contralateral ulna served as a treatment control, and a baseline control group (n=23) that was not loaded was also included. After euthanasia, localization of intravascular gold microspheres within the ulna (n=7 rats/group) and tissue distribution of procion red tracer were quantified (n=8 rats/group). Microcracking, modeling, and remodeling (Cr.S.Dn, microm/mm(2), Ne.Wo.B.T.Ar, mm(2), and Rs.N/T.Ar, #/mm(2) respectively) were also quantified histologically (n=8 rats/group). Cyclic fatigue loading induced hyperemia of the loaded ulna, which peaked at 5 days after loading. There was an associated overall decrease in procion tracer uptake in both the loaded and contralateral control ulnae. Tracer uptake was also decreased in the periosteal region, when compared with the endosteal region of the cortex. Pooling of tracer was seen in microdamaged bone typically adjacent to an intracortical stress fracture at all time points after fatigue loading; in adjacent bone tracer uptake was decreased. New bone formation was similar at 5 days and at 14 days, whereas formation of resorption spaces was increased at 14 days. These data suggest that a short period of cyclic fatigue induces bone hyperemia and associated decreased lacunocanalicular interstitial fluid flow, which persists over the time period in which osteoclasts are recruited to sites of microdamage for targeted remodeling. Matrix damage and development of stress fracture also interfere with normal centrifugal fluid flow through the cortex. Changes in interstitial fluid flow in the contralateral ulna suggest that functional adaptation to unilateral fatigue loading may include a more generalized neurovascular response.  相似文献   

15.
Hu M  Cheng J  Qin YX 《BONE》2012,51(4):819-825
Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generators to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS+static loading, and 5) HLS+DHS. Hydraulic flow stimulation was carried out daily on a "10 min on-5 min off-10 min on" loading regime, 5 days/week, for a total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using μCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of 26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the μCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis.  相似文献   

16.
Summary Both ulnas of skeletally mature roosters (Gallus domesticus) were deprived of functional load bearing by proximal and distal submetaphyseal osteotomies. Twenty-four hours later the animals were injected with 1.5 mCi of3H-uridine and the ulna on one side was subjected to a single period of a cyclical load engendering physiological strain levels at 1 Hz for 6 min. Twenty-fours after loading the animals were killed. Autoradiographic examination of comparable regions of cortex in sections from the bones' midshafts showed that in the loaded bones, 72±2.7% of osteocytes were labeled compared with 12±3.5% in the corresponding areas of their contralateral nonloaded pair (P<0.001). The number of grains per labeled osteocyte was also higher in the loaded side (6±0.5 compared with 4±0.5,P<0.01). There was no obvious correlation between the longitudinal strain distribution during artificial loading and the distribution of labeled osteocytes throughout the bone cross-section. However, previous long-term experiments using a similar loading preparation had consistently shown the site of most periosteal new bone formation to also not be directly related to the local strain magnitude. Perhaps it is significant that the greatest percentage of labeled cells were found in the cortex where the long-term experiments had shown most new bone formation to subsequently occur.  相似文献   

17.
Osteocytes integrate the responses of bone to mechanical and hormonal stimuli by poorly understood mechanisms. We report here that mice with conditional deletion of the parathyroid hormone (PTH) receptor 1 (Pth1r) in dentin matrix protein 1 (DMP1)‐8kb–expressing cells (cKO) exhibit a modest decrease in bone resorption leading to a mild increase in cancellous bone without changes in cortical bone. However, bone resorption in response to endogenous chronic elevation of PTH in growing or adult cKO mice induced by a low calcium diet remained intact, because the increased bone remodeling and bone loss was indistinguishable from that exhibited by control littermates. In contrast, the bone gain and increased bone formation in cancellous and cortical bone induced by daily injections of PTH and the periosteal bone apposition induced by axial ulna loading were markedly reduced in cKO mice compared to controls. Remarkably, however, wild‐type (WT) control littermates and transgenic mice overexpressing SOST injected daily with PTH exhibit similar activation of Wnt/β‐catenin signaling, increased bone formation, and cancellous and cortical bone gain. Taken together, these findings demonstrate that Pth1r in DMP1‐8kb–expressing cells is required to maintain basal levels of bone resorption but is dispensable for the catabolic action of chronic PTH elevation; and it is essential for the anabolic actions of daily PTH injections and mechanical loading. However, downregulation of Sost/sclerostin, previously shown to be required for bone anabolism induced by mechanical loading, is not required for PTH‐induced bone gain, showing that other mechanisms downstream of the Pth1r in DMP1‐8kb–expressing cells are responsible for the hormonal effect. © 2016 American Society for Bone and Mineral Research.  相似文献   

18.
Nutritional rickets in Nigerian children usually results from dietary calcium insufficiency. Typical dietary calcium intakes in African children are about 200mg daily (approximately 20-28% of US RDAs for age). We sought to determine if rickets could be prevented with supplemental calcium or with an indigenous food rich in calcium. We enrolled Nigerian children aged 12 to 18months from three urban communities. Two communities were assigned calcium, either as calcium carbonate (400mg) or ground fish (529±109mg) daily, while children in all three communities received vitamin A (2500IU) daily as placebo. Serum markers of mineral homeostasis and forearm bone density (pDEXA) were measured and radiographs were obtained at enrollment and after 18months of supplementation. The overall prevalence of radiographic rickets at baseline was 1.2% and of vitamin D deficiency [serum 25(OH)D<12ng/ml] 5.4%. Of 647 children enrolled, 390 completed the 18-month follow-up. Rickets developed in 1, 1, and 2 children assigned to the calcium tablet, ground fish, and control groups, respectively (approximate incidence 6.4/1000 children/year between 1 and 3years of age). Children who developed rickets in the calcium-supplemented groups had less than 50% adherence. Compared with the group that received no calcium supplementation, the groups that received calcium had a greater increase in areal bone density of the distal and proximal 1/3 radius and ulna over time (P<0.04). We conclude that calcium supplementation increased areal bone density at the radius and ulna, but a larger sample size would be required to determine its effect on the incidence of rickets.  相似文献   

19.
Lee KC  Maxwell A  Lanyon LE 《BONE》2002,31(3):407-412
Functional adaptation of the mouse ulna in response to artificial loading in vivo was assessed using a technique previously developed in the rat. Strain gauge recordings from the mouse ulnar midshaft during locomotion showed peak strains of 1680 muepsilon and maximum strain rates of 0.03 sec(-1). During falls from 20 cm these reached 2620 muepsilon and 0.10 sec(-1). Axial loads of 3.0 N and 4.3 N, applied through the olecranon and flexed carpus, engendered peak strains at the lateral ulnar midshaft of 2000 muepsilon and 3000 muepsilon, respectively. The left ulnae of 17, 17-week-old female CD1 mice were loaded for 10 min with a 4 Hz trapezoidal wave engendering a strain rate of 0.1 sec(-1) for 5 days/week for 2 weeks. The mice were killed 3 days later. The response of the cortical bone of the diaphysis was assessed histomorphometrically using double calcein labels administered on days 3 and 12 of the loading period. Loading to peak strains of 2000 muepsilon stimulated lamellar periosteal bone formation, but no response endosteally. The greatest increase in cortical bone area was 4 mm distal to the midshaft (5 +/- 0.4% compared with 0.1 +/- 0.1% in controls [p < 0.01]). Periosteal bone formation rate (BFR) at this site was 0.73 +/- 0.06 microm(2)/microm per day, compared with 0.03 +/- 0.02 microm(2)/microm per day in controls (p < 0.01). Loading to peak strains of 3000 muepsilon induced a mixed woven/lamellar periosteal response and lamellar endosteal bone formation. Both of these were greatest 3-4 mm distal to the ulnar midshaft. At this level, the loading-induced periosteal response increased cortical bone area by 21 +/- 4% compared with 0.03 +/- 0.02% in controls, and resulted in a BFR of 2.84 +/- 0.42 microm(2)/microm per day, compared with 0.01 +/- 0.01 microm(2)/microm per day in controls (p < 0.05). Endosteal new bone formation resulted in a 2 +/- 0.4% increase in cortical bone area, compared with 0.4 +/- 0.3% in controls, and a BFR of 1.05 +/- 0.23 microm(2)/microm per day, compared with 0.22 +/- 0.15 microm(2)/microm per day in controls (p < 0.05). These data show that the axial ulna loading technique developed in the rat can be used successfully in the mouse. As in the rat, a short daily period of loading results in an osteogenic response related to peak strain magnitude. One important advantage in using mice over rats involves the potential for assessing the effects of loading in transgenics.  相似文献   

20.
The potential for the recovery of bone lost during the active phase of disuse osteoporosis, both in the diaphyseal compacta and metaphyseal spongiosa was tested in young adult and old Beagle dogs. Immobilization for up to 60 weeks was achieved by placing the forelimb in a spica cast and remobilization by removing it. Bone volume was estimated in the third metacarpus, radius, ulna and humerus at the mid-diaphysis and at the level of distal metaphyseal spongiosa in both forelimbs by radiography and histomorphometry.

Measurements carried out on animals remobilized showed considerable recovery of the original bone loss. In both age groups, the residual deficits increased, however, with the duration of immobilization and were similar in the metaphyseal spongiosa and in the diaphyseal compacta. The old dogs which began the study with 10% less bone than the younger dogs, showed smaller proportional losses than the younger dogs but greater residual deficits, most evident in the diaphysis. In both age groups the distal, weight-bearing bones tended to show greater losses and also greater recovery both in diaphyseal compacta and the metaphyseal spongiosa. Thus, 28 weeks after cast removal following 32 weeks of immobilization the following findings were noted: In the third metacarpal diaphyseal compacta in the younger dogs, a 53.6% loss (mostly from the periosteal envelope) decreased to 16.3% (a 70% recovery) while in the older dogs a 37.6% loss (mostly from the endosteal envelope) decreased to 23% (a 40% recovery). In metacarpal metaphyseal spongiosa in young adult dogs, a 50% loss reduced to 16.8% (a 66% recovery) while in the older dogs a 47% loss reduced to 19% (a 60% recovery).

These observations apply only to the effect of remobilization on recovery of bone loss incurred during the active phase of disuse osteoporosis. The same potential for recovery may not exist later in the inactive phase of established disuse osteoporosis. The permanent losses, however, could be prevented by appropriate measures taken during the active phase of osteoporosis.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号