首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV–Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV–Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L−1, adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater.  相似文献   

2.
Polymeric micelle-like nanoparticles have demonstrated effectiveness for the delivery of some poorly soluble or hydrophobic anticancer drugs. In this study, a hydrophobic moiety, deoxycholic acid (DCA) was first bonded on a polysaccharide, chitosan (CS), for the preparation of amphiphilic chitosan (CS-DCA), which was further modified with a cationic glycidyltrimethylammounium chloride (GTMAC) to form a novel soluble chitosan derivative (HT-CS-DCA). The cationic amphiphilic HT-CS-DCA was easily self-assembled to micelle-like nanoparticles about 200 nm with narrow size distribution (PDI 0.08–0.18). The zeta potential of nanoparticles was in the range of 14 to 24 mV, indicating higher positive charges. Then, doxorubicin (DOX), an anticancer drug with poor solubility, was entrapped into HT-CS-DCA nanoparticles. The DOX release test was performed in PBS (pH 7.4) at 37 °C, and the results showed that there was no significant burst release in the first two hours, and the cumulative release increased steadily and slowly in the following hours. HT-CS-DCA nanoparticles loaded with DOX could easily enter into MCF-7 cells, as observed by a confocal microscope. As a result, DOX-loaded HT-CS-DCA nanoparticles demonstrated a significant inhibition activity on MCF-7 growth without obvious cellular toxicity in comparison with blank nanoparticles. Therefore, the anticancer efficacy of these cationic HT-CS-DCA nanoparticles showed great promise for the delivery of DOX in cancer therapy.  相似文献   

3.
Due to the possibility of bacterial infections occurring around peri-implant tissues, it is necessary to provide implant coatings that release antibacterial substances. The scientific goal of this paper was to produce by electrophoretic deposition (EPD) a smart, chitosan/Eudragit E 100/silver nanoparticles (chit/EE100/AgNPs) composite coating on the surface of titanium grade 2 using different deposition parameters, such as the content of AgNPs, applied voltage, and time of deposition. The morphology, surface roughness, thickness, chemical and phase composition, wettability, mechanical properties, electrochemical properties, and silver release rate at different pH were investigated. Using lower values of deposition parameters, coatings with more homogeneous morphology were obtained. The prepared coatings were sensitive to the reduced pH environment.  相似文献   

4.
Enhancing the antibacterial activity of old antibiotics by a multitarget approach, such as combining antibiotics with metal nanoparticles, is a valuable strategy to overcome antibacterial resistance. In this work, the synergistic antimicrobial effect of silver nanoparticles and antibiotics, immobilized on a solid support, was investigated. Nanometric layered double hydroxides (LDH) based on Zn(II) and Al(III) were prepared by the double microemulsion technique. The dual function of LDH as an anionic exchanger and support for metal nanoparticles was exploited to immobilize both silver and antibiotics. Cefazolin (CFZ), a β-lactam, and nalidixic acid (NAL), a quinolone, were selected and intercalated into LDH obtaining ZnAl-CFZ and ZnAl-NAL samples. These samples were used for the growth of silver nanoparticles with dimension ranging from 2.5 to 8 nm. Silver and antibiotics release profiles, from LDH loaded with antibiotics and Ag/antibiotics, were evaluated in two different media: water and phosphate buffer. Interestingly, the release profiles are affected by both the acceptor media and the presence of silver. The synergistic antibacterial activity of LDH containing both silver and antibiotics were investigated on gram-positives (Staphylococcus aureus and Streptococcus pneumoniae) and gram-negatives (Pseudomonas aeruginosa) and compared with the plain antimicrobials and LDH containing only antibiotics or silver.  相似文献   

5.
Nanostructured FeS dispersed onto N, S dual-doped carbon nanotube–graphene composite support (FeS/N,S:CNT–GR) was prepared by a simple synthetic method. Annealing an ethanol slurry of Fe precursor, thiourea, carbon nanotube, and graphene oxide at 973 K under N2 atmosphere and subsequent acid treatment produced FeS nanoparticles distributed onto the N, S-doped carbon nanotube–graphene support. The synthesized FeS/N,S:CNT–GR catalyst exhibited significantly enhanced electrochemical performance in the oxygen reduction reaction (ORR) compared with bare FeS, FeS/N,S:GR, and FeS/N,S:CNT with a small half-wave potential (0.827 V) in an alkaline electrolyte. The improved ORR performance, comparable to that of commercial Pt/C, could be attributed to synergy between the small FeS nanoparticles with a high activity and the N, S-doped carbon nanotube–graphene composite support providing high electrical conductivity, large surface area, and additional active sites.  相似文献   

6.
Natural polysaccharides, including hyaluronic acid, find a wide range of applications in biomedical sciences. There is a growing interest in nanocomposites containing hyaluronic acid and nanoparticles such as nanometals or graphene. In this study, we prepared foils of pure sodium hyaluronate and sodium hyaluronate containing nanosilver, graphene oxide, nanosilver/graphene oxide and characterized their properties. UV-vis spectroscopy and scanning electron microscopy (SEM) confirmed the formation of 10–20 nm silver nanoparticles. The structural changes were investigated using Fourier transforms infrared (FTIR) spectra and size exclusion chromatography. The obtained results suggest changes in molecular weights in the samples containing nanoparticles, which was highest in a sample containing nanosilver/graphene oxide. We also assessed the mechanical properties of the foils (thickness, tensile strength and elongation at break) and their wettability. The foils containing nanosilver and nanosilver/graphene oxide presented bacteriostatic activity against E. coli, Staphylococcus spp. and Bacillus spp., which was not observed in the control and sample containing graphene oxide. The composites containing graphene oxide and nanosilver/graphene oxide exhibited a cytotoxic effect on human melanoma WM266-4 cell lines (ATCC, Manassas, VA, USA).  相似文献   

7.
The effect of SiO2 nanoparticles on the formation of PAA (poly acrylic acid) gel structure was investigated with seeded emulsion polymerization method used to prepare SiO2/PAA nanoparticles. The morphologies of the nanocomposite nanoparticles were studied by transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy results indicated that the PAA was chemically bonded to the surface of the SiO2 nanoparticles. Additionally, the resulting morphology of the nanocomposite nanoparticles confirmed the co-crosslinking role of the SiO2 nanoparticles in the formation of the 3D structure and hydrogel of PAA. SiO2/PAA nanocomposite hydrogels were synthesized by in situ solution polymerization with and without toluene. The morphology studies by field emission scanning electron microscopy (FESEM) showed that when the toluene was used as a pore forming agent in the polymerization process, a macroporous hydrogel structure was achieved. The pH-sensitive swelling behaviors of the nanocomposite hydrogels showed that the formation of pores in the gels structure was a dominant factor on the water absorption capacity. In the current research the absorption capacity was changed from about 500 to 4000 g water/g dry hydrogel. Finally, the macroporous nanocomposite hydrogel sample was tested as an amoxicillin release system in buffer solutions with pHs of 3, 7.2, and 9 at 37 °C. The results showed that the percentage cumulative release of amoxicillin from the hydrogels was higher in neutral and basic mediums than in the acidic medium and the amoxicillin release rate was decreased with increasing pH. Additionally, the release results were very similar to swelling results and hence amoxicillin release was a swelling controlled-release system.  相似文献   

8.
Graphene oxide has been widely used in the oxidative degradation of environmental pollutants. However, its catalytic role can be questioned as graphene oxide with oxygen-containing functional groups may also act as reactant in oxidative reactions. Herein, hydrogel composites loaded with multilayered graphene platelets showed excellent catalytic performance for the reduction of a wastewater organic pollutant (methylene blue) under NaBH4, which proved the catalytic role of multilayered graphene platelets. The liquid-based direct exfoliation method was used to prepare two-dimensional materials, which is compatible with other liquid phase methods to prepare nanomaterials. Hydrogel composites composed of multilayered graphene platelets, silver nanoparticles, and polyacrylic acid hydrogels were synthesized in water solution under irradiation with ultraviolet light, demonstrating the advantages of synthesizing nanocomposites using the liquid-based direct exfoliation method.  相似文献   

9.
The development of stimuli-sensitive drug delivery systems is a very attractive area of current research in cancer therapy. The deep knowledge on the microenvironment of tumors has supported the progress of nanosystems’ ability for controlled and local fusion as well as drug release. Temperature and pH are two of the most promising triggers in the development of sensitive formulations to improve the efficacy of anticancer agents. Herein, magnetic liposomes with fusogenic sensitivity to pH and temperature were developed aiming at dual cancer therapy (by chemotherapy and magnetic hyperthermia). Magnetic nanoparticles of mixed calcium/manganese ferrite were synthesized by co-precipitation with citrate and by sol–gel method, and characterized by X-ray diffraction (XRD), scanning electron microscopy in transmission mode (STEM), and superconducting quantum interference device (SQUID). The citrate-stabilized nanoparticles showed a small-sized population (around 8 nm, determined by XRD) and suitable magnetic properties, with a low coercivity and high saturation magnetization (~54 emu/g). The nanoparticles were incorporated into liposomes of dipalmitoylphosphatidylcholine/cholesteryl hemisuccinate (DPPC:CHEMS) and of the same components with a PEGylated lipid (DPPC:CHEMS:DSPE-PEG), resulting in magnetoliposomes with sizes around 100 nm. Dynamic light scattering (DLS) and electrophoretic light scattering (ELS) measurements were performed to investigate the pH-sensitivity of the magnetoliposomes’ fusogenic ability. Two new antitumor thienopyridine derivatives were efficiently encapsulated in the magnetic liposomes and the drug delivery capability of the loaded nanosystems was evaluated, under different pH and temperature conditions.  相似文献   

10.
To broaden the application of silver nanoparticles (AgNPs), which are well-known antibacterial agents, they are supported on different substrates to prevent aggregation, increase their surface area and antibacterial efficiency, and to be separated from the system more effectively at the end of treatment. To produce nanocomposites that consist of silver nanoparticles on natural and modified zeolites, silver ions (Ag+) were loaded onto zeolite (natural, Na-modified, H-modified) and then thermally reduced to AgNPs. The effect of the exchangeable cations in zeolite on Ag+ uptake, AgNPs formation, size and morphology was investigated by the TEM, SEM, EDX, XPS, UV-vis, XRD and BET methods. The silver amount in the nanocomposites decreased in the following order Na-modified zeolite > natural zeolite > H-modified zeolite. Microscopic techniques showed formation of AgNPs of 1–14 nm on natural and Na-modified zeolite, while the diameter of metal particles on H-modified zeolite was 12–42 nm. Diffuse reflectance UV-vis and XPS methods revealed the presence of both silver ions and AgNPs in the materials indicating that partial reduction of Ag+ ions took place upon heating at 400 °C in air. Additionally, antibacterial properties of the nanocomposites were tested against Escherichia coli, and it was found that Ag–containing composites originating from the Na-modified zeolite demonstrated the highest activity.  相似文献   

11.
There are a number of challenges associated with designing nanoparticles for medical applications. We define two challenges here: (i) conventional targeting against up-regulated cell surface antigens is limited by heterogeneity in expression, and (ii) previous studies suggest that the optimal size of nanoparticles designed for systemic delivery is approximately 50–150 nm, yet this size range confers a high surface area-to-volume ratio, which results in fast diffusive drug release. Here, we achieve spatial control by biopanning a phage library to discover materials that target abundant vascular antigens exposed in disease. Next, we achieve temporal control by designing 60-nm hybrid nanoparticles with a lipid shell interface surrounding a polymer core, which is loaded with slow-eluting conjugates of paclitaxel for controlled ester hydrolysis and drug release over approximately 12 days. The nanoparticles inhibited human aortic smooth muscle cell proliferation in vitro and showed greater in vivo vascular retention during percutaneous angioplasty over nontargeted controls. This nanoparticle technology may potentially be used toward the treatment of injured vasculature, a clinical problem of primary importance.  相似文献   

12.
Aim: Oral administration of insulin is a promising drug delivery system for diabetic patients as it is convenient and reduces pain, two of the major contributors to non‐compliance. Methods: In this study, insulin was encapsulated in poly(lactic‐co‐glycolicacid) (PLGA) nanoparticles (NPs) by using double‐emulsion/solvent evaporation technique and analyses on its release kinetics were carried out using both in vitro and in vivo methods. Results: First, only by this simple methods, release speed of insulin from NPs can be controlled in different pH solution. The rate of release of insulin was found to be slower in acidic pH; about 90% of insulin was released in 11 days at pH 1.0. In alkaline conditions, the release was faster; about 90% release was observed to occur within 3 days at pH 7.8. The insulin‐loaded poly (lactic‐co‐glycolicacid) nanoparticles (PINPs) were administered orally to diabetes mellitus‐induced rats and the response of blood glucose and insulin levels was estimated. Blood glucose decreased and the concentration of insulin in animal blood increased. In diabetic animals which were administered intermittent insulin, every 8 h, blood glucose levels were maintained equivalently with those of healthy rats. Conclusion: These experimental results indicated that oral PINPs are able to deliver insulin effectively and decrease animal blood sugar; in conclusion, this may be a promising delivery system for the treatment of diabetes.  相似文献   

13.
ObjectiveTo formulate and evaluate Albendazole microcapsules using chitosan, a natural polymer for colon-specific delivery for better treatment of helminthiasis, filariasis, colorectal cancer, avoiding the side effects.MethodsThe Albendazole microcapsules were prepared by the use of different concentrations of sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC). The polysaccharides chitosan reacted with sodium alginate in the presence of calcium chloride to form microcapsules with a polyelectrolyte complex membrane by electrostatic interactions between the two oppositely charged polymers. The microcapsules were then studied for entrapment efficiency, drug-polymer compatibility and surface morphology. In vitro drug release study in presence and absence of cecal content were also studied. Further, kinetic modellings were employed to find out release mechanisms.ResultsAlbendazole loaded microspheres showd high entrapment efficiency (72.8%) and the microcapsules were free flowing, non aggregated and spherical, between 600 and 1000 μm in diameter. The surface of microcapsules were found to be porous and wavy. The FT-IR spectrum showed that there is no interaction between the polymer and the drug. The in vitro drug release study found to be affected by change in chitosan, sodium alginate and HPMC concentration. The microcapsules with 2.5% sodium alginate and 0.4% chitosan shown minimum release in gastrointestinal simulated condition but shows maximum drug release at the end of 24th hour in presence of cecal content. The rate of drug release follows Korsmeyer-peppas model that was the drug release is by diffusion and erosion.ConclusionsThe study reveals that Albendazole loaded chitosan-alginate based microsphere can be used effectively for the colon targeting.  相似文献   

14.
Tanned leather can be attacked by microorganisms. To ensure resistance to bacteria on leather surfaces, protection solutions need to be developed, addressing both environmental issues and economic viability. In this work, chitosan nano/microparticles (CNP) and chitosan/silver nano/microstructures (CSNP), containing silver nanoparticles around 17 nm size, were incorporated into leather, obtained from the industrial process. Low loads of chitosan-based nano/microformulations, 0.1% mass ratio, resulted in total bacteria reduction (100%) after 2 h towards Gram-positive Staphylococcus aureus, both with CNP and CSNP coatings. Otherwise, comparable tests with the Gram-negative bacteria, Klebsiella pneumoniae, Escherichia coli, showed no significant improvement under the coating acidic conditions. The antimicrobial activity was evaluated by standard test methods: (1) inhibition halo and (2) dynamic contact conditions. The developed protection of leather either with CNP or CSNP is much higher than the one obtained with a simple chitosan solution.  相似文献   

15.
Polystyrene-silica core-shell nanocomposite particles are successfully prepared via one-step Pickering emulsion polymerization. Possible mechanisms of Pickering emulsion polymerization are addressed in the synthesis of polystyrene-silica nanocomposite particles using 2,2-azobis(2-methyl-N-(2-hydroxyethyl)propionamide (VA-086) and potassium persulfate (KPS) as the initiator. Motivated by potential applications of “smart” composite particles in controlled drug delivery, the one-step Pickering emulsion polymerization route is further applied to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The polystyrene/PNIPAAm-silica composite nanoparticles are temperature sensitive and can be taken up by human prostate cancer (PC3-PSMA) cells.  相似文献   

16.
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.  相似文献   

17.
Reduced graphene oxide loaded with an iron-copper nanocomposite was prepared in this study, using graphene oxide as a carrier and ferrous sulfate, copper chloride and sodium borohydride as raw materials. The obtained material was prepared for eliminating hazardous dye carmine and the binary dye mixture of carmine and Congo red. The process of carmine dye removal by the nanocomposite was modeled and optimized through response surface methodology and artificial intelligence (artificial neural network–particle swarm optimization and artificial neural network–genetic algorithm) based on single-factor experiments. The results demonstrated that the surface area of the nanocomposite was 41.255 m2/g, the pore size distribution was centered at 2.125 nm, and the saturation magnetization was up to 108.33 emu/g. A comparison of the material before and after the reaction showed that the material could theoretically be reused three times. The absolute error between the predicted and experimental values derived by using artificial neural network–particle swarm optimization was the smallest, indicating that this model was suitable to remove carmine from simulated wastewater. The dose factor was the key factor in the adsorption process. This process could be described with the pseudo-second-order kinetic model, and the maximum adsorption capacity was 1848.96 mg/g. The removal rate of the mixed dyes reached 96.85% under the optimal conditions (the dosage of rGO/Fe/Cu was 20 mg, the pH was equal to 4, the initial concentration of the mixed dyes was 500 mg/L, and the reaction time was 14 min), reflecting the excellent adsorption capability of the material.  相似文献   

18.
The present work describes synthesis, characterization, and use of a new dansyl-labelled Ag@SiO2 nanocomposite as an element of a new plasmonic platform to enhance the fluorescence intensity. Keeping in mind that typical surface plasmon resonance (SPR) characteristics of silver nanoparticles coincide well enough with the absorption of dansyl molecules, we used them to build the core of the nanocomposite. Moreover, we utilized 10 nm amino-functionalized silica shell as a separator between silver nanoparticles and the dansyl dye to prevent the dye-to-metal energy transfer. The dansyl group was incorporated into Ag@SiO2 core-shell nanostructures by the reaction of aminopropyltrimethoxysilane with dansyl chloride and we characterized the new dansyl-labelled Ag@SiO2 nanocomposite using transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Additionally, water wettability measurements (WWM) were carried out to assess the hydrophobicity and hydrophilicity of the studied surface. We found that the nanocomposite deposited on a semitransparent silver mirror strongly increased the fluorescence intensity of dansyl dye (about 87-fold) compared with the control sample on the glass, proving that the system is a perfect candidate for a sensitive plasmonic platform.  相似文献   

19.
The present experiment describes a synthesis process of composites based on graphene oxide, which was tested as a carrier for composites of metal- or metalloid-based nanoparticles (Cu, Zn, Mn, Ag, AgP, Se) and subsequently examined as an antimicrobial agent for some bacterial strains (Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). The composites were first applied at a concentration of 300 µM on all types of model organisms and their effect was observed by spectrophotometric analysis, which showed a decrease in absorbance values in comparison with the control, untreated strain. The most pronounced inhibition (87.4%) of S. aureus growth was observed after the application of graphene oxide composite with selenium nanoparticles compared to control. Moreover, the application of the composite with silver and silver phosphate nanoparticles showed the decrease of 68.8% and 56.8%, respectively. For all the tested composites, the observed antimicrobial effect was found in the range of 26% to 87.4%. Interestingly, the effects of the composites with selenium nanoparticles significantly differed in Gram-positive (G+) and Gram-negative (G) bacteria. The effects of composites on bacterial cultures of S. aureus and MRSA, the representatives of G+ bacteria, increased with increasing concentrations. On the other hand, the effects of the same composites on G bacteria E. coli was observed only in the highest applied concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号