首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AimsEntorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal‐cortex network and episodic‐like memory performance following EC‐DBS.Methods7.0 T functional MRI (fMRI) scans and episodic‐like memory tests were performed 3 days and 28 days after EC‐DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal‐cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the “when” and “where” factors were calculated in the behavioral tests.ResultsEC‐DBS increased the power spectra and the functional connectivity in the prefrontal‐ and hippocampal‐related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC‐DBS. Further seed‐based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC‐DBS also enhanced the discrimination ratio of the “where” factor in the episodic‐like memory test on Day 3.ConclusionEC‐DBS caused a reversible modulation effect on functional connectivity in the hippocampal‐cortex network and episodic‐like memory performance.  相似文献   

2.
Startle reflex is modulated when a weaker sensory stimulus (“prepulse”) precedes a startling stimulus (“pulse”). Prepulse Inhibition (PPI) is the attenuation of the startle reflex (prepulse precedes pulse by 30–500 ms), whereas Prepulse Facilitation (PPF) is the enhancement of the startle reflex (prepulse precedes pulse by 500–6000 ms). Here, we critically appraise human studies using functional neuroimaging to establish brain regions associated with PPI and PPF. Of 10 studies, nine studies revealed thalamic, striatal and frontal lobe activation during PPI in healthy groups, and activation deficits in the cortico‐striato‐pallido‐thalamic circuitry in schizophrenia (three studies) and Tourette Syndrome (two studies). One study revealed a shared network for PPI and PPF in frontal regions and cerebellum, with PPF networks recruiting superior medial gyrus and cingulate cortex. The main gaps in the literature are (i) limited PPF research and whether PPI and PPF operate on separate/shared networks, (ii) no data on sex differences in neural underpinnings of PPI and PPF, and (iii) no data on neural underpinnings of PPI and PPF in other clinical disorders.  相似文献   

3.
Generalized tonic–clonic seizures (GTCS) are the severest and most remarkable clinical expressions of human epilepsy. Cortical, subcortical, and cerebellar structures, organized with different network patterns, underlying the pathophysiological substrates of genetic associated epilepsy with GTCS (GE‐GTCS) and focal epilepsy associated with focal to bilateral tonic–clonic seizure (FE‐FBTS). Structural covariance analysis can delineate the features of epilepsy network related with long‐term effects from seizure. Morphometric MRI data of 111 patients with GE‐GTCS, 111 patients with FE‐FBTS and 111 healthy controls were studied. Cortico‐striato‐thalao‐cerebellar networks of structural covariance within the gray matter were constructed using a Winner‐take‐all strategy with five cortical parcellations. Comparisons of structural covariance networks were conducted using permutation tests, and module effects of disease duration on networks were conducted using GLM model. Both patient groups showed increased connectivity of structural covariance relative to controls, mainly within the striatum and thalamus, and mostly correlated with the frontal, motor, and somatosensory cortices. Connectivity changes increased as a function of epilepsy durations. FE‐FBTS showed more intensive and extensive gray matter changes with volumetric loss and connectivity increment than GE‐GTCS. Our findings implicated cortico‐striato‐thalamo‐cerebellar network changes at a large temporal scale in GTCS, with FE‐FBTS showing more severe network disruption. The study contributed novel imaging evidence for understanding the different epilepsy syndromes associated with generalized seizures.  相似文献   

4.
Prior studies have used graph analysis of resting‐state magnetoencephalography (MEG) to characterize abnormal brain networks in neurological disorders. However, a present challenge for researchers is the lack of guidance on which network construction strategies to employ. The reproducibility of graph measures is important for their use as clinical biomarkers. Furthermore, global graph measures should ideally not depend on whether the analysis was performed in the sensor or source space. Therefore, MEG data of the 89 healthy subjects of the Human Connectome Project were used to investigate test–retest reliability and sensor versus source association of global graph measures. Atlas‐based beamforming was used for source reconstruction, and functional connectivity (FC) was estimated for both sensor and source signals in six frequency bands using the debiased weighted phase lag index (dwPLI), amplitude envelope correlation (AEC), and leakage‐corrected AEC. Reliability was examined over multiple network density levels achieved with proportional weight and orthogonal minimum spanning tree thresholding. At a 100% density, graph measures for most FC metrics and frequency bands had fair to excellent reliability and significant sensor versus source association. The greatest reliability and sensor versus source association was obtained when using amplitude metrics. Reliability was similar between sensor and source spaces when using amplitude metrics but greater for the source than the sensor space in higher frequency bands when using the dwPLI. These results suggest that graph measures are useful biomarkers, particularly for investigating functional networks based on amplitude synchrony.  相似文献   

5.
Perceptions of spiteful behavior are common, distinct from rational fear, and may undergird persecutory ideation. To test this hypothesis and investigate neural mechanisms of persecutory ideation, we employed a novel economic social decision‐making task, the Minnesota Trust Game (MTG), during neuroimaging in patients with schizophrenia (n = 30) and community monozygotic (MZ) twins (n = 38; 19 pairs). We examined distinct forms of mistrust, task‐related brain activation and connectivity, and investigated relationships with persecutory ideation. We tested whether co‐twin discordance on these measurements was correlated to reflect a common source of underlying variance. Across samples persecutory ideation was associated with reduced trust only during the suspiciousness condition, which assessed spite sensitivity given partners had no monetary incentive to betray. Task‐based activation contrasts for specific forms of mistrust were limited and unrelated to persecutory ideation. However, task‐based connectivity contrasts revealed a dorsal cingulate anterior insula network sensitive to suspicious mistrust, a left frontal–parietal (lF‐P) network sensitive to rational mistrust, and a ventral medial/orbital prefrontal (vmPFC/OFC) network that was sensitive to the difference between these forms of mistrust (all p < .005). Higher persecutory ideation was predicted only by reduced connectivity between the vmPFC/OFC and lF‐P networks (p = .005), which was only observed when the intentions of the other player were relevant. Moreover, co‐twin differences in persecutory ideation predicted co‐twin differences in both spite sensitivity and in vmPFC/OFC–lF‐P connectivity. This work found that interconnectivity may be particularly important to the complex neurobiology underlying persecutory ideation, and that unique environmental variance causally linked persecutory ideation, decision‐making, and brain connectivity.  相似文献   

6.
Data from both animal models and deaf children provide evidence for that the maturation of auditory cortex has a sensitive period during the first 2–4 years of life. During this period, the auditory stimulation can affect the development of cortical function to the greatest extent. Thus far, little is known about the brain development trajectory after early auditory deprivation within this period. In this study, independent component analysis (ICA) technique was used to detect the characteristics of brain network development in children with bilateral profound sensorineural hearing loss (SNHL) before 3 years old. Seven resting‐state networks (RSN) were identified in 50 SNHL and 36 healthy controls using ICA method, and further their intra‐and inter‐network functional connectivity (FC) were compared between two groups. Compared with the control group, SNHL group showed decreased FC within default mode network, while enhanced FC within auditory network (AUN) and salience network. No significant changes in FC were found in the visual network (VN) and sensorimotor network (SMN). Furthermore, the inter‐network FC between SMN and AUN, frontal network and AUN, SMN and VN, frontal network and VN were significantly increased in SNHL group. The results implicate that the loss and the compensatory reorganization of brain network FC coexist in SNHL infants. It provides a network basis for understanding the brain development trajectory after hearing loss within early sensitive period.  相似文献   

7.
Cognitive performance slows down with increasing age. This includes cognitive processes that are essential for the performance of a motor act, such as the slowing down in response to an external stimulus. The objective of this study was to identify aging‐associated functional changes in the brain networks that are involved in the transformation of external stimuli into motor action. To investigate this topic, we employed dynamic graphs based on phase‐locking of Electroencephalography signals recorded from healthy younger and older subjects while performing a simple visually‐cued finger‐tapping task. The network analysis yielded specific age‐related network structures varying in time in the low frequencies (2–7 Hz), which are closely connected to stimulus processing, movement initiation and execution in both age groups. The networks in older subjects, however, contained several additional, particularly interhemispheric, connections and showed an overall increased coupling density. Cluster analyses revealed reduced variability of the subnetworks in older subjects, particularly during movement preparation. In younger subjects, occipital, parietal, sensorimotor and central regions were—temporally arranged in this order—heavily involved in hub nodes. Whereas in older subjects, a hub in frontal regions preceded the noticeably delayed occurrence of sensorimotor hubs, indicating different neural information processing in older subjects. All observed changes in brain network organization, which are based on neural synchronization in the low frequencies, provide a possible neural mechanism underlying previous fMRI data, which report an overactivation, especially in the prefrontal and pre‐motor areas, associated with a loss of hemispheric lateralization in older subjects.  相似文献   

8.
What goes wrong in a schizophrenia patient''s brain that makes it so different from a healthy brain? In this study, we tested the hypothesis that the abnormal brain activity in schizophrenia is tightly related to alterations in brain connectivity. Using functional magnetic resonance imaging (fMRI), we demonstrated that both resting‐state functional connectivity and brain activity during the well‐validated N‐back task differed significantly between schizophrenia patients and healthy controls. Nevertheless, using a machine‐learning approach we were able to use resting‐state functional connectivity measures extracted from healthy controls to accurately predict individual variability in the task‐evoked brain activation in the schizophrenia patients. The predictions were highly accurate, sensitive, and specific, offering novel insights regarding the strong coupling between brain connectivity and activity in schizophrenia. On a practical perspective, these findings may allow to generate task activity maps for clinical populations without the need to actually perform any tasks, thereby reducing patients inconvenience while saving time and money.  相似文献   

9.
Resting‐state functional connectivity in the human brain is heritable, and previous studies have investigated the genetic basis underlying functional connectivity. However, at present, the molecular mechanisms associated with functional network centrality are still largely unknown. In this study, functional networks were constructed, and the graph‐theory method was employed to calculate network centrality in 100 healthy young adults from the Human Connectome Project. Specifically, functional connectivity strength (FCS), also known as the “degree centrality” of weighted networks, is calculated to measure functional network centrality. A multivariate technique of partial least squares regression (PLSR) was then conducted to identify genes whose spatial expression profiles best predicted the FCS distribution. We found that FCS spatial distribution was significantly positively correlated with the expression of genes defined by the first PLSR component. The FCS‐related genes we identified were significantly enriched for ion channels, axon guidance, and synaptic transmission. Moreover, FCS‐related genes were preferentially expressed in cortical neurons and young adulthood and were enriched in numerous neurodegenerative and neuropsychiatric disorders. Furthermore, a series of validation and robustness analyses demonstrated the reliability of the results. Overall, our results suggest that the spatial distribution of FCS is modulated by the expression of a set of genes associated with ion channels, axon guidance, and synaptic transmission.  相似文献   

10.
Previous neuroimaging studies have revealed abnormal functional connectivity of brain networks in patients with major depressive disorder (MDD), but findings have been inconsistent. A recent big‐data study found abnormal intrinsic functional connectivity within the default mode network in patients with recurrent MDD but not in first‐episode drug‐naïve patients with MDD. This study also provided evidence for reduced default mode network functional connectivity in medicated MDD patients, raising the question of whether previously observed abnormalities may be attributable to antidepressant effects. The present study (ClinicalTrials.gov identifier: NCT03294525) aimed to disentangle the effects of antidepressant treatment from the pathophysiology of MDD and test the medication normalization hypothesis. Forty‐one first‐episode drug‐naïve MDD patients were administrated antidepressant medication (escitalopram or duloxetine) for 8 weeks, with resting‐state functional connectivity compared between posttreatment and baseline. To assess the replicability of the big‐data finding, we also conducted a cross‐sectional comparison of resting‐state functional connectivity between the MDD patients and 92 matched healthy controls. Both Network‐Based Statistic analyses and large‐scale network analyses revealed intrinsic functional connectivity decreases in extensive brain networks after treatment, indicating considerable antidepressant effects. Neither Network‐Based Statistic analyses nor large‐scale network analyses detected significant functional connectivity differences between treatment‐naïve patients and healthy controls. In short, antidepressant effects are widespread across most brain networks and need to be accounted for when considering functional connectivity abnormalities in MDD.  相似文献   

11.
Even with an overarching functional dysconnectivity model of adolescent‐onset schizophrenia (AOS), there have been no functional connectome (FC) biomarkers identified for predicting patients'' specific symptom domains. Adolescence is a period of dramatic brain maturation, with substantial interindividual variability in brain anatomy. However, existing group‐level hypotheses of AOS lack precision in terms of neuroanatomical boundaries. This study aimed to identify individual‐specific FC biomarkers associated with schizophrenic symptom manifestation during adolescent brain maturation. We used a reliable individual‐level cortical parcellation approach to map functional brain regions in each subject, that were then used to identify FC biomarkers for predicting dimension‐specific psychotic symptoms in 30 antipsychotic‐naïve first‐episode AOS patients (recruited sample of 39). Age‐related changes in biomarker expression were compared between these patients and 31 healthy controls. Moreover, 29 antipsychotic‐naïve first‐episode AOS patients (analyzed sample of 25) were recruited from another center to test the generalizability of the prediction model. Individual‐specific FC biomarkers could significantly and better predict AOS positive‐dimension symptoms with a relatively stronger generalizability than at the group level. Specifically, positive symptom domains were estimated based on connections between the frontoparietal control network (FPN) and salience network and within FPN. Consistent with the neurodevelopmental hypothesis of schizophrenia, the FPN–SN connection exhibited aberrant age‐associated alteration in AOS. The individual‐level findings reveal reproducible FPN‐based FC biomarkers associated with AOS positive symptom domains, and highlight the importance of accounting for individual variation in the study of adolescent‐onset disorders.  相似文献   

12.
This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub‐second dynamics of resting‐state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA‐related changes in resting‐state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting‐state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12–51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median‐split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo‐parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute‐long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub‐second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub‐second network activity and functional brain integration over long timescales.  相似文献   

13.
Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never‐treated first‐episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel‐based morphometry derived from T1‐weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never‐treated first‐episode patients with depression (N = 195). The brain‐predicted age difference (brain‐PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age‐, gender‐, educational level‐matched HCs in Dataset 1. Overall, patients presented higher brain‐PAD scores suggesting patients with depression having an “older” brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data‐driven method and significant correlation between brain‐PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage‐dependent phenomenon in depression.  相似文献   

14.
“Resting‐state” functional magnetic resonance imaging (rs‐fMRI) is widely used to study brain connectivity. So far, researchers have been restricted to measures of functional connectivity that are computationally efficient but undirected, or to effective connectivity estimates that are directed but limited to small networks. Here, we show that a method recently developed for task‐fMRI—regression dynamic causal modeling (rDCM)—extends to rs‐fMRI and offers both directional estimates and scalability to whole‐brain networks. First, simulations demonstrate that rDCM faithfully recovers parameter values over a wide range of signal‐to‐noise ratios and repetition times. Second, we test construct validity of rDCM in relation to an established model of effective connectivity, spectral DCM. Using rs‐fMRI data from nearly 200 healthy participants, rDCM produces biologically plausible results consistent with estimates by spectral DCM. Importantly, rDCM is computationally highly efficient, reconstructing whole‐brain networks (>200 areas) within minutes on standard hardware. This opens promising new avenues for connectomics.  相似文献   

15.
Social cognition skills are typically acquired on the basis of visual information (e.g., the observation of gaze, facial expressions, gestures). In light of this, a critical issue is whether and how the lack of visual experience affects neurocognitive mechanisms underlying social skills. This issue has been largely neglected in the literature on blindness, despite difficulties in social interactions may be particular salient in the life of blind individuals (especially children). Here we provide a meta‐analysis of neuroimaging studies reporting brain activations associated to the representation of self and others'' in early blind individuals and in sighted controls. Our results indicate that early blindness does not critically impact on the development of the “social brain,” with social tasks performed on the basis of auditory or tactile information driving consistent activations in nodes of the action observation network, typically active during actual observation of others in sighted individuals. Interestingly though, activations along this network appeared more left‐lateralized in the blind than in sighted participants. These results may have important implications for the development of specific training programs to improve social skills in blind children and young adults.  相似文献   

16.
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.  相似文献   

17.
Individual‐based morphological brain networks built from T1‐weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio‐cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual‐based morphological networks were constructed by using high‐resolution structural MRI data from 40 young children with ASD (age range: 2–8 years) and 38 age‐, gender‐, and handedness‐matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small‐worldness (i.e., σ) of individual‐level morphological brain networks, increased morphological connectivity in cortico‐striatum‐thalamic‐cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico‐cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio‐cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically‐relevant biomarkers for ASD.  相似文献   

18.
Floatation‐Reduced Environmental Stimulation Therapy (REST) is a procedure that reduces stimulation of the human nervous system by minimizing sensory signals from visual, auditory, olfactory, gustatory, thermal, tactile, vestibular, gravitational, and proprioceptive channels, in addition to minimizing musculoskeletal movement and speech. Initial research has found that Floatation‐REST can elicit short‐term reductions in anxiety, depression, and pain, yet little is known about the brain networks impacted by the intervention. This study represents the first functional neuroimaging investigation of Floatation‐REST, and we utilized a data‐driven exploratory analysis to determine whether the intervention leads to altered patterns of resting‐state functional connectivity (rsFC). Healthy participants underwent functional magnetic resonance imaging (fMRI) before and after 90 min of Floatation‐REST or a control condition that entailed resting supine in a zero‐gravity chair for an equivalent amount of time. Multivariate Distance Matrix Regression (MDMR), a statistically‐stringent whole‐brain searchlight approach, guided subsequent seed‐based connectivity analyses of the resting‐state fMRI data. MDMR identified peak clusters of rsFC change between the pre‐ and post‐float fMRI, revealing significant decreases in rsFC both within and between posterior hubs of the default‐mode network (DMN) and a large swath of cortical tissue encompassing the primary and secondary somatomotor cortices extending into the posterior insula. The control condition, an active form of REST, showed a similar pattern of reduced rsFC. Thus, reduced stimulation of the nervous system appears to be reflected by reduced rsFC within the brain networks most responsible for creating and mapping our sense of self.  相似文献   

19.
Advanced perfusion‐weighted imaging (PWI) methods that combine gradient echo (GE) and spin echo (SE) data are important tools for the study of brain tumours. In PWI, single‐shot, EPI‐based methods have been widely used due to their relatively high imaging speed. However, when used with increasing spatial resolution, single‐shot EPI methods often show limitations in whole‐brain coverage for multi‐contrast applications. To overcome this limitation, this work employs a new version of EPI with keyhole (EPIK) to provide five echoes: two with GEs, two with mixed GESE and one with SE; the sequence is termed “GESE‐EPIK.” The performance of GESE‐EPIK is evaluated against its nearest relative, EPI, in terms of the temporal signal‐to‐noise ratio (tSNR). Here, data from brain tumour patients were acquired using a hybrid 3T MR‐BrainPET scanner.GESE‐EPIK resulted in reduced susceptibility artefacts, shorter TEs for the five echoes and increased brain coverage when compared to EPI. Moreover, compared to EPI, EPIK achieved a comparable tSNR for the first and second echoes and significantly higher tSNR for other echoes.A new method to obtain multi‐echo GE and SE data with shorter TEs and increased brain coverage is demonstrated. As proposed here, the workflow can be shortened and the integration of multimodal clinical MR‐PET studies can be facilitated.  相似文献   

20.
The hippocampus is necessary for declarative (relational) memory, and the ability to form hippocampal‐dependent memories develops through late adolescence. This developmental trajectory of hippocampal‐dependent memory could reflect maturation of intrinsic functional brain networks, but resting‐state functional connectivity (rs‐FC) of the human hippocampus is not well‐characterized for periadolescent children. Measuring hippocampal rs‐FC in periadolescence would thus fill a gap, and testing covariance of hippocampal rs‐FC with age and memory could inform theories of cognitive development. Here, we studied hippocampal rs‐FC in a cross‐sectional sample of healthy children (N = 96; 59 F; age 9–15 years) using a seed‐based approach, and linked these data with NIH Toolbox measures, the Picture‐Sequence Memory Test (PSMT) and the List Sorting Working Memory Test (LSWMT). The PSMT was expected to rely more on hippocampal‐dependent memory than the LSWMT. We observed hippocampal rs‐FC with an extensive brain network including temporal, parietal, and frontal regions. This pattern was consistent with prior work measuring hippocampal rs‐FC in younger and older samples. We also observed novel, regionally specific variation in hippocampal rs‐FC with age and hippocampal‐dependent memory but not working memory. Evidence consistent with these findings was observed in a second, validation dataset of similar‐age healthy children drawn from the Philadelphia Neurodevelopment Cohort. Further, a cross‐dataset analysis suggested generalizable properties of hippocampal rs‐FC and covariance with age and memory. Our findings connect prior work by describing hippocampal rs‐FC and covariance with age and memory in typically developing periadolescent children, and our observations suggest a developmental trajectory for brain networks that support hippocampal‐dependent memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号