首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dunnigan-type familial partial lipodystrophy (FPLD) is a rare monogenic adipose tissue disorder in which the affected subjects have increased predisposition to insulin resistance and related metabolic complications, such as glucose intolerance, diabetes, dyslipidemia, and hepatic steatosis. Our patient was a 35-year-old female who had been receiving insulin injection therapy for diabetes mellitus and was transferred to our hospital. She was diagnosed with FPLD on the basis of the following symptoms: increase in subcutaneous fat in the face, neck, and upper trunk; loss of subcutaneous fat in the lower limbs and the gluteal region. We found a heterozygous CGG to CAG transition in codon 482 of exon 8 in the gene encoding lamin A/C (LMNA), which leads to an arginine to glutamine substitution (R482Q). At the time of admission, her serum creatinine level was 8.4 mg/dl, and her blood urea nitrogen (BUN) level was 81 mg/dl. Her serum creatinine level was elevated and hemodialysis was performed twice every week. However, she died of cerebral hemorrhage 9 months after hemodialysis. Although it is uncommon for patients with FPLD to exhibit renal dysfunction and require hemodialysis, this case suggests the need for careful analysis of renal function in a patient with FPLD.  相似文献   

2.
3.
Dunnigan-type familial partial lipodystrophy (FPLD) is caused by mutations in LMNA, the gene that encodes nuclear lamins A and C. FPLD is characterized by peripheral fat loss, excess central adiposity, insulin resistance, and hyperlipidaemia, which are difficult to treat. We present our 2 years' experience of treatment with rosiglitazone in a subject with FPLD. Insulin requirement decreased significantly from 240 IU/day to 76 IU/day (range 20-240 IU/day) and serum triglyceride concentration was lowered from 13.7 +/- 14.4 mmol/l to 4.5 +/- 4.3 mmol/l and remained stable. Mean HbA(1c) prior to rosiglitazone therapy was 9.4 +/- 1.32% and decreased to 7.4 +/- 0.6% during therapy with rosiglitazone. This case demonstrates the benefits of PPARgamma-agonists on glycaemic control and dyslipidaemia in a patient with FPLD. This in turn implies that PPARgamma may play a pathophysiological role in FPLD.  相似文献   

4.
Treatment with rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR) gamma agonist, results in lipid storage coupled with reduced release of free fatty acids into the circulation. Many studies have reported that PPAR-gamma agonists increase subcutaneous adiposity but have no effect on visceral fat mass. Perilipin, a family of phosphoproteins that coat intracellular lipid droplets in adipocytes, is essential for enlargement of lipid droplets. Recently, a functional PPAR-responsive element was identified within the murine perilipin gene. We hypothesized that the depot-specific regulation of perilipin by rosiglitazone may be associated with the fat-redistribution and insulin-sensitizing effects of rosiglitazone. After 6 weeks of rosiglitazone treatment in Otusuka Long-Evans Tokushima Fatty rats, an animal model of type 2 diabetes mellitus, we measured changes in adiposity, triglyceride content in liver and muscle, morphology of the pancreas, and perilipin messenger RNA and protein expression in adipose tissue. Rosiglitazone increased subcutaneous adiposity, decreased triglyceride content of liver and muscle, decreased plasma free fatty acids (2107 +/- 507 micromol/L in the placebo group vs 824 +/- 148 micromol/L in the rosiglitazone group; P < .05), and improved insulin resistance. The islets of placebo-treated rats showed hypertrophy and destruction, whereas the islets of rosiglitazone-treated rats showed hypertrophy, but the islet architecture remained intact. Perilipin messenger RNA and protein expression increased in subcutaneous fat, but did not change in visceral fat, after rosiglitazone treatment. In 3T3-L1 cells, rosiglitazone pretreatment decreased lipolysis and increased perilipin protein. In conclusion, increased perilipin expression in subcutaneous fat after rosiglitazone treatment is likely to be a mediator of reduced lipolysis, resulting in lipid storage in subcutaneous fat, fat redistribution, and insulin sensitization.  相似文献   

5.
The common syndrome of insulin resistance is frequently seen in obese individuals, and is characterized by glucose intolerance, dyslipidemia, high blood pressure, and an increased risk of coronary heart disease. A rare genetic form of insulin resistance is Dunnigan-type familial partial lipodystrophy (FPLD; OMIM #151660), which is characterized by loss of subcutaneous fat from extremities, trunk, and gluteal region, and always by insulin resistance and hyperinsulinemia, often with hypertension, dyslipidemia, type-2 diabetes and early endpoints of atherosclerosis. FPLD was recently discovered to result from mutated LMNA (R482Q; OMIM #150330.0010), which is the gene encoding nuclear lamins A and C. Results from extended pedigrees indicate that dyslipidemia precedes the plasma glucose abnormalities in FPLD subjects with mutant LMNA, and that the hyperinsulinemia is present early in the course of the disease. Plasma leptin is also markedly reduced in subjects with FPLD due to mutant LMNA. Thus, rare mutations in a nuclear structural protein can be associated with markedly abnormal qualitative and quantitative phenotypes, indicating that a defect in the structure and function of the nuclear envelope can result in a phenotype that shares many aspects with the common syndrome of insulin resistance.  相似文献   

6.
Lipodystrophies   总被引:4,自引:0,他引:4  
The lipodystrophies are rare disorders characterized by selective but variable loss of adipose tissue. Metabolic complications, such as insulin resistance, diabetes mellitus, hypertriglyceridemia, and fatty liver, increase in severity with the extent of fat loss. The lipodystrophies can be classified into two major types: familial and acquired. The main subtypes of familial lipodystrophies are congenital generalized lipodystrophy, an autosomal recessive disorder characterized by near complete lack of metabolically active adipose tissue from birth, and familial partial lipodystrophy, Dunnigan type, an autosomal dominant disorder characterized by loss of subcutaneous fat from the extremities at puberty and excess fat accumulation in the face and neck. Recently, a gene for congenital generalized lipodystrophy was localized to chromosome 9q34, and a gene for familial partial lipodystrophy, Dunnigan type, to chromosome 1q21-22; the genes, however, remain to be identified. Patients with acquired generalized lipodystrophy have generalized loss of subcutaneous fat, but those with acquired partial lipodystrophy have fat loss limited to the face, trunk, and upper extremities. Both varieties occur approximately three times more often in women, begin during childhood, and have underlying autoimmunity. Patients infected with the human immunodeficiency virus (HIV) who are receiving therapy that includes HIV-1 protease inhibitors have been reported to develop a lipodystrophy characterized by loss of subcutaneous fat from the extremities and face but excess fat deposition in the neck and trunk. Localized lipodystrophies can be caused by drugs, pressure, panniculitis, or unknown mechanisms. Current management of patients includes cosmetic surgery, diet, and drug therapy for control of diabetes and dyslipidemia.  相似文献   

7.
BACKGROUND: The importance of adipose tissue in metabolism, as a target for insulin action and a secretor of metabolic regulatory proteins, is increasingly recognized. Lipodystrophic conditions are often associated with significant insulin resistance. The commonest acquired form occurs with highly active antiretroviral therapy (HAART) for human immunodeficiency virus infection. Other medical conditions and drugs also have the potential to cause chronic subcutaneous fat damage. CASE REPORT: We describe an unfamiliar partial lipodystrophy in a young woman, associated with markedly insulin-resistant diabetes, acquired following allogeneic bone marrow transplantation for childhood leukaemia complicated by late sclerodermatous chronic graft vs. host disease (GVHD). Clinical examination revealed scarring and lipodystrophy affecting mainly legs, thighs, buttocks and forearms but sparing her face, neck and thorax. Her serum adiponectin level was markedly reduced. CONCLUSIONS: However, although thiazolidinediones lower insulin resistance and increase subcutaneous peripheral fat in Type 2 diabetes, pioglitazone treatment had little effect on either serum adiponectin, glycaemic control or the lipoatrophy. In this case, effective glycaemic control was best achieved using a combination of metformin and highly concentrated soluble insulin injections.  相似文献   

8.
Generalized lipodystrophy is a rare disorder of adipose tissue, whose etiology remains unknown. Pathophysiology of this disorder is characterized by generalized loss of body fat associated with an infrequent form of diabetes mellitus (lipoatrophic diabetes). Main features of this form of diabetes mellitus are the severe insulin resistance and the absence of ketoacidosis. Lipodystrophy can be congenital or acquired. In the acquired form, metabolic disturbances usually begin in the first years of life and the response to conventional treatment is very poor. Some alterations in serum adipocytokines have been described in this disease. We report the case of a 74-year-old woman with acquired generalized lipodystrophy who presented with low-normal serum concentrations of leptin, low adiponectin and resistin levels, and high serum levels of TNF alpha. Patient was initially treated with fenofibrate, metformin and high doses of subcutaneous insulin achieving an adequate metabolic control. During this period, serum adipocytokines were periodically measured. We comment on the different etiopathogenic mechanisms and the therapeutic modalities of this rare syndrome.  相似文献   

9.
Familial partial lipodystrophy (FPLD), Dunnigan variety, is an autosomal dominant disorder caused due to missense mutations in the lamin A/C (LMNA) gene encoding nuclear lamina proteins. Patients with FPLD are predisposed to metabolic complications of insulin resistance such as diabetes. We sought to evaluate and compare body fat distribution with dual-emission X-ray absorptiometry in women with and without FPLD and identify densitometric, clinical and metabolic features.  相似文献   

10.
Highly active antiretroviral therapy (HAART) has dramatically reduced HIV-related mortality, but is associated with severe metabolic adverse events, such as lipodystrophy and insulin resistance, the mechanisms of which are unknown. Adiponectin is a adipocytokine that is decreased in insulin resistant conditions. In mice, adiponectin decreases liver and muscle fat content and enhances insulin sensitivity. We determined serum adiponenctin and adiponectin mRNA concentrations in subcutaneous adipose tissue in HIV-positive HAART-treated patients with (HAART+LD+, n = 30) and without lipodystrophy (HAART+LD-, n = 13). The HAART+ LD+ group had significantly less subcutaneous and more intra-abdominal fat than the HAART+LD- group. Liver fat content (spectroscopy), serum insulin, C-peptide and triglyceride concentrations were significantly higher, and HDL cholesterol concentration lower in the HAART+LD+ than the HAART+LD- group. Serum adiponectin (3.4 +/- 0.4 vs 8.5 +/- 1.0 micro g/mL, p < 0.001) and adiponectin mRNA concentration in subcutaneous adipose tissue (7 +/- 1 x 10(-4) vs 24 +/- 6 x 10(-4), p < 0.001) were significantly lower in the HAART+LD+ than the HAART+LD- group. Both serum adiponectin and mRNA concentrations correlated closely with features of insulin resistance, including liver fat content. These data suggest that the decreased production of adiponectin in lipoatrophic adipose tissue may contribute to hepatic insulin resistance in these patients.  相似文献   

11.

Aims/hypothesis  

Familial partial lipodystrophy (FPLD) is a rare metabolic disorder with clinical features that may not be readily recognised. As FPLD patients require a specific therapeutic approach, early identification is warranted. In the present study we aimed to identify cases of FPLD among non-obese patients with type 2 diabetes mellitus and marked insulin resistance.  相似文献   

12.
Adiposity, particularly increased intra-abdominal fat, is a predisposing factor for the development of insulin resistance in obesity and type 2 diabetes. Visceral fat seems to differ from subcutaneous adipose tissue in adipocytokine production. This fat depot-related difference has been viewed as an important mechanism by which adipose tissue exerts its paracrine/autocrine effects on peripheral tissue in modulating insulin sensitivity. We have studied the relative expression of adiponectin in visceral versus subcutaneous fat in Zucker fatty versus lean rats. Visceral fat, as opposed to subcutaneous fat, exhibited relatively higher levels of adiponectin production in lean animals. However, in Zucker fatty rats, adiponectin expression in visceral fat was suppressed to basal levels, which correlated with significantly reduced plasma adiponectin concentrations and increased insulin resistance. These results suggest that an impaired depot-specific expression of adiponectin is a contributing factor for the development of insulin resistance in Zucker fatty rats.  相似文献   

13.
OBJECTIVES: Characterization of familial clusters of subjects with metabolic derangements predisposing to hepatic steatosis and nonalcoholic steatohepatitis could facilitate genomic studies to identify risk factors for their development. Dunnigan-type familial partial lipodystrophy (FPLD) is an autosomal dominantly inherited disorder caused by mutations in the LMNA gene. Affected subjects have loss of subcutaneous fat from the extremities and symptoms similar to those characterizing the metabolic syndrome, including insulin resistance and dyslipidemia. The goal of this study was to determine the prevalence of steatosis in subjects with FPLD. METHODS: We examined 18 subjects from six families with FPLD for mutations in LMNA and analyzed plasma lipid and serum glucose concentrations. Liver ultrasound and serum aminotransferase activities were used as indicators of steatosis or steatohepatitis. In two subjects, histological examination of hepatic tissue was performed. RESULTS: All subjects had FPLD-causing mutations in LMNA. Plasma lipids were measured in 17 subjects, 16 of whom had hyperlipidemia and 14 presented with either documented insulin resistance or diabetes mellitus. Hepatic steatosis was present in 15 subjects who had ultrasound examinations and 9 of these had elevated serum aminotransferase activities. Liver biopsy confirmed steatosis in 2 subjects. CONCLUSIONS: Hepatic steatosis is part of the clinical phenotype of FPLD. This familial disorder may provide a human metabolic model system to facilitate genomic and environmental studies to determine risk factors for hepatic steatosis and nonalcoholic steatohepatitis.  相似文献   

14.
Lipodystrophie     
Lipodystrophy syndromes are a heterogenous group of congenital and acquired disorders with generalized or partial absence of subcutaneous adipose tissue. They are associated with severe metabolic abnormalities such as insulin resistance, diabetes mellitus, and hypertriglyceridemia that may result in life-threatening acute pancreatitis, steatohepatitis, and cardiovascular disease. Conventional lipid-lowering and antihyperglycemic medications may be insufficient to control severe metabolic abnormalities. The adipose tissue-derived hormone leptin has been investigated as a novel therapeutic option for severe lipodystrophy and significantly improves metabolic abnormalities in these patients. In Germany, leptin treatment for lipodystrophic patients with severe metabolic abnormalities is offered free of charge by the University Medicine Leipzig within a compassionate use program.  相似文献   

15.
Miehle K  Stumvoll M  Fasshauer M 《Der Internist》2011,52(4):362, 364-6, 368-70 passim
Lipodystrophy syndromes are a heterogenous group of congenital and acquired disorders with generalized or partial absence of subcutaneous adipose tissue. They are associated with severe metabolic abnormalities such as insulin resistance, diabetes mellitus, and hypertriglyceridemia that may result in life-threatening acute pancreatitis, steatohepatitis, and cardiovascular disease. Conventional lipid-lowering and antihyperglycemic medications may be insufficient to control severe metabolic abnormalities. The adipose tissue-derived hormone leptin has been investigated as a novel therapeutic option for severe lipodystrophy and significantly improves metabolic abnormalities in these patients. In Germany, leptin treatment for lipodystrophic patients with severe metabolic abnormalities is offered free of charge by the University Medicine Leipzig within a compassionate use program.  相似文献   

16.
ABSTRACT: BACKGROUND: Familial partial lipodystrophies (FPLD) are clinically heterogeneous disorders characterized by selective loss of adipose tissue, insulin resistance and metabolic complications. Until genetic studies become available for clinical practice, clinical suspicion and pattern of fat loss are the only parameters leading clinicians to consider the diagnosis. The objective of this study was to compare body composition by dual energy X-ray absorptiometry (DXA) in patients with FPLD and control subjects, aiming to find objective variables for evaluation of FPLD. METHODS: Eighteen female patients with partial lipodystrophy phenotype and 16 healthy controls, matched for body mass index, sex and age were studied. All participants had body fat distribution evaluated by DXA measures. Fasting blood samples were obtained for evaluation of plasma leptin, lipid profile and inflammatory markers. Genetic studies were carried out on the 18 patients selected that were included for statistical analysis. Thirteen women confirmed diagnosis of Dunnigan-type FPLD (FPLD2). RESULTS: DXA revealed a marked decrease in truncal fat and 3 folds decrease in limbs fat percentage in FPLD2 patients (p <0.001). Comparative analysis showed that ratio between trunk and lower limbs fat mass, characterized as Fat Mass Ratio (FMR), had a greater value in FLPD2 group (1.86 +/- 0.43 vs controls 0.93 +/- 0.10; p <0.001) and a improved accuracy for evaluating FPLD2 with a cut-off point of 1.2. Furthermore, affected women showed hypoleptinemia (FLPD2 4.9 +/- 2.0 vs controls 18.2 +/- 6.8; p <0.001), insulin resistance and a more aggressive lipid profile. CONCLUSION: In this study, assessment of body fat distribution by DXA permitted an objective characterization of FLPD2. A consistent pattern with marked fat reduction of lower body was observed in affected patients. To our knowledge this is the first time that cut-off values of objective variables were proposed for evaluation of FPLD2.  相似文献   

17.
Treatment with thiazolidinediones (TZDs) improves glucose homeostasis by increasing insulin sensitivity, but it also leads to weight gain. Our hypothesis was that, in individual adipose depots, there is depot specificity for lipid storage and energy expenditure genes after TZD treatment. After 5 weeks of rosiglitazone treatment on Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of type 2 diabetes mellitus with obesity, and Long-Evans Tokushima Otsuka rats as controls, we measured changes in lipid storage and energy expenditure gene expression in various adipose depots, such as mesenteric and nonmesenteric adipose tissues (subcutaneous, epididymal, and retroperitoneal). Mesenteric fat masses did not change after TZD treatment in OLETF rats, but nonmesenteric fat masses increased. Messenger RNA expression of lipid storage genes increased in nonmesenteric fat, but energy expenditure gene expression increased in mesenteric fat after rosiglitazone treatment. In conclusion, our findings suggest that TZD treatment may be associated with the depot-specific effects of lipid storage and energy expenditure genes on fat redistribution in individual adipose tissues in OLETF rats.  相似文献   

18.
The Dunnigan-type familial partial lipodystrophy (FPLD) is characterized by a variable loss of fat from the extremities and trunk and excess subcutaneous fat in the chin and supraclavicular area. Associated metabolic abnormalities include hypoleptinemia, insulin resistance, and dyslipidemia. Our goal was to observe changes in metabolic parameters for patients with FPLD on long-term leptin replacement and to compare the metabolic characteristics seen in FPLD with those seen in generalized lipodystrophy (GL) from our previous studies. This was an open-label study of 6 patients with FPLD receiving maximal doses of oral antidiabetic and lipid-lowering medications at baseline. Recombinant leptin was given through twice-daily subcutaneous injections at a maximal dose of 0.08 mg/kg per day over 12 months to simulate normal to high normal physiologic levels. Triglycerides were reduced by 65% at 4 months (749+/-331 to 260+/-58 mg/dL) and significantly reduced at 12 months for 5 patients (433+/-125 to 247+/-69 mg/dL; P=.03). Total cholesterol also decreased (280+/-49 to 231+/-41 mg/dL; P=.01). Insulin sensitivity and fasting glucose levels (190+/-26 to 151+/-15 mg/dL; P<.01) improved. Glucose tolerance and glycosylated hemoglobin levels (8.4%+/-0.6% to 8.0%+/-0.4%; P=.07) did not change. As shown in patients with GL, patients with FPLD have improvement in triglycerides, fasting glucose, and insulin sensitivity with leptin replacement. In contrast to the patients with GL, the patients with FPLD are older, have higher leptin levels, and notably lower insulin secretion for a similar degree of hyperglycemia. Low-dose recombinant methionyl human leptin for patients with FPLD has an important role in improving triglycerides, beyond that of available lipid-lowering agents. In improving glycemic control, normalization of glucose tolerance in hypoinsulinemic patients with FPLD requires insulin and leptin therapy. This is the first study to examine the effects of long-term leptin replacement in patients with FPLD.  相似文献   

19.
Leptin, an adipocyte-secreted hormone, regulates energy homeostasis as well as reproductive, neuroendocrine, immune and metabolic functions. Subjects with decreased amounts of fat in their adipose tissue, i.e., lipoatrophy, have low leptin levels. In the context of open-label, uncontrolled studies leptin administration, in physiological replacement doses, has been shown to have metabolically salutary effects in the rare patients with the syndrome of congenital lipodystrophy accompanied by leptin deficiency. Much more patients with lipodystrophy suffer from lipodystrophy and the metabolic syndrome associated with the use of highly active antiretroviral therapy. In this so called highly active antiretroviral therapy (HAART)-associated lipodystrophy and metabolic syndrome, patients demonstrate fat maldistribution with dyslipidemia, insulin resistance, and other metabolic complications. Leptin administration has been shown to decrease central fat mass and to improve fasting insulin/glucose levels and insulin sensitivity in human immunodeficiency virus-infected hypoleptinemic patients with HAART induced lipodystrophy and the metabolic syndrome. By contrast, the results of leptin treatment in leptin replete or hyperleptinemic obese individuals with glucose intolerance and diabetes mellitus have been minimal or null, presumably due to leptin tolerance or resistance that impairs leptin action. In this review, we present the emerging clinical applications and potential therapeutic uses of leptin in humans with lipodystrophy and the metabolic syndrome.  相似文献   

20.
The metabolic syndrome refers to insulin resistance and its associated cluster of related cardiovascular metabolic risk factors including type 2 diabetes, hypertension, dyslipidemia and central obesity. Although many hypotheses and facts have been proposed to explain the interaction between genetic and environmental causes of this syndrome, the primary etiology of the metabolic syndrome is adipose tissue dysregulation. Firstly, the thrifty genotype and phenotype hypothesis may explain the endemic increase in type 2 diabetes and cardiovascular disease in developing countries and elucidates the congenital susceptibility and environmental triggering of the metabolic syndrome. Secondly, over-nutrition leads to fatty acid (FA) accumulation in adipocytes and to an overflow to ectopic fat storage organs. This causes functional changes in adipocytes shifting the intra-cellular metabolic pathway toward insulin resistance. Thirdly, obese subjects exhibit increased fat cell size and over-secretion of biologic adipocytokines. Fourthly, failure to adequately develop adipose tissue mass, as seen in lipodystrophy cases, causes severe insulin resistance and diabetes. Lastly, similar to human type 2 diabetes, Psammonys obesus, a desert rat which feeds mainly on low-calorie vegetation, develops the metabolic syndrome when given a diet of calorie rich food. The above evidence indicates adipocyte dysregulation and secretion of FA as well as certain molecules from overloaded adipocytes/adipokines contribute to the pathogenesis of impaired insulin secretion and insulin resistance, endothelial dysfunction, a pro-inflammatory state and promote progression of atherosclerosis. The metabolic syndrome is a modern disease resulting adipocyte dysmetabolism resulting from the paradox of the slow human evolution combined with rapid environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号