首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocannabinoids (eCBs) are endogenous lipids that bind principally type‐1 and type‐2 cannabinoid (CB1 and CB2) receptors. N‐Arachidonoylethanolamine (AEA, anandamide) and 2‐arachidonoylglycerol (2‐AG) are the best characterized eCBs that are released from membrane phospholipid precursors through multiple biosynthetic pathways. Together with their receptors and metabolic enzymes, eCBs form the so‐called “eCB system”. The later has been involved in a wide variety of actions, including modulation of basal ganglia function. Consistently, both eCB levels and CB1 receptor expression are high in several basal ganglia regions, and more specifically in the striatum and in its target projection areas. In these regions, the eCB system establishes a close functional interaction with dopaminergic neurotransmission, supporting a relevant role for eCBs in the control of voluntary movements. Accordingly, compelling experimental and clinical evidence suggests that a profound rearrangement of the eCB system in the basal ganglia follows dopamine depletion, as it occurs in Parkinson's disease (PD). In this article, we provide a brief survey of the evidence that the eCB system changes in both animal models of, and patients suffering from, PD. A striking convergence of findings is observed between both rodent and primate models and PD patients, indicating that the eCB system undergoes dynamic, adaptive changes, aimed at restoring an apparent homeostasis within the basal ganglia network. © 2010 Movement Disorder Society  相似文献   

2.
Cannabinoids regulate numerous physiological and pathological events like inflammation or neurodegeneration via CB1 and CB2 receptors. The mechanisms behind cannabinoid effects show a high variability and may also involve transient receptor potential channels (TRP) and N‐type voltage‐gated Ca2+ channels (Cav2.2). In the present study we investigated the neuroprotective effects of the synthetic cannabinoid WIN 55,212–2 (WIN) on dentate gyrus (DG) granule cells and elucidated the involvement of TRP and Cav2.2 that are shown to participate in inflammatory processes. Organotypic hippocampal slice cultures were excitotoxically lesioned using NMDA and subsequently incubated with different WIN concentrations (0.001–10 μM). WIN showed neuroprotective properties in an inverse concentration‐dependent manner, most effectively at 0.01 μM. The CB1 receptor antagonist AM251 blocked neuroprotection mediated by WIN whereas the CB2 receptor antagonist AM630 showed no effects. Application of the TRPA1 blocker HC‐030031 enhanced the neuroprotective efficacy of high (10 μM) WIN concentrations and the number of degenerating neurons became equal to that seen after application of the most effective WIN dose (0.01 μM). In contrast, the application of TRPA1 agonist icilin or allyl isothiocyanate (AITC) led to a stronger neurodegeneration. The use of TRPV1 blocker 6‐iodo‐nordihydrocapsaicin did not affect WIN‐mediated neuroprotection. The selective Cav2.2 blocker ω‐conotoxin (GVIA) completely blocked neuroprotection shown by 10 μM WIN. GVIA and HC‐030031 exerted no effects at WIN concentrations lower than 10 μM. Our data show that WIN protects dentate gyrus granule cells in a concentration dependent manner by acting upon CB1 receptors. At high (10 μM) concentrations WIN additionally activates TRPA1 and Cav2.2 within the hippocampal formation that both interfere with CB1 receptor‐mediated neuroprotection. This leads to the conclusion that physiological and pharmacological effects of cannabinoids strongly depend on their concentration and the neuroprotective efficacy of cannabinoids may be determined by interaction of activated CB1 receptor, TRPA1, and Cav2.2. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The precise timing of pre‐postsynaptic activity is vital for the induction of long‐term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP‐iLTD. The STDP‐iLTD requires a postsynaptic Ca2+ increase, a release of endocannabinoids (eCBs), the activation of type‐1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP‐iLTD is independent of the activation of nicotinic receptors, GABABRs and G protein‐coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP‐iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Searching for chemical agents and molecular targets protecting against secondary neuronal damage reflects one major issue in neuroscience. Cannabinoids limit neurodegeneration by activation of neuronal G protein‐coupled cannabinoid receptor 1 (CB1) and microglial G protein‐coupled cannabinoid receptor 2 (CB2). However, pharmacological experiments with CB1/CB2‐deficient mice unraveled the existence of further, so‐called non‐CB1/non‐CB2 G protein‐coupled receptor (GPR) subtypes. GPR55, whose function in the brain is still poorly understood, represents a novel target for various cannabinoids. Here, we investigated whether GPR55 reflects a potential beneficial target in neurodegeneration by using the excitotoxicity in vitro model of rat organotypic hippocampal slice cultures (OHSC). l ‐α‐Lysophosphatidylinositol (LPI), so far representing the most selective agonist for GPR55, protected dentate gyrus granule cells and reduced the number of activated microglia after NMDA (50 µM) induced lesions. The relevance of GPR55 activation for LPI‐mediated neuroprotection was determined by using Gpr55 siRNA. Microglia seems to mediate the observed neuroprotection since their depletion in OHSC attenuated the beneficial effects of LPI. Moreover, LPI alone induced microglia chemotaxis but conversely significantly attenuated ATP triggered microglia migration. These effects seemed to be independent from intracellular Ca2+ and p38 or p44/p42 MAPK phosphorylation. In conclusion, this study unmasked a yet unknown role for GPR55 in neuroprotection driven by LPI‐mediated modulation of microglia function. GLIA 2013;61:1822–1831  相似文献   

5.
The susceptibility, but not the magnitude, of long‐term depression (LTD) induced by hippocampal CA3‐CA1 synaptic activity (synaptic‐LTD) increases with advanced age. In contrast, the magnitude of LTD induced by pharmacological activation of CA3‐CA1 group I metabotropic glutamate receptors (mGluRs) increases during aging. This study examined the signaling pathways involved in induction of LTD and the interaction between paired‐pulse low frequency stimulation‐induced synaptic‐LTD and group I mGluR selective agonist, (RS)‐3,5‐dihydroxyphenylglycine (DHPG, 100 µM)‐induced DHPG‐LTD in hippocampal slices obtained from aged (22–24 months) male Fischer 344 rats. Prior induction of synaptic‐LTD did not affect induction of DHPG‐LTD; however, prior induction of the DHPG‐LTD occluded synaptic‐LTD suggesting that expression of DHPG‐LTD may incorporate synaptic‐LTD mechanisms. Application of individual antagonist for the group I mGluR (AIDA), the N‐methyl‐d ‐aspartate receptor (NMDAR) (AP‐5), or L‐type voltage‐dependent Ca2+ channel (VDCC) (nifedipine) failed to block synaptic‐LTD and any two antagonists severely impaired synaptic‐LTD induction, indicating that activation of any two mechanisms is sufficient to induce synaptic‐LTD in aged animals. For DHPG‐LTD, AIDA blocked DHPG‐LTD and individually applied NMDAR or VDCC attenuated but did not block DHPG‐LTD, indicating that the magnitude of DHPG‐LTD depends on all three mechanisms. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Temporal lobe epilepsy is usually associated with cognitive decline and memory deficits. Despite numerous existing studies on various animal models, the mechanisms of these deficits remain largely unclear. A specific form of long‐term synaptic efficacy changes—long‐term depression (LTD)—is thought to play an important role in memory formation and learning. However, extremely little is known about the possible alteration of LTD induction and dynamics after a status epilepticus (SE). In this work, we investigated the acute and delayed effects of lithium‐pilocarpine‐induced SE on NMDAR‐dependent and NMDAR‐independent hippocampal LTD in vitro. We found that SE affected the NMDAR‐dependent and NMDAR‐independent forms of LTD in different manners. The NMDAR‐dependent form of LTD was almost intact 3 days after SE, but it switched from a predominantly presynaptic to a more postsynaptic locus of expression. In contrast, the NMDAR‐independent LTD in the hippocampal Schaffer collaterals‐CA1 synapses was fully abolished 3 days after SE. Our results emphasize the role of non‐NMDA‐dependent synaptic plasticity changes in the processes of epileptogenesis and the potential for therapy development.  相似文献   

7.
TRPV (transient receptor potential, vanilloid) channels are a family of nonselective cation channels that are activated by a wide variety of chemical and physical stimuli. TRPV1 channels are highly expressed in sensory neurons in the peripheral nervous system. However, a number of studies have also reported TRPV channels in the brain, though their functions are less well understood. In the hippocampus, the TRPV1 channel is a novel mediator of long‐term depression (LTD) at excitatory synapses on interneurons. Here we tested the role of other TRPV channels in hippocampal synaptic plasticity, using hippocampal slices from Trpv1, Trpv3 and Trpv4 knockout (KO) mice. LTD at excitatory synapses on s. radiatum hippocampal interneurons was attenuated in slices from Trpv3 KO mice (as well as in Trpv1 KO mice as previously reported), but not in slices from Trpv4 KO mice. A previous study found that in hippocampal area CA1, slices from Trpv1 KO mice have reduced tetanus‐induced long‐term potentiation (LTP) following high‐frequency stimulation; here we confirmed this and found a similar reduction in Trpv3 KO mice. We hypothesized that the loss of LTD at the excitatory synapses on local inhibitory interneurons caused the attenuated LTP in the mutants. Consistent with this idea, blocking GABAergic inhibition rescued LTP in slices from Trpv1 KO and Trpv3 KO mice. Our findings suggest a novel role for TRPV3 channels in synaptic plasticity and provide a possible mechanism by which TRPV1 and TRPV3 channels modulate hippocampal output. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Cannabinoid receptors and their ligands constitute an endogenous signaling system that is found throughout the body, including the eye. This system can be activated by Δ9‐tetrahydrocannabinol, a major drug of abuse. Cannabinoids offer considerable therapeutic potential in modulating ocular immune and inflammatory responses and in regulating intraocular pressure. The location of cannabinoid receptor 1 (CB1) in the retina is known, but recently a constellation of proteins has been identified that produce and break down endocannabinoids (eCBs) and modulate CB1 function. Localization of these proteins is critical to defining specific cannabinoid signaling circuitry in the retina. Here we show the localization of diacylglycerol lipase‐α and ‐β (DGLα/β), implicated in the production of the eCB 2‐arachidonoyl glycerol (2‐AG); monoacylglycerol lipase (MGL) and α/β‐hydrolase domain 6 (ABHD6), both implicated in the breakdown of 2‐AG; cannabinoid receptor‐interacting protein 1a (CRIP1a), a protein that may modulate CB1 function; and fatty acid amide hydrolase (FAAH) and N‐acylethanolamine‐hydrolyzing acid amidase (NAAA), which have been shown to break down the eCB anandamide and related acyl amides. Our most prominent finding was that DGLα is present in postsynaptic type 1 OFF cone bipolar cells juxtaposed to CB1‐containing cone photoreceptor terminals. CRIP1a is reliably presynaptic to DGLα, consistent with a possible role in cannabinoid signaling, and NAAA is restricted to retinal pigment epithelium, whereas DGLβ is limited to retinal blood vessels. These results taken together with previous anatomical and functional studies define specific cannabinoid circuitry likely to modulate eCB signaling at the first synapse of the retina as well as in the inner plexiform layer. J. Comp. Neurol. 518:3848–3866, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Neural stem cells express cannabinoid CB1 and CB2 receptors and the enzymes for the biosynthesis and metabolism of endocannabinoids (eCBs). Here we have studied the role of neural stem cell‐derived eCBs as autonomous regulatory factors during differentiation. First, we examined the effect of an indirect eCB precursor linoleic acid (LA), a major dietary omega‐6 fatty acid, on the eCB system in neural stem/progenitor cells (NSPCs) cultured in DMEM/F12 supplemented with N2 (N2/DF) as monolayer cells. LA upregulated eCB system‐related genes and 2‐arachidonoylglycerol (2‐AG), but not anandamide (AEA), levels. Glial fibrillary acidic protein (GFAP) was significantly higher under LA‐enriched conditions, and this effect was inhibited by the cannabinoid receptor type‐1 (CB1) antagonist AM251. Second, the levels of AEA and 2‐AG, as well as of the mRNA of eCB system‐related genes, were measured in NSPCs after γ‐aminobutyric acid (GABA) treatment. GABA upregulated AEA levels significantly in LA‐enriched cultures and increased the mRNA expression of the 2‐AG‐degrading enzyme monoacylglycerol lipase. These effects of GABA were reproduced under culture conditions using neurobasal media supplemented with B27, which is commonly used for neurosphere culture. GABA stimulated astroglial differentiation in this medium as indicated by increased GFAP levels. This effect was abolished by AM251, suggesting the involvement of AEA and CB1 in GABA‐induced astrogliogenesis. This study highlights the importance of eCB biosynthesis and CB1 signalling in the autonomous regulation of NSPCs and the influence of the eCB system on astrogliogenesis induced by nutritional factors or neurotransmitters, such as LA and GABA. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Although an increasing number of studies have demonstrated the plasticity of NMDA receptor‐mediated synaptic transmission, little is known about the molecular mechanisms that underlie this neurologically important process. In a study of NMDAR‐mediated synaptic responses in hippocampal Schaffer‐CA1 synapses whose AMPA receptor (AMPAR) activity is totally blocked, we uncovered differences between the trafficking mechanisms that underlie the long‐term potentiation (LTP) and long‐term depression (LTD) that can be induced in these cells under these conditions. The LTP‐producing protocol failed to induce a change in the amplitude of NMDAR‐mediated postsynaptic currents (NMDAR EPSCs) in the first 5–10 min, but induced gradual enhancement of NMDAR EPSCs thereafter that soon reached a stable magnitude. This “slow” LTP of NMDAR EPSCs (LTPNMDA) was blocked by inhibiting exocytosis or actin polymerization in postsynaptic cells. By contrast, LTD of NMDAR EPSCs (LTDNMDA) was immediately inducible, and, although it was blocked by the actin stabilizer, it was unaffected by exocytosis or endocytosis inhibitors. Furthermore, concomitant changes in the decay time of NMDAR EPSCs suggested that differential switches in NR2 subunit composition accompanied LTPNMDA and LTDNMDA, and these changes were blocked by the calcium buffer BAPTA or an mGluR antagonist. Our results suggest that LTPNMDA and LTDNMDA utilize different NMDAR trafficking pathways and express different ratios of NMDAR subunits on the postsynaptic surface. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
In our previous studies, particular phenolic ingredients, such as 2‐methoxy‐4‐methylphenol (2M4MP), of the antidiarrheic drug wood creosote significantly prevented cell death by both hydrogen peroxide and glutamate in cultured rat hippocampal neurons. In this study, we further evaluated the pharmacological properties of 2M4MP on Ca2+ influx across native and acquired N‐methyl‐D‐aspartate (NMDA) receptor (NMDAR) channels. The addition of 2M4MP significantly prevented the loss of cellular viability and the increase in intracellular free Ca2+ levels as determined by Fluo‐3 in cultured rat hippocampal neurons briefly exposed to NMDA. Brief exposure to NMDA also led to a marked increase in mitochondrial free Ca2+ levels determined by Rhod‐2, in addition to intracellular free Ca2+ levels, in HEK293 cells expressing either NR1/NR2A or NR1/NR2B subunit channels. The further addition of the general NMDAR channel blocker dizocilpine similarly inhibited the increase of intracellular Ca2+ levels by NMDA in both types of acquired NMDAR channels, whereas the NR2B subunit selective antagonist ifenprodil drastically inhibited the increase by NMDA in HEK293 cells expressing NR1/NR2B, but not NR1/NR2A, subunits. Similarly, 2M4MP significantly and selectively inhibited the NMDA‐induced influx of Ca2+ across acquired NR1/NR2B channels in a concentration‐dependent manner. Moreover, prior daily oral administration of 2M4MP significantly reduced the infarct volume in the ipsilateral cerebral hemisphere in rats with middle cerebral artery occlusion 1 day after reperfusion. These results suggest that 2M4MP may protect neurons from excitotoxicity through preferential inhibition of Ca2+ influx across NMDAR channels composed of NR1/NR2B subunits. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Anti‐cannabinoid type 1 receptor (CB1) polyclonal antibodies are widely used to detect the presence of CB1 in a variety of brain cells and their organelles, including neuronal mitochondria. Surprisingly, we found that anti‐CB1 sera, in parallel with CB1, also recognize the mitochondrial protein stomatin‐like protein 2. In addition, we show that the previously reported effect of synthetic cannabinoid WIN 55,212‐2 on mitochondrial complex III respiration is not detectable in purified mitochondrial preparations. Thus, our study indicates that a direct relationship between endocannabinoid signaling and mitochondrial functions in the cerebral cortex seems unlikely, and that caution should be taken interpreting findings obtained using anti‐CB1 antibodies.  相似文献   

14.
Endocannabinoids (eCBs) are important endogenous lipid mediators in synaptic transmission and plasticity and are oxygenated by cyclooxygenase-2 (COX-2) to form new types of prostaglandins. However, little is known about whether COX-2 oxidative metabolism of eCBs and their metabolites alter synaptic signaling. Here we demonstrate that increased COX-2 expression significantly enhances basal synaptic transmission and augments long-term potentiation (LTP) in the mouse hippocampus. This augmentation was inhibited in the presence of a selective COX-2 inhibitor or with deletion of the COX-2 gene. The CB1 receptor-mediated depolarization-induced suppression of inhibition (DSI) was diminished when COX-2 expression was increased either with lipopolysaccharide (LPS) stimulation or transgenic neuronal over-expression of COX-2. Conversely, DSI was potentiated when COX-2 activity was pharmacologically or genetically inhibited. Interestingly, COX-2 oxidative metabolites of eCBs elevated LTP, an effect opposite to that of their parent molecules 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA). In addition, the ERK/MAPK and IP3 pathways were found to mediate PGE2-G-induced enhancement of LTP. Our results indicate that COX-2 oxidative metabolism of eCBs is an important signaling pathway in modulation of synaptic transmission and plasticity.  相似文献   

15.
SHANK3 is a postsynaptic structural protein localized at excitatory glutamatergic synapses in which deletions and mutations have been implicated in patients with autism spectrum disorders (ASD). The expression of Shank3 ASD mutations causes impairments in ionotropic glutamate receptor‐mediated synaptic responses in neurons, which is thought to underlie ASD‐related behaviors, thereby indicating glutamatergic synaptopathy as one of the major pathogenic mechanisms. However, little is known about the functional consequences of ASD‐associated mutations in Shank3 on another important set of glutamate receptors, group I metabotropic glutamate receptors (mGluRs). Here, we further assessed how Shank3 mutations identified in patients with ASD (one de novo InsG mutation and two inherited point mutations, R87C and R375C) disrupt group I mGluR (mGluR1 and mGluR5) expression and function. To identify potential isoform‐specific deficits induced by ASD‐associated Shank3 mutations on group I mGluRs, we surface immunolabeled mGluR1 and mGluR5 independently. We also induced mGluR‐dependent synaptic plasticity (R,S‐3,5‐dihydroxyphenylglycine [DHPG]‐induced long‐term depression [LTD]) as well as N‐methyl‐D‐aspartate receptor (NMDAR)‐dependent LTD. ASD‐associated mutations in Shank3 differentially interfered with the ability of cultured hippocampal neurons to express mGluR5 and mGluR1 at synapses. Intriguingly, all ASD Shank3 mutations impaired mGluR‐dependent LTD without altering NMDAR‐dependent LTD. Our data show that the specific perturbation in mGluR‐dependent synaptic plasticity occurs in neurons expressing ASD‐associated Shank3 mutations, which may underpin synaptic dysfunction and subsequent behavioral deficits in ASD.  相似文献   

16.
Cannabinoid administration suppresses pain by acting at spinal, supraspinal and peripheral levels. Intrinsic analgesic pathways also exploit endocannabinoids; however, the underlying neurobiological substrates of endocannabinoid‐mediated analgesia have remained largely unknown. Compelling evidence shows that, upon exposure to a painful environmental stressor, an endocannabinoid molecule called 2‐arachidonoylglycerol (2‐AG) is mobilized in the lumbar spinal cord in temporal correlation with stress‐induced antinociception. We therefore characterized the precise molecular architecture of 2‐AG signaling and its involvement in nociception in the rodent spinal cord. Nonradioactive in situ hybridization revealed that dorsal horn neurons widely expressed the mRNA of diacylglycerol lipase‐alpha (DGL‐α), the synthesizing enzyme of 2‐AG. Peroxidase‐based immunocytochemistry demonstrated high levels of DGL‐α protein and CB1 cannabinoid receptor, a receptor for 2‐AG, in the superficial dorsal horn, at the first site of modulation of the ascending pain pathway. High‐resolution electron microscopy uncovered postsynaptic localization of DGL‐α at nociceptive synapses formed by primary afferents, and revealed presynaptic positioning of CB1 on excitatory axon terminals. Furthermore, DGL‐α in postsynaptic elements receiving nociceptive input was colocalized with metabotropic glutamate receptor 5 (mGluR5), whose activation induces 2‐AG biosynthesis. Finally, intrathecal activation of mGluR5 at the lumbar level evoked endocannabinoid‐mediated stress‐induced analgesia through the DGL–2‐AG–CB1 pathway. Taken together, these findings suggest a key role for 2‐AG‐mediated retrograde suppression of nociceptive transmission at the spinal level. The striking positioning of the molecular players of 2‐AG synthesis and action at nociceptive excitatory synapses suggests that pharmacological manipulation of spinal 2‐AG levels may be an efficacious way to regulate pain sensation.  相似文献   

17.
Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)‐containing astrocytes (GFAP‐CB1‐KO mice) and also generated genetic rescue mice to re‐express CB1 receptors exclusively in astrocytes (GFAP‐CB1‐RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock‐out (CB1‐KO) mice and wild‐type (CB1‐WT) littermates were intra‐hippocampally injected with an adeno‐associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP‐CB1‐KO and ‐WT mice, respectively. Furthermore, double immunogold (for CB1) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1‐WT, GFAP‐CB1‐RS and GFAPhrGFP‐CB1‐WT mice. Only non‐specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.  相似文献   

18.
Background H2S actions in the gut involve neural activation. This study aimed to reveal the signaling mechanisms responsible for the pro‐secretory effect of H2S by using TRPV1 and unselective TRP blockers and inhibitors of other signaling cascades hitherto described to be targeted by H2S elsewhere. Methods Ussing chamber voltage clamp technique was used to study actions of the H2S donor NaHS on secretion in guinea‐pig and human colon. NaHS effects on guinea‐pig primary afferents were also evaluated. Key Results NaHS evoked secretion was significantly reduced in guinea‐pig and human tissue by the selective TRPV1 blockers capsazepine, AMG9801, SB705498, BCTC; LY294002 (Phosphatidylinositol‐3 kinase (PI3K) inhibitor), SKF96365 (store operated calcium channel blocker), 2‐APB (inositol triphosphate blocker), and atropine but not by HC030031 (TRPA1 blocker) or L‐ and T‐type calcium channel antagonists. Actions of TRPV1 antagonists suggested non‐competitive inhibition at multiple sites. In guinea‐pig colon, Gd3+and La3+ (unselective TRP blockers) had no effects while ruthenium red reduced NaHS effects; in human colon Gd3+attenuated NaHS response. NaHS response was inhibited by neurokinin‐1 and ‐3 receptor blockers in guinea‐pig and neurokinin‐1 and ‐2 receptor blockade in human tissue. There was cross‐desensitization between NaHS and capsaicin responses. NaHS induced capsazepine and LY294002 sensitive afferent discharge. Conclusions & Inferences H2S evokes mucosal secretion by targeting TRPV1 expressing afferent nerves which activate cholinergic secretomotor neurons via release of substance P acting in a species dependent manner on neurokinin‐1, ‐2 or ‐3 receptors. Besides TRPV1 signaling H2S may target intracellular calcium dependent pathways and PI3K.  相似文献   

19.
A long line of experimental evidence indicates that endogenous cannabinoid mechanisms play important roles in nociceptive information processing in various areas of the nervous system including the spinal cord. Although it is extensively documented that the cannabinoid‐1 receptor (CB1‐R) is strongly expressed in the superficial spinal dorsal horn, its cellular distribution is poorly defined, hampering our interpretation of the effect of cannabinoids on pain processing spinal neural circuits. Thus, we investigated the cellular distribution of CB1‐Rs in laminae I and II of the rodent spinal dorsal horn with immunocytochemical methods. Axonal varicosities revealed a strong immunoreactivity for CB1‐R, but no CB1‐R expression was observed on dendrites and perikarya of neurons. Investigating the co‐localization of CB1‐R with markers of peptidergic and non‐peptidergic primary afferents, and axon terminals of putative glutamatergic and GABAergic spinal neurons we found that nearly half of the peptidergic (immunoreactive for calcitonin gene‐related peptide) and more than 20% of the non‐peptidergic (binding isolectin B4) nociceptive primary afferents, more than one‐third and approximately 20% of the axon terminals of putative glutamatergic (immunoreactive for vesicular glutamate transporter 2) and GABAergic (immunoreactive for glutamic acid decarboxylase; GAD65 and/or GAD67) spinal interneurons, respectively, were positively stained for CB1‐R. In addition to axon terminals, almost half of the astrocytic (immunoreactive for glial fibrillary acidic protein) and nearly 80% of microglial (immunoreactive for CD11b) profiles were also immunolabeled for CB1‐R. The findings suggest that the activity‐dependent release of endogenous cannabinoids activates a complex signaling mechanism in pain processing spinal neural circuits into which both neurons and glial cells may contribute.  相似文献   

20.
A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号