首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies have shown significant effects of increased postural anxiety in healthy young individuals when standing quietly or performing voluntary postural tasks. However, little is known about the influence of anxiety on reactive postural control. The present study examined how increased postural anxiety influenced postural reactions to unexpected surface rotations in multiple directions. Ten healthy young adults (mean age: 25.5 yr, range: 22-27 yr) were required to recover from unexpected rotations of the support surface (7.5 degrees amplitude, 50 degrees/s velocity) delivered in six different directions while standing in a low postural threat (surface height: 60 cm above ground) or high postural threat (surface height: 160 cm above ground) condition. Electromyographic data from 12 different postural leg, hip, and trunk muscles was collected simultaneously. Full body kinematic data were also used to determine total body center of mass (COM) and segment displacements. Four distinct changes were observed with increased postural anxiety: increased amplitude in balance-correcting responses (120-220 ms) in all leg, trunk, and arm muscles; decreased onset latency of deltoid responses; reduced magnitude of COM displacement; and reduced angular displacement of leg, pelvis, and trunk. These observations suggest that changes in dynamic postural responses with increased anxiety are mediated by alterations in neuro-muscular control mechanisms and thus may contribute significantly to the pathophysiology of balance deficits associated with aging or neurological disease.  相似文献   

2.
This study evaluated the extent to which movement of the lower limbs and pelvis may compensate for the disturbance to posture that results from respiratory movement of the thorax and abdomen. Motion of the neck, pelvis, leg and centre of pressure (COP) were recorded with high resolution in conjunction with electromyographic activity (EMG) of flexor and extensor muscles of the trunk and hip. Respiration was measured from ribcage motion. Subjects breathed quietly, and with increased volume due to hypercapnoea (as a result of breathing with increased dead-space) and a voluntary increase in respiration. Additional recordings were made during apnoea. The relationship between respiration and other parameters was measured from the correlation between data in the frequency domain (i.e. coherence) and from time-locked averages triggered from respiration. In quiet standing, small angular displacements ( approximately 0.5 degrees ) of the trunk and leg were identified in raw data. Correspondingly, there were peaks in the power spectra of the angular movements and EMG. While body movement and EMG were coherent with respiration (>0.5), the coherence between respiration and COP displacement was low (<0.2). The amplitude of movement and coherence was increased when respiration was increased. The present data suggest that the postural disturbance that results from respiratory movement is matched, at least partly, and counteracted by small angular displacements of the lower trunk and lower limbs. Thus, stability in quiet stance is dependent on movement of multiple body segments and control of equilibrium cannot be reduced to control of a single joint.  相似文献   

3.
The aim of the study was to investigate the differences in anticipatory postural adjustments (APAs) between young and older adults and its effect on subsequent control of posture. Ten healthy older adults and thirteen healthy young adults were exposed to predictable external perturbations using the pendulum impact paradigm. Electromyographic activity of the trunk and leg muscles, the center of pressure (COP), and center of mass (COM) displacements in the anterior–posterior direction were recorded and analyzed during the anticipatory and compensatory postural adjustments (CPAs) phases of postural control. The effect of aging was seen as delayed anticipatory muscle activity and larger compensatory muscle responses in older adults as compared to young adults. Moreover, in spite of such larger reactive responses, older adults were still more unstable, exhibiting larger COP and COM peak displacements after the perturbation than young adults when exposed to similar postural disturbances. Nonetheless, while APAs are impaired in older adults, the ability to recruit muscles anticipatorily is largely preserved; however, due to their smaller magnitudes and delayed onsets, it is likely that their effectiveness in reducing the magnitude of CPAs is smaller. The outcome of the study lends support toward investigating the ways of improving anticipatory postural control in people with balance impairments due to aging or neurological disorders.  相似文献   

4.
A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior–posterior (AP) and medial–lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.  相似文献   

5.
We introduce a method for quantification of movement sway—spontaneous migrations of the center of pressure (COP) during its voluntary shifts. Subjects stood on a force platform or on a board with a narrow support surface ("unstable board") and performed voluntary cyclic shifts of the COP at different frequencies. Movement sway was typically higher than postural sway; sway in the mediolateral direction was particularly increased. Movement sway showed a drop with the frequency of voluntary COP shifts. During standing on the unstable board, postural sway increased while movement sway decreased. The effects of task parameters were stronger on the sway component in the direction of the voluntary COP shift than in the orthogonal direction. We interpret changes in movement sway with task parameters as partly resulting from modulation of the search function of sway during voluntary COP shifts. Electronic Publication  相似文献   

6.
The purpose of this study was to investigate postural muscle synergies (M-modes) and quantitative multi-mode coordination to ensure reproducible center of pressure (COP) in anterior–posterior trajectories associated with voluntary-induced perturbations in patients with mild cerebellar ataxia. We applied the framework of the uncontrolled manifold hypothesis for the patients with ataxia. Nine patients diagnosed with spinocerebellar degeneration (SCD) and nine healthy adults stood on a force plate performed the voluntary unloading task. Ground reaction forces and surface electromyogram signals of ten trunk and leg muscles were recorded. Total variance of the first three principal components in the SCD group was similar to the control group. The co-contraction M-modes, uniting muscle pairs with opposing actions at major leg joints, were observed more frequently in the SCD group than in the control group during anticipatory postural adjustments. The quantitative multi-mode coordinations to ensure stable COP trajectories prior to and after motor actions were smaller in the SCD group than in the control group. We conclude that individuals with mild cerebellar ataxia organize feedforward muscle modes and show more co-contraction modes and impaired coordination during feedback and feedforward postural control.  相似文献   

7.
Control of the head during locomotion has been suggested as a means of facilitating overall postural control of the body. The control of online steering is challenging, as it requires the central nervous system (CNS) to simultaneously control body reorientation in a new direction while modifying the ongoing step cycle. Stable body posture during steering is maintained via appropriately organized postural responses to error signals detected by the visual, vestibular, and/or proprioceptive systems. Modifications to the gait cycle include step-width regulation and movement of body center of mass (COM) in the direction of travel, and may be preceded by independent control of head orientation to see where one is going. The purpose of this investigation was to examine how the ability to successfully steer is influenced by unexpected head perturbations and how various body segments are coordinated and controlled to successfully steer along different pathways. Body kinematics were monitored as participants changed their direction of travel by varying amounts when visually cued one stride before the turn. Perturbations to the head were applied to either assist or oppose the change in direction one step prior to initiation of the turn. Analyses focused on the timing of the changes in head yaw, trunk yaw, and COM trajectories in the mediolateral plane. Results indicate that the order of control over the body segments was head and trunk reorientation in the direction of travel and finally movement of the COM in the intended direction. Thus gaze, inferred from head movement, preceded changes in COM trajectory. This suggests that looking where you are going is critical for steering. When steering is potentially compromised by unexpected head movements, the CNS delays committing movement of the COM until it has a chance to look at the new travel path.  相似文献   

8.
We investigated how the influence of natural exploratory gaze behaviour on postural control develops from childhood into adulthood. In a cross-sectional design, we compared four age groups: 6-, 9-, 12-year-olds and young adults. Two experimental trials were performed: quiet stance with a fixed gaze (fixed) and quiet stance with natural exploratory gaze behaviour (exploratory). The latter was elicited by having participants watch an animated short film on a large screen in front of them. 3D head rotations in space and centre of pressure (COP) excursions on the ground plane were measured. Across conditions, both head rotation and COP displacement decreased with increasing age. Head movement was greater in the exploratory condition in all age groups. In all children—but not in adults—COP displacement was markedly greater in the exploratory condition. Bivariate correlations across groups showed highly significant positive correlations between COP displacement in ML direction and head rotation in yaw, roll, and pitch in both conditions. The regularity of COP displacements did not show a clear developmental trend, which indicates that COP dynamics were qualitatively similar across age groups. Together, the results suggest that the contribution of head movement to eye-head saccades decreases with age and that head instability—in part resulting from such gaze-related head movements—is an important limiting factor in children’s postural control. The lack of head stabilisation might particularly affect children in everyday activities in which both postural control and visual exploration are required.  相似文献   

9.
This study investigated the contribution of ankle muscle proprioception to the control of dynamic stability and lower limb kinematics during adaptive locomotion, by using mechanical vibration to alter the muscle spindle output of individuals' stance limbs. It was hypothesised that muscle length information from the ankle of the stance limb provides information describing location as well as acceleration of the centre of mass (COM) with respect to the support foot during the swing phase of locomotion. Our prediction, based on this hypothesis was that ankle muscle vibration would cause changes to the position and acceleration of the COM and/or compensatory postural responses. Vibrators were attached to both the stance limb ankle plantarflexors (at the Achilles tendon) and the opposing dorsiflexor muscle group (over tibialis anterior). Participants were required to walk along a 9-m travel path and step over any obstacles placed in their way. There were three task conditions: (1) an obstacle (15 cm in height) was positioned at the midpoint of the walkway prior to the start of the trial, (2) the same obstacle was triggered to appear unexpectedly one step in front of the participant at the walkway midpoint and (3) the subjects' walking path remained clear. The participants' starting position was manipulated so that the first step over the obstacle (when present) was always performed with their right leg. For each obstacle condition participants experienced the following vibration conditions: no vibration, vibration of the left leg calf muscles or vibration of the anterior compartment muscles of the lower left leg. Vibration began one step before the obstacle at left leg heel contact and continued for 1 s. Vibrating the ankle muscles of the stance limb during the step over an obstacle resulted in significant changes to COM behaviour [measured as displacement, acceleration and position with respect to the centre of pressure (COP)] in both the medial/lateral (M/L) and anterior/posterior planes. There were also significant task-specific changes in stepping behaviour associated with COM control (measured as peak M/L acceleration, M/L foot displacement and COP position under the stance foot during the step over the obstacle). The results provide strong evidence that the primary endings of ankle muscle spindles play a significant role in the control of posture and balance during the swing phase of locomotion by providing information describing the movement of the body's COM with respect to the support foot. Our results also provide supporting evidence for the proposal that there are context-dependent changes in muscle spindle sensitivity during human locomotion.  相似文献   

10.
Anticipatory postural adjustments (APAs) play an important role in the performance of many activities requiring the maintenance of vertical posture. However, little is known about how children utilize APAs during self-induced postural perturbations. A group of children, aged 7–16 years, with typical motor development, performed various arm movements while standing on a force platform. APAs were measured by recording the electromyographic activity of six trunk and leg muscles on both sides of the body and displacement of center of pressure (COP). Anticipatory bursts of activity in the dorsal muscle groups of the trunk and legs and suppression in the ventral muscle groups as well as posterior COP displacement were found during the performance of bilateral shoulder flexion. Conversely, during bilateral shoulder extension, the COP displacement was anterior, and APAs were reversed showing bursts of activity in the ventral muscle groups and suppression in the dorsal muscles. During right and left reciprocal arm movements, COP displacement was minimal and APAs were generated in the dorsal muscle groups on the side of the forward moving arm and in the ventral muscle groups on the side of the arm moving into extension. However this pattern reversed for lower leg muscles, where APAs were generated in the ventral muscles on the side of forward moving arm and in the dorsal muscle on the side of the arm moving into extension. The results of this study indicate that children with typical motor development are able to generate APAs, produce task-specific sequencing of muscle activity and differentiate between perturbations in the sagittal and transverse planes. The results of this study indicate that by at least age 7, children who are typically developing demonstrate the ability to generate patterns of anticipatory muscle activation and suppression, along with center of pressure changes, similar to those reported in healthy adults.  相似文献   

11.
Research on unperturbed stance is largely based on a one-segment inverted pendulum model. Recently, an increasing number of studies report a contribution of other major joints to postural control. Therefore this study evaluates whether the conclusions originating from the research based on a one-segment model adequately capture postural sway during unperturbed stance. High-pass filtered kinematic data (cutoff frequency 1/30 Hz) obtained over 3 min of unperturbed stance were analyzed in different ways. Variance of joint angles was analyzed. Principal-component analysis (PCA) was performed on the variance of lower leg, upper leg, and head-arms-trunk (HAT) angles, as well as on lower leg and COM angle (the orientation of the line from ankle joint to center of mass). It was found that the variance in knee and hip joint angles did not differ from the variance found in the ankle angle. The first PCA component indicated that, generally, the upper leg and HAT segments move in the same direction as the lower leg with a somewhat larger amplitude. The first PCA component relating ankle angle variance and COM angle variance indicated that the ankle joint angle displacement gives a good estimate of the COM angle displacement. The second PCA component on the segment angles partly explains the apparent discrepancy between these findings because this component points to a countermovement of the HAT relative to the ankle joint angle. It is concluded that postural control during unperturbed stance should be analyzed in terms of a multiple inverted pendulum model.  相似文献   

12.
Knee rigidity due to aging or disease is associated with falls. A causal relationship between instability and knee rigidity has not been established. Here, we examined whether insufficient knee movement due to knee rigidity could underlie poor balance control in patients. We addressed this by examining the effect of artificially “locking” the knees on balance control in 18 healthy subjects, tested with and without individually fitted knee casts on both legs. Subjects were exposed to sudden rotations of a support surface in six different directions. The primary outcome measure was body centre of mass (COM) movement, and secondary outcome measures included biomechanical responses of the legs, pelvis and trunk. Knee casts caused increased backward COM movement for backward perturbations and decreased vertical COM movement for forward perturbations, and caused little change in lateral COM movement. At the ankles, dorsiflexion was reduced for backward perturbations. With knee casts, there was less uphill hip flexion and more downhill hip flexion. A major difference with knee casts was a reversed pelvis pitch movement and an increased forward trunk motion. These alterations in pitch movement strategies and COM displacements were similar to those we have observed previously in patients with knee rigidity, specifically those with spinocerebellar ataxia (SCA). Pelvis roll and uphill arm abduction were also increased with the casts. This roll movement strategy and minor changes in lateral COM movement were not similar to observations in patients. We conclude that artificial knee rigidity increases instability, as reflected by greater posterior COM displacement following support surface tilts. Healthy controls with knee casts used a pitch movement strategy similar to that of SCA patients to offset their lack of knee movement in regaining balance following multidirectional perturbations. This similarity suggests that reduced knee movements due to knee rigidity may contribute to sagittal plane postural instability in SCA patients and possibly in other patient groups. However in the roll plane, healthy controls rapidly compensate by adjusting arm movements and hip flexion to offset the effects of knee rigidity.  相似文献   

13.
The relative contribution of vestibular and somatosensory information to triggering postural responses to external body displacements may depend on the task and on the availability of sensory information in each system. To separate the contribution of vestibular and neck mechanisms to the stabilization of upright stance from that of lower body somatosensory mechanisms, responses to displacements of the head alone were compared with responses to displacements of the head and body, in both healthy subjects and in patients with profound bilateral vestibular loss. Head displacements were induced by translating two 1-kg weights suspended on either side of the head at the level of the mastoid bone, and body displacements were induced translating the support surface. Head displacements resulted in maximum forward and backward head accelerations similar to those resulting from body displacements, but were not accompanied by significant center of body mass, ankle, knee, or hip motions. We tested the effect of disrupting somatosensory information from the legs on postural responses to head or body displacements by sway-referencing the support surface. The subjects' eyes were closed during all testing to eliminate the effects of vision. Results showed that head displacements alone can trigger medium latency (48–84 ms) responses in the same leg and trunk muscles as body displacements. Nevertheless, it is unlikely that vestibular signals alone normally trigger directionally specific postural responses to support surface translations in standing humans because: (1) initial head accelerations resulting from body and head displacements were in opposite directions, but were associated with activation of the same leg and trunk postural muscles; (2) muscle responses to displacements of the head alone were only one third of the amplitude of responses to body displacements with equivalent maximum head accelerations; and (3) patients with profound bilateral vestibular loss showed patterns and latencies of leg and trunk muscle responses to body displacements similar to those of healthy subjects. Altering somatosensory information, by sway-referencing the support surface, increased the amplitude of ankle muscle activation to head displacements and reduced the amplitude of ankle muscle activation to body displacements, suggesting context-specific reweighting of vestibular and somatosensory inputs for posture. In contrast to responses to body displacements, responses to direct head displacements appear to depend upon a vestibulospinal trigger, since trunk and leg muscle responses to head displacements were absent in patients who had lost vestibular function as adults. Patients who lost vestibular function as infants, however, had near normal trunk and leg response to head displacements, suggesting a substitution of upper trunk and neck somatosensory inputs for missing vestibular inputs during development.  相似文献   

14.

Background

Patellofemoral pain syndrome (PFPS) is a common orthopedic problem with a high prevalence among young women. Patients with PFPS have altered trunk muscle activity, impaired postural control and greater displacement of the center of pressure (COP) while standing. Training in unstable sitting, by putting more emphasis on trunk sensory receptors, may improve trunk proprioception by minimizing the role of the lower extremities. The aim of this study was to compare trunk postural control in healthy persons and in patients with PFPS.

Methods

Twenty-one women diagnosed with PFPS and 21 healthy women volunteered to participate in this cross-sectional study. The participants were asked to maintain trunk postural balance on an unstable sitting device, and COP indices of trunk postural control were compared between groups.

Results

All COP indices (e.g., mean anterior–posterior and lateral COP displacement, mean COP velocity and mean area of COP displacement) were significantly increased in participants with PFPS in comparison to healthy controls (P?<?0.001). The effect sizes of all the indices were greater than 0.80.

Conclusions

Trunk postural control is impaired in patients with PFPS, and this finding has clinical implications for rehabilitation in patients with PFPS. Adding seated postural control training to conventional physical therapy management in patients with PFPS may have beneficial effects by emphasizing trunk proprioception while minimizing the role of the lower extremities.  相似文献   

15.
This experiment was setup to investigate the deterministic and stochastic properties of the recurrent dynamics of the center of pressure trajectories of each leg (COPleft and COPright) and whole-body (COPnet) as a function of different foot positions in postural stance (side-by-side, staggered, and tandem standing) and the availability of visual information. The foot position of postural stance can induce degrees of asymmetry of postural instabilities as well as load on each leg that it was hypothesized would influence the deterministic and stochastic properties of COP fluctuations of each leg and of COPnet. Young adults performed two 60?s trials of quiet standing at each posture–vision condition. The availability of visual information increased COP path length, but had no effect on the recurrent dynamics of COP trajectories. Recurrence quantification analysis showed that recurrence, determinism, and entropy were dependent on the direction (AP/ML) of COP motion and foot position during postural stances. The degree of asymmetry between the left and right leg COP dynamics differed across all postural stances and COPnet dynamics were more similar to those of the more loaded leg. The cross-recurrence quantification analysis also revealed asymmetries in the coordination coupling of AP/ML under each leg; although, these differences were markedly reduced in tandem postures. The findings support the postulation that the asymmetry generated through mechanical constraints (foot position and load) is related to asymmetrical recurrent dynamics of the individual leg and COPnet based on the degree of postural instability.  相似文献   

16.
Lightweight corsets were used to produce mid-body stiffening, rendering the hip and trunk joints practically inflexible. To examine the effect of this artificially increased stiffness on balance control, we perturbed the upright stance of young subjects (20–34 years of age) while they wore one of two types of corset or no corset at all. One type, the half-corset, only increased hip stiffness, and the other, the full-corset, increased stiffness of the hips and trunk. The perturbations consisted of combined roll and pitch rotations of the support surface (7.5 deg, 60 deg/s) in one of six different directions. Outcome measures were biomechanical responses of the legs, trunk, arms and head, and electromyographic (EMG) responses from leg, trunk, and upper arm muscles. With the full-corset, a decrease in forward stabilising trunk pitch rotation compared to the no-corset condition occurred for backward pitch tilts of the support surface. In contrast, the half-corset condition yielded increased forward trunk motion. Trunk backward pitch motion after forwards support-surface perturbations was the same for all corset conditions. Ankle torques and lower leg angle changes in the pitch direction were decreased for both corset conditions for forward pitch tilts of the support-surface but unaltered for backward tilts. Changes in trunk roll motion with increased stiffness were profound. After onset of a roll support-surface perturbation, the trunk rolled in the opposite direction to the support-surface tilt for the no-corset and half-corset conditions, but in the same direction as the tilt for the full-corset condition. Initial head roll angular accelerations (at 100 ms) were larger for the full-corset condition but in the same direction (opposite platform tilt) for all conditions. Arm roll movements were initially in the same direction as trunk movements, and were followed by large compensatory arm movements only for the full-corset condition. Leg muscle (soleus, peroneus longus, but not tibialis anterior) balance-correcting responses were reduced for roll and pitch tilts under both corset conditions. Responses in paraspinals were also reduced. These results indicate that young healthy normals cannot rapidly modify movement strategies sufficiently to account for changes in link flexibility following increases in hip and trunk stiffness. The changes in leg and trunk muscle responses failed to achieve a normal roll or pitch trunk end position at 700 ms (except for forward tilt rotations), even though head accelerations and trunk joint proprioception seemed to provide information on changed trunk movement profiles over the first 300 ms following the perturbation. The major adaptation to stiffness involved increased use of arm movements to regain stability. The major differences in trunk motion for the no-corset, half-corset and full-corset conditions support the concept of a multi-link pendulum with different control dynamics in the pitch and roll planes as a model of human stance. Stiffening of the hip and trunk increases the likelihood of a loss of balance laterally and/or backwards. Thus, these results may have implications for the elderly and others, with and without disease states, who stiffen for a variety of reasons.  相似文献   

17.
Sitting down and squatting are routine activities in daily living that lower the body mass by flexing the trunk and legs, but they obviously require different motor strategies for each goal posture. The former action must transfer the supporting surface onto a seat, whereas the latter must maintain the center of mass within the same base of both feet. By comparing the performance of both maneuvers, the mechanisms involved in initiating the downward-oriented movements and the process of optimizing the performance during their repetitions were studied. Twelve healthy subjects were asked to perform sitting-down and squatting actions immediately when a light cue was given, but at a natural speed. Electromyograms, angular movements of the joints of the right leg, and center of pressure (COP) displacement were recorded before and during each task. The initial mechanisms to initiate the break from the upright posture and the changes of postural adjustments during repetitive movements were analyzed separately. The sitting-down movement was achieved by a stereotyped motor strategy characterized by a gastrocnemius muscle burst coupled with deactivation of the erector spinae muscle. The former produced a transient COP displacement in the forward direction, and simultaneous unlocking of the trunk prevented a fall backward. By contrast, because of the absence of any need to produce momentum in a given direction, a variety of motor strategies were available to initiate squatting. The direction of initial COP displacement to initiate squatting varied with the muscles involved in unlocking the upright posture. During repetition of sitting down, the average COP position of the initial standing posture in the preparatory period was immediately shifted forward after the second trial. Simultaneously, the erector spinae muscle was deactivated earlier in the later trials. These resulted in a decreased momentum in the backward direction while the subjects were transferring themselves onto the seat. In the squatting task, however, these changes could not be identified, except for a slight flexed position of the knee during standing in the first trial. These findings suggest that in the case of transferring the body-mass to another supporting base the central nervous system immediately adjusts the size of the initial impetus to optimize the performance.  相似文献   

18.
The effect of continuous visual flow on the ability to regain and maintain postural orientation was examined. Fourteen young (20–39 years old) and 14 older women (60–79 years old) stood quietly during 3° (30°/s) dorsiflexion tilt of the support surface combined with 30° and 45°/s upward or downward pitch rotations of the visual field. The support surface was held tilted for 30 s and then returned to neutral over a 30-s period while the visual field continued to rotate. Segmental displacement and bilateral tibialis anterior and gastrocnemius muscle EMG responses were recorded. Continuous wavelet transforms were calculated for each muscle EMG response. An instantaneous mean frequency curve (IMNF) of muscle activity, center of mass (COM), center of pressure (COP), and angular excursion at the hip and ankle were used in a functional principal component analysis (fPCA). Functional component weights were calculated and compared with mixed model repeated measures ANOVAs. The fPCA revealed greatest mathematical differences in COM and COP responses between groups or conditions during the period that the platform transitioned from the sustained tilt to a return to neutral position. Muscle EMG responses differed most in the period following support surface tilt indicating that muscle activity increased to support stabilization against the visual flow. Older women exhibited significantly larger COM and COP responses in the direction of visual field motion and less muscle modulation when the platform returned to neutral than younger women. Results on a Rod and Frame test indicated that older women were significantly more visually dependent than the younger women. We concluded that a stiffer body combined with heightened visual sensitivity in older women critically interferes with their ability to counteract posturally destabilizing environments.  相似文献   

19.
Triggering of balance corrections may depend on both leg and trunk proprioceptive inputs. To study this issue and to determine how a total proprioceptive loss in the legs (ToLPL) would affect postural reactions in different directions, we investigated the postural control of a patient with a long-standing dorsal root ganglionopathy. This patient had absent stretch reflexes at the ankle and knee joints, delayed reflexes at the hips, but normal muscle strength. Postural control was probed with support-surface movements driven by two different experimental protocols. The first protocol concentrated on leg muscle responses by varying ankle inputs during pitch plane perturbations. The second protocol focussed on the directional sensitivity of upper body responses using combined roll and pitch tilt perturbations. For both protocols, identical techniques were used to record ankle torques, angular velocities of the upper legs and trunk, and surface EMG from leg, hip and trunk muscles. For the first protocol, pitch plane stance perturbations with three different ankle inputs were imposed by a movable support surface. A simultaneous 4-cm rearward translation and 4-deg toe-up rotation produced an 80-deg/s "enhanced ankle input", a simple toe-up rotation gave a 40-deg/s "normal" ankle input and a simultaneous 4-cm rearward translation and 4-deg "toe-down" rotation yielding a 0-deg/s "nulled ankle input". Responses in the ToLPL patient were compared to those of healthy controls and those of patients with lower-leg proprioceptive loss (LLPL). Following normal and enhanced ankle input perturbations, stretch reflexes were absent in ankle and knee joint muscles of the ToLPL patient. Balance correcting responses in the lower legs were diminished and delayed by some 45 ms. In quadriceps, balance-correcting responses were larger than normal, peaked earlier and were not delayed. During the nulled ankle input condition, the ankle muscle responses in the ToLPL patient were again diminished and delayed by 40 ms with respect to both normal subjects and LLPL patients. However, the ToLPL patient again generated an earlier, larger, balance correcting response in quadriceps. For the second protocol, combinations of roll and pitch perturbations were also delivered by a moving support surface. The amplitude was 7.5 deg at 50 deg/s. Eight different directions were applied randomly (pure "toes down", pure "toes up" and directions at 45-deg intervals of roll). As with the first protocol pre-stimulus background muscle activity was excessive in all trunk and most leg muscles. Responses to roll tilt produced several striking changes from normal in the ToLPL patient. First reflexes in gluteus medius were delayed. Second, the trunk roll which commences around 30 ms in normals was in the opposite direction. This roll was accompanied by oppositely directed stretch reflexes in paraspinal muscles. Third, directional sensitivity of balance corrections was far more roll oriented in leg and trunk muscles. Fourth, some tilt directions caused a deactivation response of background activity. This "deactivation strategy" strongly contrasted with the strategy of controls who had low pre-stimulus background activity and activated responses around 100 ms to correct postural instability. These findings provide new insights into the generation of pitch and roll plane directed balance corrections based on the interaction of proprioceptive trigger signals from the ankles, knees and hips. Without proprioceptive input from the ankle and knee, ankle muscle responses are delayed but not absent. Upper leg and trunk responses are not delayed. This suggests that most, if not all, lower leg balance correcting responses are triggered by hip and, possibly, trunk proprioceptive inputs. When leg proprioceptive input is absent, balance correcting responses lose pitch plane sensitivity. The solution used by the patient to overcome these deficits was to markedly raise background muscle activity levels, presumably to provide a stiffer body structure. The lack of trunk flexibility and lateral instability this produced for roll tilts was offset by the ability to compensate by using a hitherto not described "deactivation response" strategy. The patient had a clinical picture usually described as "deafferented"; yet our roll tilt perturbations revealed delayed reflex responses in hip muscles. With vestibulospinal and neck-proprioceptive inputs, these responses may have helped with the development of compensation processes for the total leg proprioceptive deficit.  相似文献   

20.
In the search of a reliable postural stability index, two sway time series: the center-of-mass (COM) and the center-of-foot pressure (COP) were recorded simultaneously in elderly subjects standing quiet with eyes open and with eyes closed. From a battery of commonly use sway measures, only the anteroposterior COM and the COP path lengths proved their high sensitivity and discriminative power to the imposed vision conditions. Based upon these indices, a new measure - sway ratio (SR) - was computed, as the COP-to-COM path length ratio. The measure can easily distinguish vision vs. no vision in the elderly. The SR can be successfully accessed base upon the COP signal only. In contrast to traditional sway indices, the SR as a relative measure is insensitive to the length of sampled record and to the signal sampling frequency. Its magnitude can be interpreted as an average amount of balance controlling motor activity that coincides with a unit COM displacement. The SR is recommended as a reliable measure that allows for assessment of postural stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号