首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

2.
3.
Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.Protein folding is an intriguing phenomenon at the interface of physics and biology. In the early days of folding kinetics studies, folding was formulated almost exclusively in terms of mass-action rate equations connecting the folded, unfolded, and possibly, one or a few intermediate states (1, 2). With the advent of site-directed mutagenesis, the concept of free energy barriers from transition state theory (TST) (3) was introduced to interpret mutational data (4), and subsequently, it was adopted for the Φ-value analysis (5). Since the 1990s, the availability of more detailed experimental data (6), in conjunction with computational development of coarse-grained chain models, has led to an energy landscape picture of folding (715). This perspective emphasizes the diversity of microscopic folding trajectories, and it conceptualizes folding as a diffusive process (1625) akin to the theory of Kramers (26).For two-state-like folding, the transition path (TP), i.e., the sequence of kinetic events that leads directly from the unfolded state to the folded state (27, 28), constitutes only a tiny fraction of a folding trajectory that spends most of the time diffusing, seemingly unproductively, in the vicinity of the free energy minimum of the unfolded state. The development of ultrafast laser spectroscopy (29, 30) and single-molecule (27, 28, 31) techniques have made it possible to establish upper bounds on the transition path time (tTP) ranging from <200 and <10 μs by earlier (27) and more recent (28), respectively, direct single-molecule FRET to <2 μs (30) by bulk relaxation measurements. Consistent with these observations, recent extensive atomic simulations have also provided estimated tTP values of the order of ∼1 μs (32, 33). These advances offer exciting prospects of characterizing the productive events along folding TPs.It is timely, therefore, to further the theoretical investigation of TP-related questions (19). To this end, we used coarse-grained Cα models (14) to perform extensive simulations of the folding trajectories of small proteins with 56- to 86-aa residues. These tractable models are useful, because despite significant progress, current atomic models cannot provide the same degree of sampling coverage for proteins of comparable sizes (32, 33). In addition to structural insights, this study provides previously unexplored vantage points to compare the diffusion and TST pictures of folding. Deviations of folding behaviors from TST predictions are not unexpected, because TST is mostly applicable to simple gas reactions; however, the nature and extent of the deviations have not been much explored. Our explicit-chain simulation data conform well to the diffusion picture but not as well to TST. In particular, the preexponential factors of the simulated folding rates exhibit a small but appreciable variation that depends on native topology. These findings and others reported below underscore the importance of single-molecule measurements (13, 27, 28, 31, 34, 35) in assessing the merits of proposed scenarios and organizing principles of folding (725, 36, 37).  相似文献   

4.
Across animal taxa, seminal proteins are important regulators of female reproductive physiology and behavior. However, little is understood about the physiological or molecular mechanisms by which seminal proteins effect these changes. To investigate this topic, we studied the increase in Drosophila melanogaster ovulation behavior induced by mating. Ovulation requires octopamine (OA) signaling from the central nervous system to coordinate an egg’s release from the ovary and its passage into the oviduct. The seminal protein ovulin increases ovulation rates after mating. We tested whether ovulin acts through OA to increase ovulation behavior. Increasing OA neuronal excitability compensated for a lack of ovulin received during mating. Moreover, we identified a mating-dependent relaxation of oviduct musculature, for which ovulin is a necessary and sufficient male contribution. We report further that oviduct muscle relaxation can be induced by activating OA neurons, requires normal metabolic production of OA, and reflects ovulin’s increasing of OA neuronal signaling. Finally, we showed that as a result of ovulin exposure, there is subsequent growth of OA synaptic sites at the oviduct, demonstrating that seminal proteins can contribute to synaptic plasticity. Together, these results demonstrate that ovulin increases ovulation through OA neuronal signaling and, by extension, that seminal proteins can alter reproductive physiology by modulating known female pathways regulating reproduction.Throughout internally fertilizing animals, seminal proteins play important roles in regulating female fertility by altering female physiology and, in some cases, behavior after mating (reviewed in refs. 13). Despite this, little is understood about the physiological mechanisms by which seminal proteins induce postmating changes and how their actions are linked with known networks regulating female reproductive physiology.In Drosophila melanogaster, the suite of seminal proteins has been identified, as have many seminal protein-dependent postmating responses, including changes in egg production and laying, remating behavior, locomotion, feeding, and in ovulation rate (reviewed in refs. 2 and 3). For example, the Drosophila seminal protein ovulin elevates ovulation rate to maximal levels during the 24 h following mating (4, 5), and the seminal protein sex peptide (SP) suppresses female mating receptivity and increases egg-laying behavior for several days after mating (610). However, although a receptor for SP has been identified (11), along with elements of the neural circuit in which it is required (1214), SP’s mechanism of action has not yet been linked to regulatory networks known to control postmating behaviors. Thus, a crucial question remains: how do male-derived seminal proteins interact with regulatory networks in females to trigger postmating responses?We addressed this question by examining the stimulation of Drosophila ovulation by the seminal protein ovulin. In insects, ovulation, defined here as the release of an egg from the ovary to the uterus, is among the best understood reproductive processes in terms of its physiology and neurogenetics (1527). In D. melanogaster, ovulation requires input from neurons in the abdominal ganglia that release the catecholaminergic neuromodulators octopamine (OA) and tyramine (17, 18, 28). Drosophila ovulation also requires an OA receptor, OA receptor in mushroom bodies (OAMB) (19, 20). Moreover, it has been proposed that OA may integrate extrinsic factors to regulate ovulation rates (17). Noradrenaline, the vertebrate structural and functional equivalent to OA (29, 30), is important for mammalian ovulation, and its dysregulation has been associated with ovulation disorders (3138). In this paper we investigate the role of neurons that release OA and tyramine in ovulin’s action. For simplicity, we refer to these neurons as “OA neurons” to reflect the well-established role of OA in ovulation behavior (1620, 22).We investigated how action of the seminal protein ovulin relates to the conserved canonical neuromodulatory pathway that regulates ovulation physiology (3941). We found that ovulin increases ovulation and egg laying through OA neuronal signaling. We also found that ovulin relaxes oviduct muscle tonus, a postmating process that is also mediated by OA neuronal signaling. Finally, subsequent to these effects we detected an ovulin-dependent increase in synaptic sites between OA motor neurons and oviduct muscle, suggesting that ovulin’s stimulation of OA neurons could have increased their synaptic activity. These results suggest that ovulin affects ovulation by manipulating the gain of a neuromodulatory pathway regulating ovulation physiology.  相似文献   

5.
6.
The phenotypic effect of an allele at one genetic site may depend on alleles at other sites, a phenomenon known as epistasis. Epistasis can profoundly influence the process of evolution in populations and shape the patterns of protein divergence across species. Whereas epistasis between adaptive substitutions has been studied extensively, relatively little is known about epistasis under purifying selection. Here we use computational models of thermodynamic stability in a ligand-binding protein to explore the structure of epistasis in simulations of protein sequence evolution. Even though the predicted effects on stability of random mutations are almost completely additive, the mutations that fix under purifying selection are enriched for epistasis. In particular, the mutations that fix are contingent on previous substitutions: Although nearly neutral at their time of fixation, these mutations would be deleterious in the absence of preceding substitutions. Conversely, substitutions under purifying selection are subsequently entrenched by epistasis with later substitutions: They become increasingly deleterious to revert over time. Our results imply that, even under purifying selection, protein sequence evolution is often contingent on history and so it cannot be predicted by the phenotypic effects of mutations assayed in the ancestral background.Whether a heritable mutation is advantageous or deleterious to an organism often depends on the evolutionary history of the population. A mutation that is beneficial at the time of its introduction may confer its beneficial effect only in the presence of other potentiating or permissive mutations (19). Thus, the fate of a mutation arising in a population may be contingent on previous mutations (1013). Conversely, once a mutation has fixed in a population, the mutation becomes part of the genetic background onto which subsequent modifications are introduced. Because the beneficial effects of the subsequent modifications may depend on the focal mutation, as time passes reversion of the focal mutation may become increasingly deleterious, leading to a type of evolutionary conservatism, or entrenchment (1418).In the context of protein evolution, the effects of contingency and entrenchment are most easily studied by considering a sequence of single amino acid changes (19) that extends both forward and backward in time from some focal substitution. To assess the roles of contingency and entrenchment we can study the degree to which each focal substitution was facilitated by previous substitutions, and the degree to which the focal substitution influences the subsequent course of evolution (Fig. 1A).Open in a separate windowFig. 1.(A) A schematic model indicating how a focal substitution may be contingent on prior substitutions and may constrain future substitutions along an evolutionary trajectory, owing to epistasis. (B) A model of protein evolution under weak mutation and purifying selection for thermodynamic stability. Starting from the wild-type sequence of argT we propose 10 random 1-aa point mutations. For each of the proposed mutants we compute its predicted stability (ΔG) using FoldX, and its associated fitness. The fitness function is assumed to be either Gaussian or semi-Gaussian, with a maximum at the wild-type stability. One of the proposed mutants fixes in the population, based on its relative fixation probability under the Moran model with effective population size Ne. This process is iterated for 30 consecutive substitutions to produce an evolutionary trajectory. We simulate 100 replicate trajectories, each initiated at the wild-type argT sequence.Dependencies within a sequence of substitutions are closely connected to the concept of epistasis—that is, the idea that the phenotypic effect of a mutation at a particular genetic site may depend on the genetic background in which it arises (2024). In the absence of epistasis, a mutation has the same effect regardless of its context and therefore regardless of any prior history or subsequent evolution. By contrast, in the presence of epistasis, each substitution may be contingent on the entire prior history of the protein, and it may constrain all subsequent evolution.The potential for epistasis to play an important role in evolution, including protein evolution, has not been overlooked by researchers (1, 8, 2534), nor have the concepts of contingency (3, 4, 9, 12, 3538) and, more recently, entrenchment (18, 39, 40). However, most studies have addressed the role of epistasis in the context of adaptive evolution (19, 27, 30, 31, 36, 38), whereas the consequences of epistasis under purifying selection have received less attention (18, 4144). Indeed, although some more sophisticated models have been proposed (e.g., refs. 4550), all commonly used phylogenetic models of long-term protein evolution assume that epistasis is absent so that sites evolve independently (5156).Here we explore the relationships between epistasis, contingency, and entrenchment under long-term purifying selection on protein stability. Our analysis combines computational models for protein structures with population-genetic models for evolutionary dynamics. We use a force-field-based model, FoldX (57), to characterize the effects of point mutations on a protein’s stability and fitness. This approach allows us to simulate evolutionary trajectories of protein sequences under purifying selection, by the sequential fixation of nearly neutral mutations. We can then dissect the epistatic relationships between these substitutions by systematically inserting or reverting particular substitutions at various time points along the evolutionary trajectory.Our analysis considers epistasis both at the level of protein stability and at the level of fitness. Whereas empirical studies in diverse proteins have demonstrated that the stability effects of point mutations are typically additive across sites (58, 59), in this study we are specifically interested in epistasis for stability among the mutations that fix during evolution. Even if most random mutations are virtually additive in their effects on stability, the mutations that fix under purifying selection are highly nonrandom, and so there is reason to suspect that epistasis for stability may be enriched among such mutations. Moreover, because the mapping from stability to fitness is itself nonlinear (18, 26, 60, 61) and because selection is sensitive to selection coefficients as small as the inverse of the population size (62), even slight variation in the stability effects of mutations across different genetic backgrounds may be sufficient to influence the course of evolution.Using the computational approach summarized above, we will demonstrate that the nearly neutral mutations that fix under purifying selection are, indeed, often epistatic with each other for both stability and fitness. In particular, we find that each mutation that fixes is typically permitted to fix by the presence of preceding substitutions—that is, most substitutions would be too deleterious to fix were it not for epistasis with preceding substitutions. Conversely, we also find that mutations that fix typically become entrenched over time by epistasis—so that a substitution that was nearly neutral when it fixed becomes increasingly deleterious to revert as subsequent substitutions accumulate (18, 39). These results imply an important role for epistasis in shaping the course of sequence evolution in a protein under selection to maintain thermodynamic stability.  相似文献   

7.
Phagocytosis and oxidative burst are two major effector arms of innate immunity. Although it is known that both are activated by Toll-like receptors (TLRs) and Rac GTPases, how their strengths are controlled in quiescent and TLR-activated cells is not clear. We report here that TIPE2 (TNFAIP8L2) serves as a negative regulator of innate immunity by linking TLRs to Rac. TLRs control the expression levels of TIPE2, which in turn dictates the strengths of phagocytosis and oxidative burst by binding to and blocking Rac GTPases. Consequently, TIPE2 knockout cells have enhanced phagocytic and bactericidal activities and TIPE2 knockout mice are resistant to bacterial infection. Thus, TIPE2 sets the strengths of phagocytosis and oxidative burst and may be targeted to effectively control infections.Phagocytosis and oxidative burst (or respiratory burst) are two fundamental effector mechanisms of innate immunity that work in concert to eliminate infectious microbes (1, 2). Phagocytosis allows the phagocytes of the immune system (monocytes and granulocytes) to engulf infectious microbes and to contain them in a special vacuole called a phagosome. Oxidative burst in turn injects into the vacuole reactive oxygen species (ROS) (e.g., superoxide radical and hydrogen peroxide) that kill the microbes. Deficiency in either of these innate immune mechanisms leads to immune deficiency and uncontrolled infections (36).Both phagocytosis and oxidative burst are controlled by the Rac proteins of the Ras small GTPase superfamily (14). There are three mammalian Rac GTPases, which are designated as Rac1, Rac2, and Rac3. Small GTPases are enzymes that hydrolyze GTP. They are active when bound to GTP and inactive when bound to GDP and serve as molecular “on-and-off” switches of signaling pathways that control a wide variety of cellular processes including growth, motility, vesicle trafficking, and death (7). Rac GTPases control phagocytosis by promoting actin polymerization through their effector proteins such as p21-activated kinases (PAKs), WASP family Verprolin homology domain-containing protein (WAVE), and IQ motif containing GTPase-activating protein-1 (IQGAP1) (1). Rac GTPases also mediate ROS production by binding and activating the NADPH oxidase complex through the p67(Phox) protein (1). Rac GTPase deficiency in mice and humans leads to an immune-deficient syndrome, which is characterized by defective phagocytosis and oxidative burst, recurrent infection, and granulomas (36).Although quiescent phagocytes are capable of phagocytosis and ROS production, their levels are low. Toll-like receptor (TLR) activation or microbial infection significantly up-regulates these innate immune processes (811). However, the mechanisms whereby microbes promote them are not well understood. TIPE2, or tumor necrosis factor-α–induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2), is a member of the TNFAIP8 family, which is preferentially expressed in hematopoietic cells (1218). It is significantly down-regulated in patients with infectious or autoimmune disorders (15, 19). The mammalian TNFAIP8 family consists of four members: TNFAIP8, TIPE1, TIPE2, and TIPE3, whose functions are largely unknown (14, 20). We recently generated TIPE2-deficient mice and discovered that TIPE2 plays a crucial role in immune homeostasis (14). We report here that TIPE2 controls innate immunity by targeting the Rac GTPases.  相似文献   

8.
X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.Proteins explore many conformations while carrying out their functions in biological systems (13). X-ray crystallography is the dominant source of information about protein structure; however, crystal structure models usually consist of just a single major conformation and at most a small portion of the model as alternate conformations. Crystal structures therefore are missing many details about the underlying conformational ensemble (4).Proteins assembled in crystalline arrays, like proteins in solution, exhibit rich conformational diversity (4) and often can perform their native functions (5). Many methods have emerged for using Bragg data to model conformational diversity in protein crystals (617). The development of these methods has been important as conformational diversity can lead to inaccuracies in protein structure models (9, 1820). A key limitation of using the Bragg data, however, is that different models of conformational diversity can yield the same mean electron density.Whereas the Bragg scattering only contains information about the mean electron density, diffuse scattering (diffraction resulting in intensity between the Bragg peaks) is sensitive to spatial correlations in electron density variations (2128) and therefore contains information about the way that atomic positions vary together in protein crystals. Because models that yield the same mean electron density can yield different correlations in electron density variations, diffuse scattering provides a means to increase the accuracy of crystallography for determining protein conformational variations (29). Peter Moore (30) and Mark Wilson (31) have argued that diffuse scattering should be used to test models of conformational diversity in X-ray crystallography.Several pioneering studies used diffuse scattering to reveal insights into correlated motions in proteins (17, 30, 3249). Some of these studies used diffuse scattering to experimentally validate predictions of correlated motions from molecular-dynamics (MD) simulations (3537, 40, 4244). These studies revealed important insights but were limited by inadequate sampling of the conformational ensemble, leading to lack of convergence of the diffuse scattering calculations (35). Microsecond-scale simulations of staphylococcal nuclease were predicted to be adequate for convergence of diffuse scattering calculations (42). Modern simulation algorithms and computer hardware now enable microsecond or longer MD simulations of protein crystals (50).Here, we present calculations of diffuse X-ray scattering using a 1.1-μs MD simulation of crystalline staphylococcal nuclease. The results demonstrate that we have overcome the past limitation of inadequate sampling. We chose staphylococcal nuclease because the experiments of Wall et al. (49) still represent the only complete, high-quality, 3D diffuse scattering data set from a protein crystal. The calculated diffuse intensity is very similar using two independent halves of the trajectory; the results therefore are reproducible and can be meaningfully compared with the experimental data. The MD simulation provides a rich picture of conformational diversity in the energy landscape of a protein crystal, consisting of at least eight metastable states. Like previous MD studies of crystalline staphylococcal nuclease (4244), the agreement of the simulation with the total experimental diffuse intensity is excellent, supporting the use of MD simulations to model diffuse scattering data. Unlike previous MD studies, we separately compared the more finely structured, anisotropic component of the diffuse intensity with experimental data. The agreement is substantial but weaker than for the isotropic component, indicating there are inaccuracies in the MD models. Our results therefore point toward using diffuse scattering to improve MD models of protein motions.  相似文献   

9.
10.
11.
12.
13.
14.
15.
The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach.The staphylococcal α-hemolysin (αHL) pore has been engineered for a variety of applications in biotechnology. For example, the pore can function as a detector for stochastic sensing (13) and DNA sequencing (4, 5), and act as a “nanoreactor” for single-molecule covalent chemistry (6). In the nanoreactor approach, individual bond-making and bond-breaking steps can be observed with submillisecond time resolution by monitoring the ionic current carried by the pore under an applied potential. Single-molecule chemistry has attracted interest because it provides insights into fundamental chemical processes that cannot be observed at the ensemble scale (68). However, chemistry carried out within the αHL nanoreactor has so far been confined to the reactions of thiolates (i.e., deprotonated Cys side chains) (712) and derivatives of the side chains of Cys residues (13, 14). The incorporation of unnatural amino acids into the αHL pore would substantially advance single-molecule chemistry, through the incorporation of a large variety of individual side chains as well as multiple substitutions. We have produced αHL polypeptides with unnatural alkyl and aryl amino acids (15) in vitro by using chemically aminoacylated tRNAs. However, the method is demanding and often gives poor results, e.g., when more than one amino acid is introduced. In vivo methods that use engineered synthetase/tRNA pairs also enable the incorporation of unnatural amino acids (16, 17). Two different amino acids (17, 18), but so far not more, can be incorporated. However, not all amino acids are successfully handled, and a new one often requires additional synthetase development. Further, various amino acid side chains are destroyed in vivo, often by reduction (18).Another means to incorporate unnatural amino acids is through native chemical ligation (NCL) (1921), wherein the amino acid of interest is introduced in a peptide obtained by chemical synthesis (22, 23). The advantage of NCL is that virtually any amino acid or collection of amino acids can be incorporated into the peptide chain, provided the side chain is stable toward the conditions of solid-phase peptide synthesis (SPPS) and NCL, or can be protected and deprotected. An extension of NCL that has seen widespread success is expressed protein ligation (2426), a method for semisynthesis in which large segments of the polypeptide chain are bacterially expressed. However, relatively little work has been reported on the semisynthesis of membrane proteins (2731). This deficiency can be attributed to the hydrophobic nature of membrane proteins, which are poorly soluble in either folded or unfolded form (32). For example, a polypeptide segment encompassing the transmembrane region of the αHL pore precipitates in neutral buffer. The use of a denaturing environment during NCL can solve the solubility problem (20). However, it raises the question of whether the semisynthetic protein can be refolded into the native form. Here, we incorporate an unnatural amino acid with a terminal alkyne side chain into the αHL polypeptide and demonstrate the functional activity of heptameric pores made from it. Further, we investigate click chemistry of the alkyne at the single-molecule level by using the semisynthetic pore as a nanoreactor.  相似文献   

16.
17.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

18.
Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.Brown adipose tissue oxidizes fatty acids to produce heat for thermoregulation in the cold and is present in adult humans, where it holds promise in combating obesity (1, 2). Human brown fat depots correlate with leanness (3, 4) and, in mice, thermogenesis by brown fat has been shown to clear blood triglycerides and dispose of blood glucose, reducing metabolic disease (5). Thermogenesis by brown adipose tissue depends on uncoupling protein 1 (UCP1), a 33-kDa mitochondrial carrier protein that, when activated, transports protons across the mitochondrial inner membrane, decoupling electron transfer from ATP synthesis to dissipate the protonmotive force as heat. During the adrenergic stimulation of brown adipocytes (e.g., due to cold exposure), long chain fatty acids released from lipid droplets activate UCP1, overcoming the inhibition of the protein by cytosolic purine nucleotides, to induce thermogenesis (6). Therapeutically activating UCP1 directly, without the need for physiological stimuli, could provide treatments for metabolic disease (6, 7).The mechanism of proton conductance by UCP1 and the interplay that occurs between regulators is debated (refs. 8 and 9). Evidence largely from liposome studies has led to the proposals that fatty acid anions act as either cofactors, providing proton-binding sites in a transport channel within the protein (10), or transport substrates, which are exported by UCP1 and flip back across the inner membrane in a protonated state (11). Alternatively, patch-clamp studies with mitochondrial inner membranes suggest that either protonated or deprotonated fatty acid species can be transported by UCP1, which remain bound to the protein in the transport cycle to give a net proton transfer (9). During activation, fatty acids may compete with nucleotide binding directly, or indirectly through changes in the protein, as indicated by experiments with isolated mitochondria (12, 13). Claims of the involvement of other metabolites (e.g., ubiquinone-10 or 4-hydroxy-2-nonenal) in UCP1 activation have largely been refuted (14, 15).For many years, there has been a general consensus on the fundamental composition of UCP1. Following the observation that one nucleotide binds to two proteins (16), UCP1 was believed to be a dimer. This notion was supported by analytical ultracentrifugation (17), nucleotide binding (1821), and protein cross-linking studies (18, 22), as well as many reports indicating that the related mitochondrial ADP/ATP carrier is dimeric too (see ref. 23 and references therein). Distinct from other carriers, however, UCP1 was found to function independently of cardiolipin. This mitochondrial lipid enhances the activity of many carriers (24) and can be observed bound to the ADP/ATP carrier in the available atomic structures (2527). Measurements of 31P NMR have indicated that purified UCP1 preparations do not contain bound cardiolipin (28), in contrast to the three molecules reported to bind per ADP/ATP carrier (29), and reconstitution studies have indicated that the lipid is not required for UCP1 activity (e.g., refs. 30 and 31) but may alter the affinity of the protein for purine nucleotides (28).In recent years, several studies have demonstrated that the mitochondrial ADP/ATP carrier is monomeric, not dimeric (3236), which raises questions on the oligomeric state of UCP1. Resolving the basic functional unit of UCP1 is paramount for understanding its mechanism. Here, we have developed novel methods to purify UCP1 from native sources, which have allowed us to reach new conclusions on the fundamental properties of the protein.  相似文献   

19.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号