首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-throughput and virtual screening are widely used to discover novel leads for drug design. On examination, many screening hits appear non-drug-like: they act noncompetitively, show little relationship between structure and activity, and have poor selectivity. Attempts to develop these peculiar molecules into viable leads are often futile, and much time can be wasted on the characterization of these "phony" hits. Despite their common occurrence, the mechanism of action of these promiscuous molecules remains unknown. To investigate this problem, 45 diverse screening hits were studied. Fifteen of these were previously reported as inhibitors of various receptors, including beta-lactamase, malarial protease, dihydrofolate reductase, HIV Tar RNA, thymidylate synthase, kinesin, insulin receptor, tyrosine kinases, farnesyltransferase, gyrase, prions, triosephosphate isomerase, nitric oxide synthase, phosphoinositide 3-kinase, and integrase; 30 were from an in-house screening library of a major pharmaceutical company. In addition to their original targets, 35 of these 45 compounds were shown to inhibit several unrelated model enzymes. These 35 screening hits included compounds, such as fullerenes, dyes, and quercetin, that have repeatedly shown activity against diverse targets. When tested against the model enzymes, the compounds showed time-dependent but reversible inhibition that was dramatically attenuated by albumin, guanidinium, or urea. Surprisingly, increasing the concentration of the model enzymes 10-fold largely eliminated inhibition, despite a 1000-fold excess of inhibitor; a well-behaved competitive inhibitor did not show this behavior. One model to explain these observations was that the active form of the promiscuous inhibitors was an aggregate of many individual molecules. To test this hypothesis, light scattering and electron microscopy experiments were performed. The nonspecific inhibitors were observed to form particles of 30-400 nm diameter by both techniques. In control experiments, a well-behaved competitive inhibitor and an inactive dye-like molecule were not observed to form aggregates. Consistent with the hypothesis that the aggregates are the inhibitory species, the particle size and IC(50) values of the promiscuous inhibitors varied monotonically with ionic strength; a competitive inhibitor was unaffected by changes in ionic strength. Unexpectedly, aggregate formation appears to explain the activity of many nonspecific inhibitors and may account for the activity of many promiscuous screening hits. Molecules acting via this mechanism may be widespread in drug discovery screening databases. Recognition of these compounds may improve screening results in many areas of pharmaceutical interest.  相似文献   

2.
New "molecular tongs" based on naphthalene and quinoline scaffolds linked to two peptidic strands were synthesized. They were designed to prevent dimerization of HIV-1 protease by targeting the antiparallel beta-sheet involving N- and C-termini of each monomer. Compared to "molecular tongs" previously described (Bouras, A.; Boggetto, N.; Benatalah, Z.; de Rosny, E.; Sicsic, S.; Reboux-Ravaud, M. J. Med. Chem. 1999, 42, 957-962), two main different structural features were introduced: positively charged quinoline as a new scaffold and two peptidic strands displaying different sequences. Seventeen new "molecular tongs" with dipeptidic or tripeptidic strands were synthesized. These molecules were assayed on HIV-1 protease using the Zhang kinetic technique. Eleven molecules behaved as pure dimerization inhibitors, mostly at the submicromolar range. Compared to a naphthalene scaffold, the quinoline one was shown in several cases to favor dimerization inhibition. The simplified hydrophobic Val-Leu-Val-OMe strand was confirmed as particularly favorable. The C-terminal analogue strand Thr-Leu-Asn-OMe was shown to be the best one for inducing dimerization inhibition (K(id) of 80 nM for compound 30). The mechanism of inhibition was ascertained using ANS binding and gel filtration. Experimental results are in agreement with the dissociation of the HIV-1 protease dimeric form in the presence of the synthesized molecular tongs.  相似文献   

3.
A specific mechanism of nonspecific inhibition   总被引:7,自引:0,他引:7  
Promiscuous small molecules plague screening libraries and hit lists. Previous work has found that several nonspecific compounds form submicrometer aggregates, and it has been suggested that this aggregate species is responsible for the inhibition of many different enzymes. It is not understood how aggregates inhibit their targets. To address this question, biophysical, kinetic, and microscopy methods were used to study the interaction of promiscuous, aggregate-forming inhibitors with model proteins. By use of centrifugation and gel electrophoresis, aggregates and protein were found to directly interact. This is consistent with a subsequent observation from confocal fluorescence microscopy that aggregates concentrate green fluorescent protein. beta-Lactamase mutants with increased or decreased thermodynamic stability relative to wild-type enzyme were equally inhibited by an aggregate-forming compound, suggesting that denaturation by unfolding was not the primary mechanism of interaction. Instead, visualization by electron microscopy revealed that enzyme associates with the surface of inhibitor aggregates. This association could be reversed or prevented by the addition of Triton X-100. These observations suggest that the aggregates formed by promiscuous compounds reversibly sequester enzyme, resulting in apparent inhibition. They also suggest a simple method to identify or reverse the action of aggregate-based inhibitors, which appear to be widespread.  相似文献   

4.
High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate "hit lists"; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against beta-lactamase using quantitative HTS (qHTS). Of the 1,274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting beta-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 microM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.  相似文献   

5.
Promiscuous binders achieve enzyme inhibition using a nonspecific aggregation-type binding mechanism to proteins. These compounds are a source of false-positive hits in biochemical inhibition assays and should be removed from screening hit lists because they are not good candidates to initiate medicinal chemistry programs. We introduce a robust approach to identify these molecules early in the lead generation process using real time surface plasmon resonance based biosensors to observe the behavior of the binding interactions between promiscuous compounds and proteins. Furthermore, the time resolution of the assay reveals a number of distinct mechanisms that promiscuous compounds employ to inhibit enzyme function and indicate that the type of mechanism can vary depending on the protein target. A classification scheme for these compounds is presented that can be used to rapidly characterize the hits from high-throughput screens and eliminate compounds with a nonspecific mechanism of inhibition.  相似文献   

6.
Screening in mixtures is a common approach for increasing the efficiency of high-throughput screening. Here we investigate how the "compound load" of mixtures influences promiscuous aggregate-based inhibition. We screened 764 molecules individually and in mixtures of 10 at 5 miccroM each, comparing the observed inhibition of the mixtures to that predicted from single-compound results. Synergistic effects on aggregation predominated, although antagonism was also observed. These results suggest that screening mixtures can increase aggregation-based inhibition in a nonadditive manner.  相似文献   

7.
Some small molecules, often hits from screening, form aggregates in solution that inhibit many enzymes. In contrast, drugs are thought to act specifically. To investigate this assumption, 50 unrelated drugs were tested for promiscuous inhibition via aggregation. Each drug was tested against three unrelated model enzymes: beta-lactamase, chymotrypsin, and malate dehydrogenase, none of which are considered targets of these drugs. To be judged promiscuous, the drugs had to inhibit all three enzymes, do so in a time-dependent manner, be sensitive to detergent and to enzyme concentration, and form particles detectable by light scattering. Of the 50 drugs tested, 43 were nonpromiscuous by these criteria. Surprisingly, four of the drugs showed promiscuous, aggregation-based inhibition at concentrations below 100 microM: clotrimazole, benzyl benzoate, nicardipine, and delavirdine. Three other drugs also behaved as aggregation-based inhibitors, but only at high concentrations (about 400 microM). To investigate possible structure-activity relationships among promiscuous drugs, five analogues of the antifungal clotrimazole were studied. Three of these, miconazole, econazole, and sulconazole, were promiscuous but the other two, fluconazole and ketoconazole, were not. Using recursive partitioning, these experimental results were used to develop a model for predicting aggregate-based promiscuity. This model correctly classified 94% of 111 compounds-47 aggregators and 64 nonaggregators-that have been studied for this effect. To evaluate the model, it was used to predict the behavior of 75 drugs not previously investigated for aggregation. Several preliminary points emerge. Most drugs are not promiscuous, even at high concentrations. Nevertheless, at high enough concentrations (20-400 microM), some drugs can aggregate and act promiscuously, suggesting that aggregation may be common among small molecules at micromolar concentrations, at least in biochemical buffers.  相似文献   

8.
The p38 MAP kinases are a family of serine/threonine protein kinases that play a key role in cellular pathways leading to pro-inflammatory responses. We have developed and implemented a method for rapidly identifying and optimizing potent and selective p38alpha inhibitors, which is amenable to other targets and target classes. A diverse library of druggable, purified and quantitated molecules was assembled and standardized enzymatic assays were performed in a microfluidic format that provided very accurate and precise inhibition data allowing for development of SAR directly from the primary HTS. All compounds were screened against a collection of more than 60 enzymes (kinases, proteases and phosphatases), allowing for removal of promiscuous and non-selective inhibitors very early in the discovery process. Follow-up enzymological studies included measurement of concentration of compound in buffer, yielding accurate determination of K(i) and IC50 values, as well as mechanism of action. In addition, active compounds were screened against less desirable properties such as inhibition of the enzyme activity by aggregation, irreversible binding, and time-dependence. Screening of an 88,634-compound library through the above-described process led to the rapid identification of multiple scaffolds (>5 active compounds per scaffold) of potential drug leads for p38alpha that are highly selective against all other enzymes tested, including the three other p38 isoforms. Potency and selectivity data allowed prioritization of the identified scaffolds for optimization. Herein we present results around our 3-thio-1,2,4-triazole lead series of p38- selective inhibitors, including identification, SAR, synthesis, selectivity profile, enzymatic and cellular data in their progression towards drug candidates.  相似文献   

9.
10.
The structures of the catalytic core of two HIV-1 encoded enzymes play a crucial role in the retroviral cycle: integrase and RNase H exhibit striking similarities. These enzymes also share a similar mechanism of catalysis. The homologies between RNase H and integrase led to studying the effect of the RNase H inhibitors on integrase. ODNs aptamers active on RNase H were shown to be strong IN inhibitors. On the contrary, compounds from the diketo acid family were previously known as integrase inhibitors. One compound of this family is able to inhibit the RNase H activity, but has no effect on integrase. Cellular topoisomerase 1 also shares a mechanism similar to that of HIV-1 integrase and RNase H. It has been reported to be present in retroviral particles and to enhance cDNA synthesis. Some topoisomerase inhibitors have been shown to be active on integrase. Moreover, topoisomerase, integrase and RNase H are inhibited by G-rich oligonucleotides. A G-quartet structure is necessary for integrase, but not for topoisomerase inhibition. This suggests that prototype structures can be exploited to develop inhibitors of two related enzymes, such as the RNase H and integrase activities of HIV-1 RT.  相似文献   

11.
This is a review of the enzymatic mechanism of DNA methyltransferase Dnmt1 and analysis of its implications on regulation of DNA methylation in mammalian cells and design of novel mechanism-based inhibitors. The methylation reaction by Dnmt1 has different phases that depend on DNA substrate and allosteric regulation. Consequently, depending on the phase, the differences in catalytic rates between unmethylated and pre-methylated DNA can vary between 30-40 fold, 3-6 fold or only 1 fold. The allosteric site and the active site can bind different molecules. Allosteric activity depends on DNA sequence, methylation pattern and DNA structure (single stranded vs. double stranded). Dnmt1 binds poly(ADP-ribose) and some RNA molecules. The results on kinetic preferences, allosteric activity and binding preference of Dnmt1 are combined together in one comprehensive model mechanism that can address regulation of DNA methylation in cells; namely, inhibition of DNA methylation by poly(ADP-ribose), RNA-directed DNA methylation by methylated and unmethylated non-coding RNA molecules, and transient interactions between Dnmt1 and genomic DNA. Analysis of reaction intermediates showed that equilibrium between base-flipping and base-restacking events can be the key mechanism in control of enzymatic activity. The two events have equal but opposite effect on accumulation of early reaction intermediates and methylation rates. The accumulation of early reaction intermediates can be exploited to improve the current inhibitors of Dnmt1 and achieve inhibition without toxic modifications in genomic DNA. [1,2-dihydropyrimidin-2-one]-5-methylene-(methylsulfonium)-adenosyl is described as the lead compound.  相似文献   

12.
Substrates that are specific for the "hydrolytic" activities of AdoHcy hydrolase have been recently identified. Upon interaction with the AdoHcy hydrolase such substrates generate the "active" electrophiles which then react with the enzyme nucleophiles to produce covalent inhibition. Dihalohomovinyl and haloacetylene analogues derived from adenosine as well 5'-S-allenyl-5'--thioadenosine derivative have been characterized as the first type II mechanism-based inhibitors of AdoHcy hydrolase that rely only on the "hydrolytic" activity. Design and synthesis of the novel adenine nucleosides as well their interaction with AdoHcy hydrolase are discussed in this review.  相似文献   

13.

Aim:

To search for novel inhibitors of human polo-like kinase 1 (Plk1), which plays important roles in various aspects of mitotic progression and is believed as a promising anti-cancer drug target, and further investigate the potential inhibition mechanism of active compounds against Plk1, thus developing potent anti-tumor lead compounds.

Methods:

Surface plasmon resonance (SPR) technology-based assay and enzymatic inhibition assay were used to screen Plk1 inhibitors. Sulphorhodamine B (SRB)-based assay, flow cytometry, confocal microscopy and Western blotting were used to further identify the potent Plk1 inhibitor. To investigate the inhibitory mechanism of the active compound against Plk1, enzymatic inhibition assay, SPR and yeast two-hybrid technology-based assays were used.

Results:

Aristolactam AIIIa was identified as a new type of Plk1 inhibitors, targeting the Polo Box domain (PBD) which is another efficient tactic for exploring Plk1 inhibitors. Further studies indicated that it could block the proliferations of HeLa, A549, HGC and the HCT-8/V cells (clinical Navelbine-resistant cancer cell), induce mitotic arrest of HeLa cells at G2/M phase with spindle abnormalities and promote apoptosis in HeLa cells. The results from SPR and yeast two-hybrid technology-based assays suggested that it could target both the catalytic domain of Plk1 (CD) and PBD and enhance the CD/PBD interaction.

Conclusion:

Our current work is expected to shed light on the potential anti-tumor mechanism of Aristolactam AIIIa, and this natural product might be possibly used as a lead compound for further developing anti-tumor drugs.  相似文献   

14.
Tethered dimers incorporating natural alpha-amino acid end groups were synthesized, including examples in which the previously reported esterase-sensitive ester linker was replaced with more stable amide or ether linkers. These compounds remained effective both as inhibitors of NAD synthetase and as potent antibacterial agents for Gram-positive strains. Studies on nonspecific effects, including detergent properties and promiscuous inhibition, suggested little contribution to observed activities.  相似文献   

15.
Investigations have been made of the inhibition by 19 folate analogues of the reaction catalysed by dihydrofolate reductase from Streptococcus faecium A. Methotrexate, 7,8-dihydromethotrexate, aminopterin, methyl 4-amino-4-deoxy-10-methylpteroate and trimethoprim act as slow, tight-binding inhibitors, while 1-deazamethotrexate and 1-deaza-4-amino-4-deoxypteroate function as slow-binding inhibitors. Computer analysis of progress curve date indicated that the inhibition by these compounds conforms to a mechanism whereby there is an initial rapid formation of an enzyme-NADPH-inhibitor complex which subsequently undergoes a relatively slow, reversible isomerization reaction. Determinations were made of the dissociation constants for the release of each of the inhibitors from the initial ternary complex as well as of the rate constants associated with the forward and reverse isomerization reactions. The resulting values were used to calculate the overall inhibition constants for the inhibitors. 1-Deaza-2,4-diamino-6-methylpteridine and two derivatives of p-aminobenzoylglutamate also exhibited slow-binding inhibition. As the inhibition was parabolic, it appears that two molecules of each of these compounds combine with the enzyme-NADPH complex. Eight derivatives of 2,4-diaminopteridine and one derivative of 2,4-diaminopyrimidine yielded classical linear competitive inhibition with respect to dihydrofolate and dissociation constants were determined for their interaction with the enzyme-NADPH complex. From the type of inhibition and values for the kinetic parameters, conclusions have been drawn about the structural features of folate analogues which influence the formation of the enzyme-NADPH-inhibitor complex and its subsequent conformation change.  相似文献   

16.
Kinase inhibitors: not just for kinases anymore   总被引:10,自引:0,他引:10  
Kinase inhibitors are widely employed as biological reagents and as leads for drug design. Their use is often complicated by their lack of specificity. Although binding conserved ATP sites accounts for some of their nonspecificity, some compounds inhibit proteins not known to bind ATP. It has been found that promiscuous hits from high-throughput screening may act as aggregates. To explore whether this mechanism might explain the action of widely used nonspecific kinase inhibitors, 15 such compounds were studied. Eight of these, rottlerin, quercetin, K-252c, bisindolylmaleimide I, bisindolylmaleimide IX, U0126, indirubin, and indigo, inhibited three diverse non-kinase enzymes. Inhibition was time-dependent and sensitive to enzyme concentration; by light scattering, the compounds formed particles of 100-1000 nm diameter. These observations suggest that these eight kinase inhibitors, at least at micromolar concentrations, are promiscuous and act as aggregates. Results obtained from the use of these compounds at micromolar or higher concentrations against individual enzymes should be interpreted cautiously.  相似文献   

17.
18.
Novel regioisomeric "ortho-nitrated" catechols related to the catechol-O-methyltransferase (COMT) inhibitors BIA 3-202 3 and BIA 3-335 4 were synthesized and biologically evaluated. Changing the position of the nitro group from the "classical" meta- to the ortho-position relative to the side-chain substituent of the nitrocatechol pharmacophore exerted profound effects on selectivity and duration of COMT inhibition. Alkylaryl compounds 7a-d possessed shorter duration of action than their regioisomers, but 7b displayed reversed selectivity over 3 at 3 and 6 h, exhibiting preferential central inhibition. In the amino-substituted series, ortho-nitrated regioisomer 14k was less peripherally selective than 4 and short-acting, whereas decahydroquinoline 14g displayed an unprecedented combination of long-acting and selective peripheral inhibition. 7b could provide a useful tool to probe the pharmacological utility of short-acting, centrally selective COMT inhibitors in the treatment of depression in Parkinsonian patients, and 14g represents a promising candidate for clinical evaluation as an adjunct to L-Dopa therapy.  相似文献   

19.
In the struggle against the emergence of the antibiotic resistance, new molecules targeting biofilm formation could be useful as adjuvant of conventional antibiotics. This study focused on a new class of 2-phenylhydrazinylidene derivatives as antivirulence agents. The compound 12e showed interesting activities against biofilm formation of all tested Staphylococcus aureus strains with IC50 ranging from 1.7 to 43 µM; compounds 12f and 13a resulted strong inhibitors of S. aureus ATCC 6538 and ATCC 29213 biofilm formation with IC50 of 0.9 and 0.8 µM, respectively. A preliminary study on the mechanism of action was carried on evaluating the inhibition of sortase A transpeptidase. Compound 12e resulted not to be toxic at 1 mg/ml by using an in vivo model (the wax moth larva model, Galleria mellonella).  相似文献   

20.
High-throughput screening (HTS) is the primary technique for new lead identification in drug discovery and chemical biology. Unfortunately, it is susceptible to false-positive hits. One common mechanism for such false-positives is the congregation of organic molecules into colloidal aggregates, which nonspecifically inhibit enzymes. To both evaluate the feasibility of large-scale identification of aggregate-based inhibition and quantify its prevalence among screening hits, we tested 70,563 molecules from the National Institutes of Health Chemical Genomics Center (NCGC) library for detergent-sensitive inhibition. Each molecule was screened in at least seven concentrations, such that dose-response curves were obtained for all molecules in the library. There were 1274 inhibitors identified in total, of which 1204 were unambiguously detergent-sensitive. We identified these as aggregate-based inhibitors. Thirty-one library molecules were independently purchased and retested in secondary low-throughput experiments; 29 of these were confirmed as either aggregators or nonaggregators, as appropriate. Finally, with the dose-response information collected for every compound, we could examine the correlation between aggregate-based inhibition and steep dose-response curves. Three key results emerge from this study: first, detergent-dependent identification of aggregate-based inhibition is feasible on the large scale. Second, 95% of the actives obtained in this screen are aggregate-based inhibitors. Third, aggregate-based inhibition is correlated with steep dose-response curves, although not absolutely. The results of this screen are being released publicly via the PubChem database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号