首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
The cathepsin K inhibitor odanacatib (ODN), currently in phase 3 development for postmenopausal osteoporosis, has a novel mechanism of action that reduces bone resorption while maintaining bone formation. In phase 2 studies, odanacatib increased areal bone mineral density (aBMD) at the lumbar spine and total hip progressively over 5 years. To determine the effects of ODN on cortical and trabecular bone and estimate changes in bone strength, we conducted a randomized, double‐blind, placebo‐controlled trial, using both quantitative computed tomography (QCT) and high‐resolution peripheral (HR‐p)QCT. In previously published results, odanacatib was superior to placebo with respect to increases in trabecular volumetric BMD (vBMD) and estimated compressive strength at the spine, and integral and trabecular vBMD and estimated strength at the hip. Here, we report the results of HR‐pQCT assessment. A total of 214 postmenopausal women (mean age 64.0 ± 6.8 years and baseline lumbar spine T‐score –1.81 ± 0.83) were randomized to oral ODN 50 mg or placebo, weekly for 2 years. With ODN, significant increases from baseline in total vBMD occurred at the distal radius and tibia. Treatment differences from placebo were also significant (3.84% and 2.63% for radius and tibia, respectively). At both sites, significant differences from placebo were also found in trabecular vBMD, cortical vBMD, cortical thickness, cortical area, and strength (failure load) estimated using finite element analysis of HR‐pQCT scans (treatment differences at radius and tibia = 2.64% and 2.66%). At the distal radius, odanacatib significantly improved trabecular thickness and bone volume/total volume (BV/TV) versus placebo. At a more proximal radial site, odanacatib attenuated the increase in cortical porosity found with placebo (treatment difference = –7.7%, p = 0.066). At the distal tibia, odanacatib significantly improved trabecular number, separation, and BV/TV versus placebo. Safety and tolerability were similar between treatment groups. In conclusion, odanacatib increased cortical and trabecular density, cortical thickness, aspects of trabecular microarchitecture, and estimated strength at the distal radius and distal tibia compared with placebo. © 2014 American Society for Bone and Mineral Research  相似文献   

2.
《BONE》2013,57(2):482-488
In the FREEDOM study, denosumab treatment (60 mg every 6 months) decreased bone resorption, increased bone mineral density (BMD), and reduced new vertebral, nonvertebral, and hip fractures over 36 months in postmenopausal women with osteoporosis. In a subset of these women, hip quantitative computed tomography (QCT) was performed at baseline and months 12, 24, and 36. These scans were analyzed using Medical Image Analysis Framework (MIAF) software, which allowed assessment of total hip integral, trabecular, subcortical, and cortical compartments; the cortical compartment was further divided into 2 areas of interest (outer and inner cortex). This substudy reports changes in BMD and bone mineral content (BMC) from baseline and compared placebo with denosumab over 36 months of treatment (placebo N = 26; denosumab N = 36). Denosumab treatment resulted in significant improvements in total hip integral volumetric BMD (vBMD) and BMC from baseline at each time point. At month 36, the mean percentage increase from baseline in total hip integral vBMD and BMC was 6.4% and 4.8%, respectively (both p < 0.0001). These gains were accounted for by significant increases in vBMD and BMC in the trabecular, subcortical, and cortical compartments. In the placebo group, total hip integral vBMD and BMC decreased at month 36 from baseline by − 1.5% and − 2.6%, respectively (both p < 0.05). The differences between denosumab and placebo were also significant at months 12, 24, and 36 for integral, trabecular, subcortical, and cortical vBMD and BMC (all p < 0.05 to < 0.0001). While the largest percentage differences occurred in trabecular vBMD and BMC, the largest absolute differences occurred in cortical vBMD and BMC. In summary, denosumab significantly improved both vBMD and BMC from baseline and placebo, assessed by QCT MIAF, in the integral, trabecular, subcortical, and cortical hip compartments, all of which are relevant to bone strength.  相似文献   

3.

Summary

The quantitative computed tomography (QCT) scans in an individually matched case–control study of women with hip fracture were analysed. There were widespread deficits in the femoral volumetric bone mineral density (vBMD) and cortical thickness of cases, and cortical vBMD and thickness discriminated hip fracture independently of BMD by dual-energy X-ray absorptiometry (DXA).

Introduction

Acknowledging the limitations of QCT associated with partial volume effects, we used QCT in an individually matched case–control study of women with hip fracture to better understand its structural basis.

Methods

Fifty postmenopausal women (55–89 years) who had sustained hip fractures due to low-energy trauma underwent QCT scans of the contralateral hip within 3 months of the fracture. For each case, postmenopausal women, matched by age (±5 years), weight (±5 kg) and height (±5 cm), were recruited as controls. We quantified cortical, trabecular and integral vBMD and apparent cortical thickness (AppCtTh) in four quadrants of cross-sections along the length of the femoral head (FH), femoral neck (FN), intertrochanter and trochanter and examined their association with hip fracture.

Results

Women with hip or intracapsular (IC) fracture had significantly (p?<?0.05) lower vBMD and AppCtTh than the controls in the majority of cross-sections and quadrants of the proximal femur, and both cortical and trabecular compartments are involved. Cortical vBMD and AppCtTh in the FH and FN were associated with hip and IC fractures independent of hip areal BMD (aBMD). The combination of AppCtTh and trabecular or integral vBMD discriminated hip fracture, whereas the combination of FH and FN AppCtTh discriminated IC fracture significantly (p?<?0.05) better than the hip aBMD.

Conclusion

Deficits in vBMD and AppCtTh in cases were widespread in the proximal femur, and cortical vBMD and AppCtTh discriminated hip fracture independently of aBMD by DXA.  相似文献   

4.
Although high-resolution peripheral quantitative computed tomography (HRpQCT) and central quantitative computed tomography (QCT) studies have shown bone structural differences between Chinese American (CH) and white (WH) women, these techniques are not readily available in the clinical setting. The trabecular bone score (TBS) estimates trabecular microarchitecture from dual-energy X-ray absorptiometry spine images. We assessed TBS in CH and WH women and investigated whether TBS is associated with QCT and HRpQCT indices. Areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry, lumbar spine (LS) TBS, QCT of the LS and hip, and HRpQCT of the radius and tibia were performed in 71 pre- (37 WH and 34 CH) and 44 postmenopausal (21 WH and 23 CH) women. TBS did not differ by race in either pre- or postmenopausal women. In the entire cohort, TBS positively correlated with LS trabecular volumetric bone mineral density (vBMD) (r = 0.664), femoral neck integral (r = 0.651), trabecular (r = 0.641) and cortical vBMD (r = 0.346), and cortical thickness (C/I; r = 0.540) by QCT (p < 0.001 for all). TBS also correlated with integral (r = 0.643), trabecular (r = 0.574) and cortical vBMD (r = 0.491), and C/I (r = 0.541) at the total hip (p < 0.001 for all). The combination of TBS and LS aBMD predicted more of the variance in QCT measures than aBMD alone. TBS was associated with all HRpQCT indices (r = 0.20–0.52) except radial cortical thickness and tibial trabecular thickness. Significant associations between TBS and measures of HRpQCT and QCT in WH and CH pre- and postmenopausal women demonstrated here suggest that TBS may be a useful adjunct to aBMD for assessing bone quality.  相似文献   

5.
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214 ) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

6.
We measured cortical and trabecular bone loss using QCT of the spine and hip in 14 crewmembers making 4- to 6-month flights on the International Space Station. There was no compartment-specific loss of bone in the spine. Cortical bone mineral loss in the hip occurred primarily by endocortical thinning. INTRODUCTION: In an earlier study, areal BMD (aBMD) measurements by DXA showed that cosmonauts making flights of 4- to 12-month duration on the Soviet/Russian MIR spacecraft lost bone at an average rate of 1%/month from the spine and 1.5%/month from the hip. However, because DXA measurements represent the sum of the cortical and trabecular compartments, there is no direct information on how these bone envelopes are affected by spaceflight. MATERIALS AND METHODS: To address this, we performed a study of crewmembers (13 males and 1 female; age range, 40-55 years) on long-duration missions (4-6 months) on the International Space Station (ISS). We used DXA to obtain aBMD of the hip and spine and volumetric QCT (vQCT) to assess integral, cortical, and trabecular volumetric BMD (vBMD) in the hip and spine. In the heel, DXA was used to measure aBMD, and quantitative ultrasound (QUS) was used to measure speed of sound (SOS) and broadband ultrasound attenuation (BUA). RESULTS AND CONCLUSIONS: aBMD was lost at rates of 0.9%/month at the spine (p < 0.001) and 1.4-1.5%/month at the hip (p < 0.001). Spinal integral vBMD was lost at a rate of 0.9%/month (p < 0.001), and trabecular vBMD was lost at 0.7%/month (p < 0.05). In contrast to earlier reports, these changes were generalized across the vertebrae and not focused in the posterior elements. In the hip, integral, cortical, and trabecular vBMD was lost at rates of 1.2-1.5%/month (p < 0.0001), 0.4-0.5%/month (p < 0.01), and 2.2-2.7%/month (p < 0.001), respectively. The cortical bone loss in the hip occurred primarily by cortical thinning. Calcaneal aBMD measurements by DXA showed smaller mean losses (0.4%/month) than hip or spine measurements, with SOS and BUA showing no change. In summary, our results show that ISS crewmembers, on average, experience substantial loss of both trabecular and cortical bone in the hip and somewhat smaller losses in the spine. These results do not support the use of calcaneal aBMD or QUS measurements as surrogate measures to estimate changes in the central skeleton.  相似文献   

7.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

8.
In assessing osteoporotic fractures of the proximal femur, the main objective of this in vivo case‐control study was to evaluate the performance of quantitative computed tomography (QCT) and a dedicated 3D image analysis tool [Medical Image Analysis Framework—Femur option (MIAF‐Femur)] in differentiating hip fracture and non–hip fracture subjects. One‐hundred and seven women were recruited in the study, 47 women (mean age 81.6 years) with low‐energy hip fractures and 60 female non–hip fracture control subjects (mean age 73.4 years). Bone mineral density (BMD) and geometric variables of cortical and trabecular bone in the femoral head and neck, trochanteric, and intertrochanteric regions and proximal shaft were assessed using QCT and MIAF‐Femur. Areal BMD (aBMD) was assessed using dual‐energy X‐ray absorptiometry (DXA) in 96 (37 hip fracture and 59 non–hip fracture subjects) of the 107 patients. Logistic regressions were computed to extract the best discriminates of hip fracture, and area under the receiver characteristic operating curve (AUC) was calculated. Three logistic models that discriminated the occurrence of hip fracture with QCT variables were obtained (AUC = 0.84). All three models combined one densitometric variable—a trabecular BMD (measured in the femoral head or in the trochanteric region)—and one geometric variable—a cortical thickness value (measured in the femoral neck or proximal shaft). The best discriminant using DXA variables was obtained with total femur aBMD (AUC = 0.80, p = .003). Results highlight a synergistic contribution of trabecular and cortical components in hip fracture risk and the utility of assessing QCT BMD of the femoral head for improved understanding and possible insights into prevention of hip fractures. © 2011 American Society for Bone and Mineral Research.  相似文献   

9.
The objective of the study was to evaluate the effect of parathyroidectomy (PTX) versus 35 mg once-weekly (ow) risedronate administration on volumetric bone mineral density (vBMD) and bone geometry at the tibia in postmenopausal women with primary hyperparathyroidism (PHPT). Our open-label prospective observational study included 32 postmenopausal women with PHPT as the study group: 16 underwent PTX and 16 were treated with 35 mg ow risedronate for 2 years. We assessed areal BMD (aBMD) by DXA, and vBMD and bone mineral content (BMC) (cortical and trabecular area) by peripheral quantitative computed tomography (pQCT) at the tibia at baseline and at 2 years. Risedronate did not result in any significant change on vBMD and structural pQCT indices. PTX resulted in significant increase in trabecular (trab) BMC (6.44 %) and vBMD (4.64 %), with percent increase being significantly higher than risedronate (p < 0.05). At cortical sites, there was no significant change following PTX. However, the percent change in cortical (cort) vBMD was higher following PTX versus risedronate (0.39 % vs. ?0.26 %, p < 0.05). In conclusion, in postmenopausal women with PHPT, PTX is superior to ow risedronate, in terms of improvement of trabecular mineralization and vBMD at the tibia, whereas the effect at cortical sites is less pronounced.  相似文献   

10.
We investigated the associations of 3D geometric measures and volumetric bone mineral density (vBMD) of the proximal femur assessed by quantitative computed tomography (QCT) with hip fracture risk among elderly men. This study was a prospective case‐cohort design nested within the Osteoporotic Fractures in Men Study (MrOS) cohort. QCT scans of 230 men (65 with confirmed hip fractures) were evaluated with Mindways' QCTPRO‐BIT software. Measures that are indicative of bone strength for the femoral neck (FN) and for the trochanteric region (TR) were defined. Bending strength measures were estimated by minimum section modulus, buckling strength by buckling ratio, and a local thinning index (LTI). Integral and trabecular vBMD measures were also derived. Areal BMD (aBMD) of the total proximal femur from dual‐energy X‐ray absorptiometry (DXA) is presented for comparison. Associations of skeletal measures with incident hip fracture were estimated with hazard ratios (HR) per standard deviation and their 95% confidence intervals (CI) from Cox proportional hazard regression models with adjustment for age, body mass index (BMI), site, and aBMD. Men with hip fractures were older than men without fracture (77.1 ± 6.0 years versus 73.3 ± 5.7 years, p < 0.01). Age, BMI, and site‐adjusted HRs were significant for all measures except TR_LTI. Total femural BMD by DXA (HR = 4.9, 95% CI 2.5–9.9) and QCT (HR = 5.5, 95% CI 2.5–11.7) showed the strongest association followed by QCT FN integral vBMD (HR = 3.6, 95% CI 1.8–6.9). In models that additionally included aBMD, FN buckling ratio (HR = 1.9, 95% CI 1.1–3.2) and trabecular vBMD of the TR (HR = 2.0, 95% CI 1.2–3.4) remained associated with hip fracture risk, independent of aBMD. QCT‐derived 3D geometric indices of instability of the proximal femur were significantly associated with incident hip fractures, independent of DXA aBMD. Buckling of the FN is a relevant failure mode not entirely captured by DXA. Further research to study these relationships in women is warranted. © 2016 American Society for Bone and Mineral Research.  相似文献   

11.
Data supporting physical activity guidelines to optimize bone development in men is sparse. Peak bone mass is believed to be important for the risk of osteoporosis later in life. The objective of this study was to determine if an increased amount of physical activity over a 5‐year period was associated with increased bone mineral content (BMC), areal (aBMD) and volumetric (vBMD) bone mineral density, and a favorable development of cortical bone size in young adult men. The original 1068 young men, initially enrolled in the Gothenburg Osteoporosis and Obesity Determinants (GOOD) study, were invited to participate in the longitudinal study, and a total of 833 men (78%), 24.1 ± 0.6 years of age, were included in the 5‐year follow‐up. A standardized self‐administered questionnaire was used to collect information about patterns of physical activity at both the baseline and 5‐year follow‐up visits. BMC and aBMD were measured using dual energy X‐ray absorptiometry, whereas vBMD and bone geometry were measured by peripheral quantitative computed tomography. Increased physical activity between the baseline and follow‐up visits was associated with a favorable development in BMC of the total body, and aBMD of the lumbar spine and total hip (p < 0.001), as well as with development of a larger cortex (cortical cross sectional area), and a denser trabecular bone of the tibia (p < 0.001). In conclusion, increased physical activity was related to an advantageous development of aBMD, trabecular vBMD and cortical bone size, indicating that exercise is important in optimizing peak bone mass in young men. © 2012 American Society for Bone and Mineral Research.  相似文献   

12.
Collagen peptides (CPs) have been shown to potentially have a role as a treatment option in osteopenia. In the present randomized prospective study, we examined the effect of calcium, vitamin D with and without CPs supplementation on changes in volumetric bone mineral density (vBMD) and bone geometry assessed by peripheral quantitative computed tomography at the tibia, areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry at the lumbar spine and the hip and bone turnover markers over 12-mo. Fifty-one postmenopausal women with osteopenia were allocated to Group A who received orally 5 g CPs, 500 mg calcium and 400 IU vitamin D3 and Group B who received the same dose of calcium and vitamin D3 per day. The primary endpoint was the change of trabecular bone mineral content (BMC) and vBMD after 12-mo supplementation in Groups A and B. At the trabecular site (4% of the tibia length), Group A had a significant increase of total BMC by 1.96 ± 2.41% and cross-sectional area by 2.58 ± 3.91%, trabecular BMC by 5.24 ± 6.48%, cross-sectional area by 2.58 ± 3.91% and vBMD by 2.54 ± 3.43% and a higher % change of these parameters at 12 mo in comparison to Group B (p < 0.01, p = 0.04, p < 0.01, p = 0.04, p = 0.02, respectively). At the cortical site (38% of the tibia length), total and cortical vBMD increased by 1.01 ± 2.57% and 0.67 ± 1.71%. Furthermore, the mean aBMD at the spine was higher (p = 0.01), while bone markers decreased in Group A compared to Group B. The present study shows improvement of trabecular and cortical parameters as assessed by peripheral quantitative computed tomography at the tibia, prevention of aBMD decline and decrease of bone turnover after 12-mo supplementation with calcium, vitamin D with CPs.  相似文献   

13.
High‐resolution peripheral quantitative computed tomography (HR‐pQCT) is a new in vivo imaging technique for assessing 3D microstructure of cortical and trabecular bone at the distal radius and tibia. No studies have investigated the extent to which measurements of the peripheral skeleton by HR‐pQCT reflect those of the spine and hip, where the most serious fractures occur. To address this research question, we performed dual‐energy X‐ray absorptiometry (DXA), central QCT (cQCT), HR‐pQCT, and image‐based finite‐element analyses on 69 premenopausal women to evaluate relationships among cortical and trabecular bone density, geometry, microstructure, and stiffness of the lumbar spine, proximal femur, distal radius, and distal tibia. Significant correlations were found between the stiffness of the two peripheral sites (r = 0.86), two central sites (r = 0.49), and between the peripheral and central skeletal sites (r = 0.56–0.70). These associations were explained in part by significant correlations in areal bone mineral density (aBMD), volumetric bone mineral density (vBMD), and cross‐sectional area (CSA) between the multiple skeletal sites. For the prediction of proximal femoral stiffness, vBMD (r = 0.75) and stiffness (r = 0.69) of the distal tibia by HR‐pQCT were comparable with direct measurements of the proximal femur: aBMD of the hip by DXA (r = 0.70) and vBMD of the hip by cQCT (r = 0.64). For the prediction of vertebral stiffness, trabecular vBMD (r = 0.58) and stiffness (r = 0.70) of distal radius by HR‐pQCT were comparable with direct measurements of lumbar spine: aBMD by DXA (r = 0.78) and vBMD by cQCT (r = 0.67). Our results suggest that bone density and microstructural and mechanical properties measured by HR‐pQCT of the distal radius and tibia reflect the mechanical competence of the central skeleton. © 2010 American Society for Bone and Mineral Research.  相似文献   

14.
Musculoskeletal aging in the most resource-limited countries has not been quantified, and longitudinal data are urgently needed to inform policy. The aim of this prospective study was to describe musculoskeletal aging in Gambian adults. A total of 488 participants were recruited stratified by sex and 5-year age band (aged 40 years and older); 386 attended follow-up 1.7 years later. Outcomes were dual-energy X-ray absorptiometry (DXA) (n = 383) total hip areal bone mineral density (aBMD), bone mineral content (BMC), bone area (BA); peripheral quantitative computed tomography (pQCT) diaphyseal and epiphyseal radius and tibia (n = 313) total volumetric BMD (vBMD), trabecular vBMD, estimated bone strength indices (BSIc), cross-sectional area (CSA), BMC, and cortical vBMD. Mean annualized percentage change in bone outcomes was assessed in 10-year age bands and linear trends for age assessed. Bone turnover markers, parathyroid hormone (PTH), and 25-hydroxyvitamin D (25(OH)D) were explored as predictors of change in bone. Bone loss was observed at all sites, with an annual loss of total hip aBMD of 1.2% in women after age 50 years and in men at age 70 years plus. Greater loss in vBMD and BSIc was found at the radius in both men and women; strength was reduced by 4% per year in women and 3% per year in men (p trend 0.02, 0.03, respectively). At cortical sites, reductions in BMC, CSA, and vBMD were observed, being greatest in BMC in women, between 1.4% and 2.0% per annum. Higher CTX and PINP predicted greater loss of trabecular vBMD in women and BMC in men at the radius, and higher 25(OH)D with less loss of tibial trabecular vBMD and CSA in women. The magnitude of bone loss was like those reported in countries where fragility fracture rates are much higher. Given the predicted rise in fracture rates in resource-poor countries such as The Gambia, these data provide important insights into musculoskeletal health in this population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

15.
Finite‐element analysis (FEA) of quantitative computed tomography (QCT) scans can estimate site‐specific whole‐bone strength. However, it is uncertain whether the site‐specific detail included in FEA‐estimated proximal femur (hip) strength can determine fracture risk at sites with different biomechanical characteristics. To address this question, we used FEA of proximal femur QCT scans to estimate hip strength and load‐to‐strength ratio during a simulated sideways fall and measured total hip areal and volumetric bone mineral density (aBMD and vBMD) from QCT images in an age‐stratified random sample of community‐dwelling adults age 35 years or older. Among 314 women (mean age ± SD: 61 ± 15 years; 235 postmenopausal) and 266 men (62 ± 16 years), 139 women and 104 men had any prevalent fracture, whereas 55 Women and 28 men had a prevalent osteoporotic fracture that had occurred at age 35 years or older. Odds ratios by age‐adjusted logistic regression analysis for prevalent overall and osteoporotic fractures each were similar for FEA hip strength and load‐to‐strength ratio, as well as for total hip aBMD and vBMD. C‐statistics (estimated areas under ROC curves) also were similar [eg, 0.84 to 0.85 (women) and 0.75 to 0.78 (men) for osteoporotic fractures]. In women and men, the association with prevalent osteoporotic fractures increased below an estimated hip strength of approximately 3000 N. Despite its site‐specific nature, FEA‐estimated hip strength worked equally well at predicting prevalent overall and osteoporotic fractures. Furthermore, an estimated hip strength below 3000 N may represent a critical level of systemic skeletal fragility in both sexes that warrants further investigation. © 2011 American Society for Bone and Mineral Research.  相似文献   

16.
In this cross‐sectional study, we investigated volumetric bone mineral density (vBMD), bone microstructure, and biomechanical competence of the distal radius in male patients with rheumatoid arthritis (RA). The study cohort comprised 50 male RA patients of average age of 61.1 years and 50 age‐matched healthy males. Areal BMD (aBMD) of the hip, lumbar spine, and distal radius was measured by dual‐energy X‐ray absorptiometry. High‐resolution peripheral quantitative computed tomography (HR‐pQCT) of the distal radius provided measures of cortical and trabecular vBMD, microstructure, and biomechanical indices. aBMD of the hip but not the lumbar spine or ultradistal radius was significantly lower in RA patients than controls after adjustment for body weight. Total, cortical, and trabecular vBMD at the distal radius were, on average, –3.9% to –23.2% significantly lower in RA patients, and these differences were not affected by adjustment for body weight, testosterone level, or aBMD at the ultradistal radius. Trabecular microstructure indices were, on average, –8.1% (trabecular number) to 28.7% (trabecular network inhomogeneity) significantly inferior, whereas cortical pore volume and cortical porosity index were, on average, 80.3% and 63.9%, respectively, significantly higher in RA patients. RA patients also had significantly lower whole‐bone stiffness, modulus, and failure load, with lower and more unevenly distributed cortical and trabecular stress. Density and microstructure indices significantly correlated with disease activity, severity, and levels of pro‐inflammatory cytokines (interleukin [IL] 12p70, tumor necrosis factor, IL‐6 and IL‐1β). Ten RA patients had focal periosteal bone apposition most prominent at the ulnovolar aspect of the distal radius. These patients had shorter disease duration and significantly higher cortical porosity. In conclusion, HR‐pQCT reveals significant alterations of bone density, microstructure, and strength of the distal radius in male RA patients and provides new insight into the microstructural basis of bone fragility accompanying chronic inflammation. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity. Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius. In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls, despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia. © 2014 American Society for Bone and Mineral Research.  相似文献   

18.
Familial Hypocalciuric Hypercalcaemia (FHH) Type 1 is caused by an inactivating mutation in the calcium-sensing receptor (CASR) gene resulting in elevated plasma calcium levels. We investigated whether FHH is associated with change in bone density and structure. We compared 50 FHH patients with age- and gender-matched population-based controls (mean age 56 years, 69 % females). We assessed areal BMD (aBMD) by DXA-scans and total, cortical, and trabecular volumetric BMD (vBMD) as well as bone geometry by quantitative computed tomography (QCT) and High-Resolution peripheral-QCT (HR-pQCT). Compared with controls, FHH females had a higher total and trabecular hip vBMD and a lower cortical vBMD and hip bone volume. Areal BMD and HRpQCT indices did not differ except an increased trabecular thickness and an increased vBMD at the transition zone between cancellous and cortical bone in of the tibia in FHH. Finite element analyses showed no differences in bone strength. Multiple regression analyses revealed correlations between vBMD and P-Ca2+ levels but not with P-PTH. Overall, bone health does not seem to be impaired in patients with FHH. In FHH females, bone volume is decreased, with a lower trabecular volume but a higher vBMD, whereas cortical vBMD is decreased in the hip. This may be due to either an impaired endosteal resorption or corticalization of trabecular bone. The smaller total bone volume suggests an impaired periosteal accrual, but bone strength is not impaired. The findings of more pronounced changes in females may suggest an interaction between sex hormones and the activity of the CaSR on bone.  相似文献   

19.
Summary We investigated the effect of playing regular golf and HRT on lumbar and thoracic vertebral bone parameters (measured by QCT) in 72 post-menopausal women. The main finding of this study was that there was positive interaction between golf and HRT on vertebral body CSA and BMC at the thoracic 12 and lumbar 2 vertebra but not the third and seventh thoracic vertebras. Introduction Identifying specific exercises that load the spine sufficiently to be osteogenic is an important component of primary osteoporosis prevention. The aim of this study was to determine if in postmenopausal women regular participation in golf resulted in greater paravertebral muscle mass and improved vertebral bone strength. Methods Forty-seven postmenopausal women who played golf regularly were compared to 25 controls. Bone parameters at the mid-vertebral body were determined by QCT at spinal levels T3, T7, T12 and L2 (cross-sectional area (CSA), total volumetric BMD (vBMD), trabecular vBMD of the central 50% of total CSA, BMC and cortical rim thickness). At T7 and L2, CSA of trunk muscles was determined. Results There was a positive interaction between golf and HRT for vertebral CSA and BMC at T12 and L2, but not at T3 or T7 (p ranging < 0.02 to 0.07). Current HRT use was associated with a 10–15% greater total and trabecular vBMD at all measured vertebral levels. Paravertebral muscle CSA did not differ between groups. Vertebral CSA was the bone parameter significantly related to muscle CSA. Conclusion These findings provide preliminary evidence that playing golf may improve lower spine bone strength in postmenopausal women who are using HRT.  相似文献   

20.
To explore the possible mechanisms underlying sex‐specific differences in skeletal fragility that may be obscured by two‐dimensional areal bone mineral density (aBMD) measures, we compared quantitative computed tomography (QCT)‐based vertebral bone measures among pairs of men and women from the Framingham Heart Study Multidetector Computed Tomography Study who were matched for age and spine aBMD. Measurements included vertebral body cross‐sectional area (CSA, cm2), trabecular volumetric BMD (Tb.vBMD, g/cm3), integral volumetric BMD (Int.vBMD, g/cm3), estimated vertebral compressive loading and strength (Newtons) at L3, the factor‐of‐risk (load‐to‐strength ratio), and vertebral fracture prevalence. We identified 981 male‐female pairs (1:1 matching) matched on age (± 1 year) and QCT‐derived aBMD of L3 (± 1%), with an average age of 51 years (range 34 to 81 years). Matched for aBMD and age, men had 20% larger vertebral CSA, lower Int.vBMD (–8%) and Tb.vBMD (–9%), 10% greater vertebral compressive strength, 24% greater vertebral compressive loading, and 12% greater factor‐of‐risk than women (p < 0.0001 for all), as well as higher prevalence of vertebral fracture. After adjusting for height and weight, the differences in CSA and volumetric bone mineral density (vBMD) between men and women were attenuated but remained significant, whereas compressive strength was no longer different. In conclusion, vertebral size, morphology, and density differ significantly between men and women matched for age and spine aBMD, suggesting that men and women attain the same aBMD by different mechanisms. These results provide novel information regarding sex‐specific differences in mechanisms that underlie vertebral fragility. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号